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CURVATURES FOR AN EIGENVALUE OF A PERIODIC

STURM-LIOUVILLE PROBLEM

Mircea Crasmareanu1

We define two curvature functions for an eigenvalue λ ∈ R of a periodic

Sturm-Liouville problem having a two-dimensional space of eigenfunctions. For the
classical example of the Fourier analysis (which corresponds to the unit circle) these

functions are different. The circles centered in the origin arise in several ways.
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1. From Euclidean plane curves to linear differential equations and Riccati
equations

Fix a finite real interval I = [a, b] and the smooth regular plane curve r : I ⊆ R →
E2 = (R2, < ·, · >can) having the Wronskian W (r) > 0 (hence r is not a line through the
origin O of R2); if W (r) < 0 we change the orientation of the curve. Expressing the given
curve as r(·) = (x(·), y(·)) its components functions x, y are solutions of the Wronskian linear
differential equation:

W (x, y, u = u(·)) :=
x y u
x′ y′ u′

x′′ y′′ u′′
= 0 → E2 : u′′(t) + p(t)u′(t) + q(t)u(t) = 0,

p := − [W (r)]′

W (r) , q := W (r′)
W (r) , E2 : d

dt

(
u′

W (r)

)
+ W (r′)u

(W (r))2 = 0.

It is well-known that the general solution of E2 is provided by two real constants C1, C2

through the formula:

u(t) = C1x(t) + C2y(t), C1 =
W (u, y)

W (r)
, C2 =

W (x, u)

W (r)

and this means that the real linear space of all solutions is two-dimensional. Let k = k(t)
be the curvature function of r; we suppose that r has no inflexion points, so k > 0 or
k < 0 on I. A main hypothesis of this short note is that t is a arc-lenght parameter for r;
then I = [0, L(r)] with L(r) > 0 the length of r and then the value W (r) is the Euclidean
distance form the origin O to the tangent line of the curve. The well-known expression of
the curvature ([1, p. 37]) gives:

k = x′y′′ − y′x′′ = W (r′) ̸= 0 → q ̸= 0.

Example 1.1. The most simple example is the circle C(O,R > 0) with the arc-length
parametrization:

r(t) = R

(
cos

t

R
, sin

t

R

)
, t ∈ I = [0, 2πR].
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We have W (r) = constant = R > 0 and W (r′) = constant = 1
R = k and then the self-

adjoint form of E2 is the well-known:

E2 :

(
u′

R

)′

+
u

R3
= 0 → u′′ +

u

R2
= 0.

More generally, for the ellipse E : x2

a2 + y2

b2 = 1 we have the non-arc-length parametrization
E : r(t) = (a cos t, b sin t), t ∈ [0, 2π] with W (r) = W (r′) = ab = constant and then
E2 : u′′ + u = 0. □

Remark 1.1. i) The circle example suggests the expression of the derivative curves r′ and
r′′ for the general framework:

r′(t) = (− sinK(t), cosK(t)), K(t) =

∫ t

0

k(s)ds → r′′(t) = −k(t)exp(iK(t)).

For the last relation we use the famous trigonometric Euler formula. With one step further
we have:

r′′′(t) = −k′(t)exp(iK(t))− k2(r)r′(t)

and then it follows that the arc-length defined functions x(·), y(·) are also solutions of the
Wylczynski equation:

E3 : kU ′′′ − k′U ′′ + k3U ′ = 0

which we have studied in [7]. The general Wylczynski equation of a curve on a 2-dimensional
manifold (M2, g) is the equation (1.5) from [6].
ii) It is well-known that the set of homogeneous linear second order differential equations
E2 : u′′(t) + p(t)u′(t) + q(t)u(t) = 0 is in one-to-one correspondence with the set of Riccati
equations:

R : z′(t) = A(t)z2(t) +B(t)z(t) + C(t).

Indeed, starting with E2 we consider u′(t) = z(t)u(t) and from u′′(t) = (z′(t) + z2(t))u(t) it
results R with:

A = −1, B = −p, C = −q.

Hence, to the given plane curve we associate the Riccati equation:

R(r) : z′(t) = −z2(t) +
[W (r)]′

W (r)
(t)z(t)− W (r′)

W (r)
(t).

The circle C(O,R) parametrized as in the previous example has the Riccati equation:

R(C) : z′(t) = −z2(t)− 1

R2
.

□

2. Curvatures for an eigenvalue of a periodic Sturm-Liouville problem

In the following we travel in the reverse way: from a differential equation to an
associated geometry and hence curvature. Fix the functions a, b, c ∈ C1(R) satisfying the
following hypothesis:
H1) a > 0 and c > 0 on R;
H2) all three functions are periodic with the period L > 0.
Hence, we can consider the periodic Sturm-Liouville problem on I = [0, L]:

SL : [(a(t)u′(t))′ + b(t)u(t)] + λc(t)u(t) = 0, u(0) = u(L), u′(0) = u′(L).

It is well-known ([2, p. 31]) that in contrast to the regular Sturm-Liouville problems
a fixed eigenvalue λ may have two linearly independent eigenfunctions (x, y). Therefore, we
assume from now that this is our setting and then we call the geometrical curvature of λ the
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curvature function kgλ of an arc-length parametrization for the curve C(SL) : t ∈ [0, L] →
r̃(t) = (x(t), y(t)).

An example when the curve is precisely determined by the above conditions is provided
by:

Proposition 2.1. Suppose that both a and b + λc are non-zero constants. Then the arc-
length parametrized curve C(SL) is a circle centered in the origin O(0, 0).

Proof. By deriving the arc-length hypothesis we have x′x′′ + y′y′′ = 0. By multiplying this
equation with the constant a > 0 and replacing x′′, y′′ from SL it follows xx′+yy′ = 0 which
gives the claimed conclusion. We point out that the periodicity hypothesis is not used. □

Moreover, we can associate a second curvature to our eigenvalue λ through the iden-
tification of the second form of E2 and SL. Let us call equational this resulting curvature
and hence:

W (r) =
1

a
> 0, keλ · a2 = b+ λc.

It follows the curvature function keλ : R → R:

keλ(t) :=
b(t) + λc(t)

a2(t)
,

which is also periodic with the same period L. We remark that a somehow dual problem
is studied in [3], namely cycloids in a normed plane whose radius of curvature and support
function satisfy a differential equation of Sturm-Liouville type.

Example 2.1. Dual to the example 1.1 we have the Fourier FSL provided by L = 2π and
the coefficient functions a = c = 1 and b = 0. Its 2-dimensional eigenvalues are well-
known (in fact are resulting from the example 1.1): λn = n2 with the corresponding basis
of eigenfunctions (cos(nt), sin(nt)) for n ∈ N∗. It results the curvature functions of λn as
being indexed by the natural number n:

kgn = 1 > 0, ken = λn = n2 > 0.

It is worth to point out that for n ≥ 2 we have kgn < ken and hence our second route (from
second order ODE to plane curve) is not the reverse of the initial one. □

Proposition 2.2. If W (r) > 0 and kgλ = keλ then the curve C(SL) is a line not containing
O.

Proof. Suppose kgλ = keλ. The expression of the curvature implies the relation:

(b+ λc)W (r) = 0

which gives λ = − b
c ∈ R and this value reduces keλ to 0 and then the curve is a line. Also

SL reduces to the equation au′ = C1 with the solution:

u(t) = C1

∫ t

0

ds

a(s)
+ C2.

□

Example 2.2. Although this example does not fit into the setting of periodic Sturm-Liouville
problems we consider it interesting due to to similarities with the circles already studied in
the previous examples. Let (x = cn(·, ρ), y = sn(·, ρ), z = dn(·, ρ)) be the Jacobi elliptic
functions as solutions of the homogeneous ordinary differential system ([4, p. 30]):

dx
dt = −zy, x(0) = 1,
dy
dt = zx, y(0) = 0,
dz
dt = −ρ2xy, z(0) = 1,
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with the modulus 0 ≤ ρ2 < 1. We compute now the curvature of the plane curve rρ(t) =
(x(t), y(t)). From:{

r′ρ(t) = z(t)(−y(t), x(t)),
r′′ρ (t) = (−z2(t)x(t) + ρ2x(t)y2(t),−z2(t)y(t)− ρ2x2(t)y(t))

it results:

kρ(t) =
1

[x2(t) + y2(t)]
1
2

> 0

and we remark that this function does not depends on z. In fact, the functions F1,F2 : R3 →
R:

F1(x, y, z) := x2 + y2, F2(x, y, z) := ρ2y2 + z2

are first integrals of the differential system above ([8, p. 130]) and hence x2(t) + y2(t) =
constant = x2(0) + y2(0) = 1; therefore kρ = constant = 1. In conclusion, our plane curve
is exactly the unit circle S1 with a new periodic parametrization rρ since both functions x(·)
and y(·) are periodic with L = 4L̃ for ([8, p. 131]):

L̃ = L̃(ρ) :=

∫ 1

0

ds√
(1− s2)(1− ρ2s2)

.

In particular:

L̃(0) = arcsin s

∣∣∣∣1
0

=
π

2

for the trigonometrical functions cn(·, 0) = cos(·) and sn(·, 0) = sin(·).
We point out that a remarkable example is provided by ρ = 1√

2
which is the eccentricity

of a remarkable class of ellipses, called self-adjoints, which are studied in [5]. □

3. Conclusions

The current work provides a geometric approach to the theory of periodic Sturm-
Liouville equations. This way to study differential equations is inspired by the classical
theory of plane curves.
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