
U.P.B. Sci. Bull., Series C, Vol. 78, Iss. 1, 2016                                                     ISSN 2286-3540 

FLOW BASED ALGORITHM FOR DYNAMIC BUFFER 
ALLOCATION 

SANKAR P.1, MANU NATARAJAN2, CHELLAMUTHU C.3 

Virtual Clock algorithm (VC) is a traffic control algorithm that monitors the 
average transmission rate of packet data flow. The features of VC include 
guaranteed throughput, low queuing delay and firewall protection among flows. VC 
does not provide fairness for dynamic buffer allocation when different categories of 
flows are to be scheduled. Hence modification is necessary in VC to provide fair 
share of allocation for various flows. In this paper a modification to VC has been 
carried out, with a fair share of bandwidth allocation for three applications such as 
Video, CBR and Audio. The simulation was carried out in C++based software 
platform and the performance parameters like delay, throughput and packet loss 
ratio are calculated and analyzed. 

Keywords: Computer network, Internet, Network topology, Scheduling 
algorithm, Video codec 

1. Introduction 

The increase in space requirement for network on chip design as compared 
to the bus based architecture requires different routing algorithms and arbitration 
strategies. Many researchers are working on several strategies to find the 
suitability of algorithms [1].The three basic blocks in a network on chip consists 
of router, links and a network adapter. The router basically receives packets from 
various links according to the packet format, based on which the packet is 
forwarded to other links. In addition to the physical connection the router contains 
logical block that implements control policies. These policies ensure deadlock 
free routing. The flow control involves centralized and distributed approach with 
no traffic congestion. The possible approach for its implementation is the use of 
Time Division Multiplexing (TDM) mechanism where each packet is associated 
with a time frame. Apart from these the escalation of applications such as voice, 
audio and other  

 
                                                            
1  Jerusalem College of Engineering, Anna University, India, e-mail: sankarp1@ieee.org 
2  Meenakshi Sunderrajan College of Engineering, Anna university, India, e-mail:   

manu.natarajan@gmail.com  
3  RMK Engineering College, Anna University, e-mail: ccm.eee@rmkec.ac.in 



42                                           Sankar P., Manu Natarajan, Chellamuthu C. 

services increases the use of UDP as a transport protocol in the internet. These 
increase of applications lead to traffic congestion in the network [2] [3]. The TCP 
applications have congestion control mechanisms where as UDP does not have 
such mechanism. The rise of UDP applications is a major concern to fairness and 
steadiness [4] [5]. The UDP being insensitive, do not back off in response to 
packet loss. This misbehavior gives rise to congestion. The queue management at 
the routers in the network is an ideal solution. The Drop Tail is the queue 
management algorithm normally used in routers [6]. This algorithm randomly 
distributes the losses among the flows. Random Early Detection (RED) and Flow 
Random Early Drop (FRED) prevent the loss of packets and also overcome the 
drawback of Drop Tail [7][8]. But the buffer allocation in a fairer way is not 
carried out by any one of these algorithms. The scheduling algorithms perform the 
function of   packet scheduling and queue management.  

Packet scheduling is the decision process used to choose which packets 
need to be served or dropped. The queue management refers to the disciplines that 
helps in regulating the occupancy of a particular queue. Packet scheduling is one 
of the methods for guaranteed performance of the network. It provides 
performance guarantee in terms of throughput, packet loss ratio, and delay. Hence, 
Quality of Service (QoS) guarantee can be obtained by scheduling algorithms 
which does queue management for both network on chip and Internet applications 
effectively. 

The Virtual Clock (VC) is a scheduling algorithm that controls the average 
transmission rate of data flows and enforces users’ average resource usage 
according to its reservation. It also provides firewall protection among individual 
flows and supports priority services. It was evolved from the TDM principles. 
Lixia Zhang describes the VC algorithm for performing two main functionalities 
such as data forwarding and flow monitoring. The flow of control packets based 
on average transmission rate is shown in Fig 1 as flow diagram [9]. The authors 
describe about the utility of virtual clock as a queue management algorithm and 
proved its efficacy in ensuring fairness to the TCP in the presence of UDP 
retaining the advantages of VC algorithm [10]. In this paper a flow based 
modification to VC has been considered to see its effectiveness when different 
types of flows are passed through the network and how the buffer is allocated and 
shared among the flows. The remnant of the paper is organized as follows. 
Section 2 gives an account of the related works. Section 3 gives the flow based 
modification of VC algorithm. Simulation, for various scenarios along with results 
is described in Section 4. Section 5 gives the fairness index. Finally, the 
conclusion is given in Section 6. 



Flow based algorithm for dynamic buffer allocation                                43 

 

Fig. 1 Flow Diagram of Virtual Clock 

2. Related works  

There is an extensive literature on scheduling and queue management 
algorithms used in the Internet, especially in high speed networks. Abhimanyu 
Das [11], explains that in Internet services, when packets from two flows such as 
the responsive TCP and non-responsive UDP are transmitted, the responsive 
flows are not given proper share of resources as compared to the likes of non-
responsive ones at the time of congestion. Eventually unfairness prevails among 
the flows which are overcome in the paper. Arnaud Legout [12], presents an 
analytical model to study the potential impact of video streaming strategies on the 
aggregate traffic and make the recommendations accordingly.           

Dimitrious Stiliadis [13] describes a general model used to analyse various 
scheduling algorithms. Using this technique upper bounds and buffer 
requirements of individual sessions in various scheduling algorithms can be 
obtained. Geoffrey G. Xie [14] explains about the firewall protection offered by 
the VC algorithm along with procedures to obtain delay bounds in flows. George 
Varghese [15], details that the routers schedule packets on the output links in 
order to guarantee fairness and latency bounds. Here, VC algorithm is used to 
provide low end-to-end delay and guaranteed throughput.  

Jianmei Chen [16], describes the principles of priority buffering 
incorporated into the VC algorithm. This idea mentioned in the paper provides 
complete isolation of different traffic classes in a sharing environment. 
Furthermore the paper explains that the different QoS requirements are satisfied at 
the same time. Nazy Alborz [17] describes the performance and efficiency of the 



44                                           Sankar P., Manu Natarajan, Chellamuthu C. 

VC algorithm by simulating it in OPNET simulation tool. The results obtained in 
the paper show the wide spread areas in which VC can be applied. 

3. The Flow Based Modified Virtual Clock (FMVC) 

FMVC is a queue management algorithm evolved from the VC algorithm. 
The VC does not provide fairness among TCP and UDP flows. UDP is a non-
responsive traffic protocol while TCP is responsive. During congestion TCP stops 
transmission while UDP continues to transmit not allowing TCP to continue its 
flow. Hence in VC, TCP does not get a fair share of resources. To overcome this 
disadvantage the FMVC is devised that introduces reservation for TCP. The 
network resources are fairly considered for allocation among TCP and UDP for 
various applications like audio, video and CBR. The buffer inside the router is 
spliced into various spaces and the threshold values of 25%, 50% and 25% 
respectively are set for the flows. If utilization by any flow exceeds the threshold 
value that particular flow is dropped and packets from other flows are allowed.  

 
Working of FMVC 
The modified version of VC consists of three stages. The first stage 

consists of classifying TCP and UDP packets for packet reservation. The second 
stage consists of data forwarding which is used to enqueue the packets into the 
outgoing queue. Third stage consists of flow monitoring for controlling each flow. 

In the first stage of FMVC the packets are classified as TCP and UDP. The 
headers of the packets are cracked and parameters like source and destination 
addresses, source and destination port numbers and header sizes are obtained. 
These parameters help in classifying the packets as TCP and UDP. 

For the first packet that is received from flowi, VCi and auxVCi are set to 
real time. The two parameters VCi and auxVCi are control variables to monitor 
and control the flow.  Vticki is the value that is computed as the inverse of average 
transmission rate of flowi. For every consecutive packet VCi is advanced with 
Vticki value and packets are time stamped. The time stamped packets are sent to 
the outgoing queue. The stamped packets are served in the increasing order. 
Average interval rate is the maximum number of packets a flow can transmit. It 
can be computed as AIRi = ARi * AIi for each flowi, where ARi is the average 
transmission rate and AIi is the average interval of ith flow which describe the data 
transmission behaviour. On receiving each packet the specified conditions are 
checked first. When the difference between VC and real time is greater than the 
threshold value then a warning message is sent to flow source. The warning 
message is a feedback information mechanism to the data flow source to adjust its 
transmission rate or flow parameters. Second, if VC is less than real time then VC 
value is enqueued to real time. This process is same as that of VC algorithm. 



Flow based algorithm for dynamic buffer allocation                                45 

Algorithm of FMVC 
Steps involved in FMVC are: 
    Step1: Common and priority header values are cracked for   

  classification. 
    Step2: Queue usage is calculated.  
                           If   Video (p) 
                                     If  usage<0.5, enqueue (p) 
                                     Else  drop (p) 
                           If   Audio (p) 
                                     If  usage<0.25, enqueue (p) 
                                     Else  drop (p) 
                           If    Cbr (p) 
                                      If  usage<0.25, enqueue (p) 
                                      Else  drop (p) 
     Step3: Packet is time stamped with AuxVC and enqueued into the   
                 queue in ascending value of the time stamp value. 
                        If  queue length exceeds queue limit. 

                 Step4: Drop the packet at the end of the queue. 
 
Here ‘usage’ is a parameter which indicates the percentage of buffer 

allocated for the flow, the enqueue (p) and drop (p) are functions which will 
queue and drop the packets respectively. The pseudocode of FMVC given 
describes the manner in which it functions. The pseudocode is explained as 
follows:- 

 
The pseudo-code of FMVC 
variables required: 
vsb : video_steal_bit 
stv : stolen video size 
vt : video tolerance  
asb : audio_steal_bit 
sta : stolen_audio_size 
at : audio tolerance 
db=data buffer length //stored length of the buffer 
ddb= default capacity  
dc=data buffer capacity //total size of the buffer. 
ab= audio buffer length //stored-buffer length 
ac= audio buffer capacity //total size of the buffer 
vb= video buffer length //stored buffer length 
vc= video buffer capacity //total size of the buffer 
free=dc-db; 



46                                           Sankar P., Manu Natarajan, Chellamuthu C. 

requirements: 
1) A router is present with three type of values.  
1.1 ) audio allocated 25%  
1.2 ) Video allocated 50%; 
1.3 ) DATA allocated 25%; 
2) packets keeps coming in.. 
the pseudo-code is : 
initializations : 
db=0 
ab=0; 
vb=0; 
while(1) //runs forever 
{ 
listen for action; 
if(action==input) 
goto input_handling(); 
else 
if(action==output) 
goto output_handling(); 
}  
function input_handling() 
{ 
IF the packets=data  
{  
free=dc-db 
if(packet.length>free) 
req=packet.length-free; //the amount of extra space required 
else  
req=0; 
if req==0 //no extra storage space required  
db=db+packets.length; 
else //we need to steal space from audio or video 
{ 
if (ac-ab) > (vc-vb) //checking wether audio or video space is more  
{ if ( ac-ab > req and req+sta <= at ) //checking if audio has enough space and if 
the stolen space hasnt gone above tolerence value 
dc=dc+req; //adding data capacity 
store packets. 
db=db+packets.length 
ac=ac-req; //decreasing buffer capacity of audio 
asb=1; 



Flow based algorithm for dynamic buffer allocation                                47 

} sta+=req; 
else  
if(vc-vb > req and req+stv<=vt) 
{ dc=dc+req 
vc=vc-req; 
db=db+packets.length 
vsb=1; 
stv+=req; 
}  
else //stealing from both audio and video. 
if((ac-ab)+(vc-vb)>=req req+sta+stv <=at+vt) 
{ 
dc=dc+ req-(at-sta)  
ac=ac-(req-(at-sta)) 
asb=1; 
stb=stb+(req-(at-sta)) 
req=req-(sta+at) 
dc=dc+req; 
vc=vc-req; 
stv=stv+req; 
db=dc; // here the data buffer will be full anyway since it has stolen due to space 
requirements 
vsb=1  
} 
else  
display error. //no space to steal. 
} 
} 
else  
if packets=audio 
{ 
if((ac-ab)>=req) 
{  
ab=ab+req; //allocate the req size to the memory 
} 
else 
drop packets; 
} 
else //video  
{ 
if((vc-vb)>=req) 



48                                           Sankar P., Manu Natarajan, Chellamuthu C. 

{ 
vb=vb+req; //allocate the req size to the memory  
} 
else 
drop packets; 
} 
} 
function output_handling() 
{ 
if(output is from audio ) 
ab=ab-output.length; 
else 
if(output is from video) 
vb=vb-output.length; 
else 
if(dc>db) // giving back data -- contains three cases.  
{ 
free=dc-db; 
if(free>dbb) //making sure the data memory size does not fall below default size. 
free=free-dbb //while giving back the dc should not fall below dbb 
if(asb==1 and vsb==0) // stolen from audio 
{ 
if(free>sta) 
{ac=ac+sta; 
dc=dc-sta; 
free=free-sta; 
asb=0; sta=0 
} 
else 
{ 
to_give=sta-free; //giving back only part of the memory 
ac=ac+to_give; 
dc=dc-to_give; 
free=free-to_give;  
sta=sta-to_give; 
} 
else //stolen from video 
if(vsb==1 and asb==0)  
{ 
if(free>stv) 
{vc=vc+stv; 



Flow based algorithm for dynamic buffer allocation                                49 

dc=dc-stv; 
free=free-stv; 
vsb=0; stv=0 
} 
else 
{ 
to_give=stv-free; 
ac=ac+to_give; 
dc=dc-to_give; 
free=free-to_give; stv=stv-to_give; 
} 
else  
if(vsb==1 and asb==1) //stolen from video and audio 
{ 
if(free>=stv+sta) // all the stolen space can be given back. 
{ 
ac=ac+sta; 
dc=dc-sta; 
vc=vc+stv; 
dc=dc-stv; 
asb=vsb=0; 
free=free-(sta+stv) 
sta=stv=0; 
} 
else //part of the stolen space can be given back 
{ 
//giving preference to audio 
if(free>=sta) 
{ 
ac=ac+sta; //giving back whole stolen part of audio back to audio buffer 
dc=dc-sta; 
free=free-sta; 
sta=0; 
asb=0; 
vc=vc+free; //giving back remaining part of free space to video 
dc=dc-free 
stv=stv-free 
free=0; 
}}}}}}} 
 



50                                           Sankar P., Manu Natarajan, Chellamuthu C. 

All the variables are initialised and their values are computed. Then each flow is 
identified by its common header and priority value. Based on the threshold values 
it will be decided as to how much of the flow can be forwarded for transmission 
and how many packets must be dropped. 

4. Results and Analysis 

The modification in algorithm design and traffic analysis has been carried 
out using the simulation tool C++ based software platform with video streaming 

environment  attached to it [18] [19]. The simulated network is as shown in Fig. 2. 
The basic dumbbell topology was taken and three different sources were  

 

 
Fig 2.  Simulated Network 

connected to one end and send to the other end through two routers. The 
propagation delay throughout the simulation was set to 10ms for the entire 
network. 

 
Network Parameters 
 
The following statistics give a picture of the performance of the FMVC 

algorithm. The performance of FMVC algorithm with respect to network 
parameters such as delay, throughput and packet loss ratio has been analyzed. The 
throughput is the number of packets delivered fruitfully from one end to other 
end. Different flow combinations are taken and sent through the network and the 
throughput expressed as a percentage is illustrated in the Fig. 3(a).The total loss is 
the number of packet losses during the entire simulation run. As single flow goes 



Flow based algorithm for dynamic buffer allocation                                51 

through the network there will not be any loss in the network, but when the flows 
increase there are packet loss as shown in Fig. 3(b). Just like in VC, the FMVC 
also does not contribute to the queuing delays. FMVC algorithm also helps the 
interleaving of packets from different flows and assures the throughput rate, but 
propagation delay experienced in the network needs to be considered. The average 
delay experienced by the flows for various bandwidths are illustrated in Fig. 3(c). 
Four different bandwidths are considered from 256 kbps to 8.1Mbps. 

 

 
 

Fig. 3(a) .Variation of Throughput with bandwidth for various flows 

 
 

Fig. 3(b) .Variation of Packet Loss Ratio with bandwidth for various flows 



52                                           Sankar P., Manu Natarajan, Chellamuthu C. 

 
 

Fig. 3(c) .Variation of Average Delay with bandwidth for various flows 

Variable Bandwidth Allocation 
 
The goal of this test is to see how effectively the bandwidth allocation is 

carried out by the modified algorithm. The variable bandwidth allocation property 
of FMVC is analysed here with different combinations in the number of 
applications sent through the network. In the first case, when only a single 
application (CBR or Audio or Video) is allowed to pass through the network it is 
found that the bandwidth allocation is 100% as seen in Fig. 4(a). In the second 
case, when only two applications in different combinations are passed through the 
network the bandwidth allocation for each of the application is 50%. Fig. 4(b) 
depicts 50% bandwidth allocation for CBR and Video flows. Same property holds 
good for the other two combinations. The third case is allows all the three 
applications at once into the network. In Fig. 4(c), it is found that the bandwidth 
allocation is 50 % for video, 25 % for audio and 25 % for CBR as per the 
threshold limits set for each of the application. 

 

 
Fig. 4 (a).  Packet allocation with bandwidth for Individual flows 



Flow based algorithm for dynamic buffer allocation                                53 

 
Fig. 4 (b).  Packet allocation with bandwidth for Double flows 

 

 
Fig. 4 (c).  Packet allocation with bandwidth for Triple flows 

 
Previous researchers has provided enough data on VC algorithm to prove its 
efficacy but stated its ineffectiveness in providing a fair share allocation for 
different types of flows. In case of FMVC, the throughput, average delay, packet 
loss ratio and the packet allocation for variable bandwidth indicates the 
effectiveness in providing the fair share allocation for various flows. To indicate 
the fairness an index has been used to compare the modified algorithm with the 
existing VC algorithm.  

5. Fairness Index 
 
With the available bandwidth, the algorithm must be fairer to all the flows 

traversing inside the router. An efficient algorithm does not necessarily mean that 
it is also fair. A single flow might take up the largest portion of the available 
bandwidth while the others remain idle. Noticeably, this is an adverse behavior 



54                                           Sankar P., Manu Natarajan, Chellamuthu C. 

)2(

2)(
)(

∑

∑
=

ixn
ix

xF

and in certain cases, gaining high fairness is valuable even at the cost of reduced 
efficiency. Instinctively, fairness is the closeness of the throughput achieved by 
each flow to its fair share [20]. To measure fairness, the Jain’s fairness index 
formula is considered. The fairness index is defined as: 

 
                                              (1) 

 
 
where, xi is the throughput of the ith flow and n is the total number of 

flows. The fairness index of a system ranges from 0 to 1, with 0 being totally 
unfair and 1 being totally fair. The fairness index for the two algorithms is shown 
in Table 1. 

Table 1  
Fairness Index 

Bandwidth VC FMVC 
8.1Mbps 0.54758 0.7954 
1.1Mbps 0.4673 0.60114
512Kbps 0.2152 0.47371
256Kbps 0.10173 0.24715 

 
6. Conclusion  
 
This work describes the flow based modifications of virtual clock 

algorithm. The main idea is to provide fairness to the various scheduled flows by 
offering dynamic buffer allocation.  

The performance of the modified algorithm was compared with VC. It is 
found that FMVC has better throughput than VC due to reservation for the TCP 
flows in the queue. It is observed that the drop in packets while simulating FMVC 
is less than that of VC for TCP flows in the network at the cost of UDP packet 
drop. The delay in packet delivery is analysed for FMVC and found to be less 
than that of VC. The bandwidth allocation property of FMVC is analysed. The 
observation shows that the video, audio and CBR take their fair share of the 
bandwidth. In the absence of one or two flows, the other flows occupy the unused 
bandwidth making the bandwidth allocation flexible. The fairness indexes for 
both algorithms indicate that FMVC is much fairer as compared to the VC 
algorithm. As a future work the FMVC algorithm can be implemented and tested 
in hardware. The various allocations for network traffic and the optimal network 
parameter values can be evaluated using real time data transmission via routers. 

 

 



Flow based algorithm for dynamic buffer allocation                                55 

Acknowledgements  

The authors would like to thank the unknown reviewers who reviewed this 
work. The authors would also like to thank Venkat Subramaniam of Mavjay 
solutions private limited, Chennai for giving suggestions during this research 
work. 

R E F E R E N C E S 

[1]. J. Wang, Y. Li and H. Li, A Novel Parallel Viterbi Decoding Scheme for NoC-Based  
Software-Defined Radio System, ETRI Journal, 35(2013), No. 5, 767-774.  

[2]. T. Faber, “ACC: Active Congestion Control”, IEEE Network, vol.12, no.3, (1998), pp. 61-65. 
[3]. M. Analoui , A. Gharegozi and  Sh. Jamali, “A new active mechanism to enhance the 

performance of the TCP congestion control”, 2nd International Conference on Information 
and Knowledge Technology (IKT2005), Tehran, Iran, May 24-26, 2005. 

[4]. W. John and S. Tafvelin, “Analysis of internet backbone traffic and header anomalies 
observed,” in ACM IMC, 2007. 

[5]. W. John, S. Tafvelin, and T. Olovsson, “Trends and differences in connection-behavior within 
classes of internet backbone traffic,” in PAM, 2008. 

[6]. S Floyd and V Jacobson, On Traffic phase Effects in Packet switched Gateways,” Computer 
Communication Review, April 1991, (DOI 10.1145/122419.122421). 

[7]. A.Gharegozi, “Experimental Evaluation of RED Queue Management Mechanism”,  
 International Conference on Intelligent Network and Computing (ICINC 2010), IEEE 
 Computer Society and indexed by both EI (Compendex) and ISI Proceeding (ISTP), 
 Kuala Lumpur, Malaysia, November 2010. 

[8]. D. Lin and R. Morris, “Dynamics of random early detection,” in Proc. of ACM SIGCOMM 
'97, Cannes, France, pp. 127-137, Oct. 1997, (DOI 10.1145/s263109.263154). 

[9]. L. Zhang, “Virtual Clock: A new traffic algorithm for Packet Switching networks”, Journal in 
Transactions on Computer Systems, vol. 9, no.2, (1998), pp 19-28. 

[10]. P.Sankar and C.Chellmuthu, “Modified Virtual Clock Scheduling Algorithm for Queue 
Management”, International Journal of Computer Theory and Engineering, U.P.B. Sci. 
Bull., Series C, vol. 75, Iss. 3, (2013), pp 43-54. 

[11]. A. Das, D. Dutta and A.Helmy, Fair Stateless Aggregate traffic Marking using Active Queue 
Management Techniques, International Conference on Management of Multimedia 
Networks and Services: Management of Multimedia on the Internet , 211-223,2002. 

[12]. A. Rao, A. Legout, Y.sup Lim, D. Towsley, C. Barakat, and W. Dabbous, Network 
characteristics of video streaming traffic, Proceedings of the Seventh Conference on 
emerging Networking Experiments and Technologies, December 06-09, Tokyo, Japan,  
(2011),1-12, (DOI 10.1145/2079296.2079321). 

[13]. D. Stiliadis, “Latency – Rate Servers: A general model for analysis of traffic scheduling 
algorithms”, IEEE International Journal on Networking, vol. 6, no.5, (1998), pp. 1-3. 

[14]. G. G. Xie and S. S. Lam, ‘Delay guarantee on Virtual Clock Server’, IEEE    Transactions on 
Networking, vol. 3, No. 6, (1995), pp. 1-5. 

[15]. G. Varghese, S. Suri and G.Chandranmenon, Leap Forward Virtual Clock-a new fair 
queuing scheme with guaranteed delays and throughput fairness, PODC '97 Proceedings of 
the sixteenth annual ACM symposium on Principles of distributed computing ,(1997), 7-11 
(DOI 10.1145/259380.259482). 



56                                           Sankar P., Manu Natarajan, Chellamuthu C. 

[16]. J. Chen, M. Devetsikiotis, C. Huang and I. Lambadaris,Virtual Clock with Priority Buffer: A 
Resource Sharing Algorithm, in Proceedings of IEEE GLOBECOM 98, Sydney, Australia, 
November 1998. 

[17]. N. Alborz, ‘Implementation of Virtual Clock Scheduling Algorithm in OPNET’, Thesis B.A., 
Shahid Beheshti University, Tehran, Iran, 1998. 

[18].  K. Fall and K. Varadhan, 2005 the NS Manual. 
[19].  http://www.isi.edu/nsnam/ns/ns2 
[20]. H. Natiq Jasem , Z. Ahmad Zukarnain ,and  M. Othman”, Fairness of the TCP-based new 

AIMD Congestion Control Algorithm” Journal of Theoretical and Applied Information 
Technology, (2005),pp.568-57. 

 


