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WEIBULL STATISTICS APPLICATION TO THE LOW 
CYCLE FATIGUE TEST  

OF ZIRCALOY-4  
 

Vladimir-Alexandru PAUN1, Viorel-Puiu PAUN2 

The two parameters Weibull law for the analysis of the cycle fatigue tests 
has been adapted. Also it has been realized the Weibull probabilistic network. Using 
this method, the results of the low cycle fatigue tests on Zircaloy-4 specimens were 
interpreted. 
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1. Introduction 

In the physics of materials, or generally in materials science, the fatigue 
terminology represents the material debilitation into continuous process produced 
by action of repeatedly applied loads. More precisely, if a material is subjected to 
cyclic loading procedure, in its structure the progressive and localized structural 
damage will be produced. In other words, fatigue occurs when a material is 
subject to repeated loading/unloading succession.  

Experimental study of special alloys behavior in the low-cycle fatigue test 
was traditionally performed for certain amongst them, which were used in 
manufacturing of pressure vessels, thin-walled tubes loaded and subject to high 
hydrostatic pressure, that are exposed in their lifetime service to a heat source/sink 
which induces thermal expansion or thermal stress to the structure.  

The associated characteristics of “Low Cycle Fatigue” are the moderate 
time event per test, samples moderate deformation and fracture dependence on 
time/temperature. It can also be said that, for this mechanical model, the stress 
level usually remains into plastic range.  

From the initial utilizations offered by W. Weibull himself regarding 
problems and tests concerning the resistance of materials, later time behavior of 
electronic tubes, in the last period the Weibull statistics method has found 
countless applications in other fields. Amongst them we can enumerate the 
protection of environment against pollution, the control of products reception 
found in a quality assurance system, as well as chemistry and medicine 
applications. The advantages of this procedure reside in its relatively simple 
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analytical form, in its elastic structure, offered by the existence of two or three 
parameters and in the ease of getting the conclusions. Differing from the classical 
exponential model, in this method we cannot impose anymore the hypothesis of 
constancy in time and the superior number of parameters raises the fidelity degree 
in describing complex processes.  
 As known from literature, the Weibull model has several forms, which are 
equivalent to each other [1-3]. We have chosen one of them, which is more 
suitable for our requirements. 

We shall present, briefly enough, the Weibull model, which will be used to 
the results interpretation of the “Low Cycle Fatigue” test for samples of Zircaloy-
4 sheets at 300 °C. In particular, we remind the reader that this material has been 
tested extensively by one of the authors, and the results have already been 
published [4, 5]. 

2. The Weibull statistics – normal form 

In this paper, we will take a closer look at a specific distribution that is 
widely used in life data analysis, the well-known Weibull distribution. So called 
for its inventor, Waloddi Weibull, this distribution is widely used primarily in 
reliability engineering and in other important fields due to its polyvalent nature, 
multiple purpose and relative straightforwardness [2, 3]. 

The general expression of the frequency function of the “two parameters 
Weibull law”, for x ≥ 0 is  
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where the Greek lowercase θ , respectively β  are two parameters requested by 
definition [1, 2]. In particular, if β  > 0, it is named the shape parameter and if     
θ  > 0, it is named the scale parameter.  

In mathematical language, )(xf is the probability density function. 
According to common perception, the Weibull shape parameter is 

assimilated as the Weibull slope. This is based on the fact that the value of β  is 
equal to the slope of the line in a probability plot. 

The banal graphic representations - see Figures 1 and 2 - demonstrate the 
separate effect of the scale parameter θ  (teta) or the shape parameter β  (beta), on 
the Weibull distribution. 
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Fig. 1. Effect of the scale parameter Fig. 2. Effect of the shape parameter 
 

The distribution function for this model is 
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A simple calculation leads to the expression 
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 In continuation, the form  
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represents the probability that the event will take place in the time interval (0,x) 
or, as it is often said in the theory of reliability, the probability of functioning 
without losses/failure in a given time. Another denomination of the function 
provided above is the cumulative distribution function   
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The inverse cumulative distribution function is  
βθ /1))(1ln(())(( xFxFI −−= . (8)

The principal statistical properties of the Weibull distribution such as the 
“mean”, the “median”, the “mode” and the “standard deviation”σ , are given by 
the next formulae: 



270                               Vladimir-Alexandru Paun, Viorel-Puiu Paun 

 Mean )11(
β

θ +Γ⋅=      

 Median βθ /1)2(ln=  

 Mode (when β > 1) β

β
θ /1)11( −=   

 
2

)11()21( ⎥
⎦

⎤
⎢
⎣

⎡
+Γ−+Γ⋅=
ββ

θσ
.
 

The gamma function, present in the above expressions, is defined as  
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3. The Zircaloy-4 samples rupture by “Low Cycle Fatigue” test 

There are three commonly recognized forms of fatigue. They were given 
the names "high cycle fatigue (HCF)", "low cycle fatigue (LCF)" and "thermal 
mechanical fatigue (TMF)". The essential distinction between HCF and LCF is 
the region of the stress-strain curve where the repetitive application of load (and 
resultant deformation or strain) is occurring. 

Finite or Infinite Fatigue Life, that is the question! In the case of HCF 
experiment, either infinite fatigue or finite fatigue life is possible and can be 
analyzed. Conversely, for LCF experiment, only finite fatigue life is possible and 
should be analyzed using LCF-criteria.   

As terminology, we mention that the "American Society for Testing and 
Materials" (ASTM) defines fatigue life, as the number of stress cycles of a 
specified character that a specimen sustains before failure of a specified nature 
occurs. By virtue of a full understanding of the text peculiarity, in all notations, 
terminology and measurements, the names involved with their definitions used are 
in compliance with ASTM A370 – 15, surnamed “Standard Test Methods and 
Definitions for Mechanical Testing of Steel Products”. 

Another important question relates to whether the technical option is for 
Stress or Strain test type, respectively.  

In the HCF model, we have elastic material and a small strain increment 
involves a large stress increment. By comparison, in the LCF model, we have 
stresses close to (or at) the yield limit. The small stress increment involves large 
strain increment. Best “resolution” is obtained if strains are employed in the 
fatigue model [6, 7]. 
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In our paper, the cyclic temperature rupture tests were conducted on a 
special alloy (known for its applications in nuclear power plants), named 
Zircaloy-4 (Zy-4) [4, 5, 8]. The specimens were subject to a constant load and 
different types of temperature cycles, but for this study only the fixed 300 °C 
value is considered. The size of the microsamples and method of heating were 
such that thermal stresses were considered to be negligible. 
 Weibull is the one who established, by interpreting the results of a cycling 
test, that the percentage S of a group of samples standing to N cycles, for a given 
loading and under established constant experimental conditions is given by the 
relation 
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where N0 is a certain constant which features the endurance characteristics of the 
material taken into consideration. It is easier to deal with the rupture fraction F, 
which can be obtained from the fraction S, of the “surviving” samples, i.e. 
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 As it can be easily noticed, the equation (11) is similar to (7), for x > 0, 
where N plays the role of the variable x.  
 Further on, we present the application of these results to the “Low Cycle 
Fatigue” test [6]. For tests made at the same load, let us consider 10 experiments, 
the rupture appearing after N1, N2,…, N10 cycles. We arrange the number of cycles 
in a crescent order, as shown in Table 2, in the next chapter.  

In order to find the weight, we use an estimation of the distribution 
function, of the form:  

n
F 1)5.01(100ˆ −= . (12)

4. Weibull probabilistic network 

Practically, the parameters estimation of the Weibull distribution can be 
made analytically or graphically via probability plotting paper, named Weibull 
paper. In analytical manner we obtain the same results, using either least squares 
algorithm (rank regression) or maximum likelihood estimation (MLE) [9, 10].  

Starting from the function F(x), expressed by equation (7), after applying 
twice the logarithm we get, step by step:  
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or after decimal logs in both sides
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Immediately, noting the left-hand side member with y, we have 
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and equation (13, d) becomes 
)lg(lg θβ −= xy . (14)

Taking into discussion for second time the equation (13, b), we have relationships 

⎟
⎠
⎞

⎜
⎝
⎛=−−
θ

β xxF /1))](1ln([    (15, a)

and 
βθ /1))](1ln([ xFx −−= , (15, b)
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At the end of calculation, noting the left-hand side member with z, we 

have 
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Thus xz lg=  when plotted against ))](1ln(lg[ xF−−  should follow a 
straight line pattern with intercept θlg=a  and slope β/1=b . Ultimately, the 
parameter values a10=θ and b/1=β  are obtained. 

Plotting y against xlg  as is usually done in a Weibull plot, one should see 
the following linear relationship (14) with slope β=B  and intercept θβ lg−=A . 
Through a simple calculation, the values B=β  and BA /10−=θ  are obtained. 

Remarks. In many books the parameter θ  is called the scale parameter or 
characteristic life. The latter specified appellation is motivated by the evident 
property ( ) 632.01exp1)/exp(1)( =−−=−−= θθθF , regardless of the shape 
parameter β . There are different manners for estimating the parameters θ  and β . 
One of the simplest is through the method of Weibull plotting, which used to be 
very popular due to its simplicity, graphical appeal, and its informal check on the 
Weibull model assumption. As immediately observed, according to the same 
reasons, we resorted here to this method. 
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Weibull paper scales 
The Weibull p-quantile xp is defined by the following property 
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In this short presentation, the results are due to the power transformation 
property of the Weibull distribution function. 

Let be a coherent notation ),()/,( βθβθ FxFX X =≈ , where X has a 
Weibull distribution with parameters θ  and β . The mention made allows us to 
write that ),()/,( ''' βθβθ FaFXX aa =≈=  . 

Certainly, it is a correct wording in virtue of next formal demonstrations 
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At this point we say that we can adjust parameter values, obviously. Even 
more, it is possible to bring the scale up or down (but mainly down), for an ideal 
situation of data representation, respectively into the proper range by an 
appropriate power transformation. After estimating ),( '' βθ  one can easily 
transform back to ),( βθ  using the known value a, namely a/1' )(θθ = and 'ββ a= . 

A development of the subject, for complete samples and for the Weibull 
special kind of censoring known as type II censoring, can be read in the study of 
Fritz Scholz, titled “Weibull Probability Paper” (2008), freely available on 
Internet. 

One example to determine the adequate scale of Weibull probability paper 
is shown below, for a complete sample of size n = 10, see Table 2. 

The value of the function y linearly depends on lg x, whence we obtain one 
of the principles on which the logarithmic paper relies: on the horizontal axis we 
build the logarithmic scale according to equation xkS xx lg= , where kx is the 
proportionality factor. From equation (14) we can also establish the size of the 
form parameter β . If we take x=1, then we get θβ lg1 −=y  and θθθ lgkS = . 

For ))](1ln(lg[ xFy −−= , corresponding to consecrate values set 
Fmax=0.999, respectively Fmin=0.001, we quickly compute miny  and maxy , extreme 
values of the border. Afterwards, based on the values 99.2min −=y  and 

83.0max =y , a simple calculus leads to 82.3)99.2(83.0minmax =−−=−=Δ yyy . 

Further, by analogy, on the vertical axis we build the linear scale 
according to equation ykS yy = , where ky  is the proportionality factor.  
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We have thus established the modulus of the ordinates scale 
yHyyHFSy )82.3/()/()( =Δ= , where H is the length of the probabilistic 

network in millimeters. In the above indicate example 100=H  (see Fig. 4) and 
find the ordinates scale modulus yyFSy 26.17)82.3/100()( == . 

The drawing of the network was facilitated by using computational 
software, developed by the authors. 

5. Results and discussion 

In the real world of engineering, the Weibull statistics, a mathematical tool 
for processing experimental results [11, 12], is so powerful that the Weibull 
Analysis is surnamed the Life Data Analysis.  

The main goals of this paper are to apply a Weibull model to the Zircaloy-
4 thin-walled tubes reliability analysis, and then explore the failure rate over 
service time.  
 Even more, in our study we disseminate and comment the results of the 
low cycle fatigue test at 300 °C, on Zircaloy-4 microsamples. The experimental 
results of the fatigue fracture tests are presented in Tables 1 and 2. 

The strain amplitude aε (or total strain) can be written as pl
a

el
aa εεε += , 

while the strain elastic amplitude is el
aε  (or total elastic strain) and the strain 

plastic amplitude is pl
aε  (or total plastic strain).  

The fatigue life in the plastic deformation regime can be approximated by 
experimental classic formula 
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In fact, this empirical rule is the Coffin – Manson relationship [13, 14], in 
the plastic behaviour part of material. In equation (18), N is the number of load 
cycles to failure and D is the ductility, in accordance with the theory and notations 
of Table 1. In context of mechanical testing, the ductility is defined as 

fra
fraA

AD ε≈= )ln( 0  (19)

where fraε  is the  fracture strain amplitude, A0 is the value of initial transversal  
surface area (or cross-sectional area) and Afra is the final transversal surface area, 
named fracture transversal surface area of microsample. 

Observation. Low-cycle fatigue is usually characterized by the Coffin-
Manson relation (published independently by L. F. Coffin in 1954 and S. S. 
Manson in 1953). Similar relationships for materials such as Zirconium and its 
alloys (Zircaloy-2, Zircaloy-4, used in the nuclear industry) [14] are already 
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published. We felt the need to give a thorough explanation because we opted for 
material rule introduced above and its verification. 

Table 1 
Low cycle fatigue test on Zircaloy-4 microsamples at 300 °C 

Curvature 
radii 

Number of 
samples 

aε  
(%) 

×ε  102 

( 1−S ) 

pl
aε  

(%) 
N 

cycles N/D 

4 

38 5.44 1.8 5.25 459 169 
42 5.41 1.8 5.22 593 218 
47 5.08 1.7 4.89 691 254 
48 5.06 1.7 4.87 577 212 
49 5.26 1.7 5.07 540 198 
67 5.62 1.9 5.43 515 189 
66 5.81 1.9 5.62 406 149 
61 5.74 1.9 5.55 700 257 
64 5.58 1.9 5.39 555 204 
59 5.71 1.9 5.52 604 222 

6.5 

31 3.58 1.2 3.40 742 273 
44 3.42 1.1 3.24 647 238 
46 3.40 1.1 3.22 868 319 
50 3.25 1.1 3.07 551 202 
35 3.21 1.1 3.03 748 275 
45 3.31 1.1 3.13 625 229 
56 3.69 1.2 3.51 679 250 
57 3.55 1.2 3.37 539 197 
55 3.77 1.2 3.59 405 149 
58 3.61 1.2 3.43 585 219 

8 

51 2.68 0.9 2.51 975 358 
41 2.62 0.9 2.45 698 257 
36 2.71 0.9 2.54 797 293 
37 2.73 0.9 2.56 1209 444 
43 2.60 0.9 2.43 739 272 
60 2.82 0.9 2.65 831 305 
63 2.82 0.9 2.65 703 258 
69 3.06 1.0 2.88 649 238 
65 3.04 1.0 2.86 371 136 
68 3.29 1.1 3.03 968 356 

 
We used results coming up from three cycling tests for samples strained at 

different curvature radii, at 300 °C, namely the number of cycles at which the 
samples broke down. 

By putting these numbers under the form of an increasing order row and 
taking into account the weight, we got Table 2, while Table 1 shows also other 
data, representing the basis which the formalism we have built relies on. 
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Table 2 
Number of the cycles in a crescent order 

F(x) 
(%) 

N 
cycles R=4 R=6.5 R=8 

6.70 10 406 405 371 
16.23 20 459 536 649 
25.86 30 516 551 698 
35.51 40 540 585 703 
45.17 50 555 625 739 
54.83 60 577 647 797 
64.49 70 598 679 831 
74.14 80 604 742 968 
83.77 90 691 748 975 
93.30 100 700 868 1209 

 
Fig. 3. The dependence of plastic strain amplitude pl

aε  on the ratio (N / D) 

 
In Fig. 3 the plastic strain amplitude pl

aε  depending on the ratio (N / D) 
(number of load cycles to failure N and ductility D) through both experimental 
values (Table 1) and the classical empirical curve from equation (18), are plotted. 
As shown, the experimental data (colored points) is above the classical curve 
(continuous full curve), which makes us say that it is not verified (valid) for the 
material tested, respectively Zy-4. 

Although it did not give the expected results, this task has been 
accomplished to show that the only powerful tool in processing experimental 
results of a low cycle fatigue test is Weibull Analysis, successfully used in our 
study. 
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Fig. 4. Weibull probabilistic network 

 
By means of the probabilistic network, we represented the experimental 

data. From the corresponding curves (in fact straight lines) we got the values of 
parameters, as depicted in Figure 4. 

Thus, from }9.2,7.2,6.2{∈iβ  in all three cases we have the formula 
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and }810,630,560{0 ∈iN , or ,56001 =N  ,63002 =N  .81003 =N  
This way we can estimate the rupture function F. This function, assuming 

that N is a “continuous” variable and passing to x, helps us in computing the 
statistical properties, namely to get a better statistical interpretation of the results. 

Taking into account the statements made before, the rupture function has 
now the expression 
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i
x β
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where the scale parameter has the values ,56001 =θ  ,63002 =θ  81003 =θ  and the 
shape parameter successively gets the values ,6.201 =β ,7.202 =β 9.203 =β . 
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The reconstruction of experimental Weibull distribution, in all three cases, 
for }9.2,7.2,6.2{∈iβ and }810,630,560{0 ∈iθ , is presented in Fig. 5. 

 
Fig. 5. The reconstruction of experimental Weibull distribution 

Table 3 
 Weibull statistical properties  

iθ  iβ  Mean Median Mode σ  
560 2.6 497.39 486.37 464.61 6.72 
630 2.7 560.24 550.03 530.79 6.81 
810 2.9 722.26 713.83 700.09 7.01

 
The Weibull statistical properties are presented in Table 3. 
In this chapter, we have explained the Weibull law plotting and its 

motivation, in rapport with reliability data. It also shows that the two Weibull 
parameter estimates are easily read from the Weibull paper, in the manner used 
here (see the Weibull probabilistic network - Fig. 4). 

After all these experimental results have been properly processed, we may 
say the goals targeted ab initio were fully achieved. Moreover, they are in good 
agreement with situations reported in the scientific literature. 
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On the other hand, in the near future, we will propose a new perspective 
on the physical processes involved in the material fracture, so that we can 
maximize the fracture time period until tear depending on the parameters 
involved. The same concept has been successfully used in articles [15, 16], for 
seemingly distinct topics, but mathematically united under a common philosophy. 

Finally, we can assume that a reader uninformed in the field, but also the 
specialist in training or new to this area got a better understanding of the fatigue 
major problems and how fatigue life is practically determined. In counterpart, for 
specialists (physicists, engineers, statisticians and computer scientists), with 
expertise of Materials Behavior or Life Prediction, it is hoped that some of this 
information has been helpful as well. 

6. Conclusions 

In this paper, the results of the low cycle fatigue tests, on the standard 
specimens sampled from Zircaloy-4 tubes, were interpreted. 

As a first observation, we can say that the experimental data is far from the 
classical curve, which makes us declare that for Zircaloy-4, the empirical relation 
(18) is not verified. 

The Weibull law with two parameters is applied to fit real reliability data 
in different test conditions.  

Inter alia, this article explains and builds the Weibull plotting and provides 
its mathematical support. In addition, it shows how the two Weibull parameter 
estimates are easily read from the Weibull plot.  

The analysis results of the low cycle fatigue test on Zircaloy-4 
microsamples, are in good agreement with real test data, and provide reasonable 
prediction of future failure trends.  
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