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PARA-BLASCHKE ISOPARAMETRIC HYPERSURFACES IN THE

UNIT SPHERE Sn+1(1) (II)

Shichang Shu1, Bianping Su2

Let D = A + λB be the para-Blaschke tensor of the immersion x,

where λ is a constant, A and B are the Blaschke tensor and the Möbius second

fundamental form of x. A hypersurface x : M 7→ Sn+1(1) in the unit sphere

Sn+1(1) without umbilical points is called a para-Blaschke isoparametric hyper-

surface if the Möbius form Φ vanishes identically and all of its para-Blaschke

eigenvalues are constants. In [11], we classified the para-Blaschke isoparametric

hypersurfaces with three distinct Blaschke eigenvalues, one of which is simple or

with three distinct Möbius principal curvatures, one of which is simple. In this

article, we continue to study the topic of para-Blaschke isoparametric hypersur-

faces and obtain the classification of para-Blaschke isoparametric hypersurfaces

with three distinct para-Blaschke eigenvalues, one of which is simple.
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1. Introduction

In Möbius differential geometry, Wang [13] studied invariants of hypersurfaces

in the unit sphere Sn+1(1) under the Möbius transformation group. Let x : M 7→
Sn+1(1) be an n-dimensional immersed hypersurface without umbilical points in

Sn+1(1). We choose a local orthonormal basis {ei} for the induced metric I =

dx · dx with dual basis {θi}. Let II =
∑

i,j hijθi ⊗ θj be the second fundamental

form and H = 1
n

∑
i hii the mean curvature of the immersion x. By putting ρ2 =

n
n−1{

∑
i,j h

2
ij − nH2}, Wang [13] defined the Möbius metric , the Möbius form, the

Blaschke tensor and the Möbius second fundamental form of the immersion x by

g = ρ2dx · dx, Φ = ρ
∑

iCiθi, A = ρ2
∑

i,j Aijθi ⊗ θj and B = ρ2
∑

i,j Bijθi ⊗ θj ,

respectively, where Ci, Aij , Bij are defined by (2.7)–(2.9). It was proved that g, Φ, A

and B are Möbius invariants. We should notice that it is one of the important aims

to characterize submanifolds in terms of Möbius invariants. Concerning this topic,

there are many important results, one can see [2]-[12]. Recently, by making use of

the two important Möbius invariants, the Blaschke tensor A and the Möbius second
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fundamental form B of the immersion x, Cheng, Li and Qi [3], Zhong and Sun [14]

defined a symmetric (0, 2) tensor D = A+ λB which is so called the para-Blaschke

tensor of x, where λ is a constant. An eigenvalue of the Blaschke tensor is called

a Blaschke eigenvalue of x, an eigenvalue of the Möbius second fundamental form

is called a Möbius principal curvature of x and an eigenvalue of the para-Blaschke

tensor is called a para-Blaschke eigenvalue of x. It is reasonable to introduce the

definition: a hypersurface x : M 7→ Sn+1(1) without umbilical points is called a

Blaschke isoparametric hypersurface, (resp., a Möbius isoparametric hypersurface),

(resp., a para-Blaschke isoparametric hypersurface), if the Möbius form Φ ≡ 0 and

the Blaschke eigenvalues, (resp., the Möbius principal curvatures), (resp., the para-

Blaschke eigenvalues) of the immersion x are constants.

If x has one distinct constant para-Blaschke eigenvalue, that is, A+λB+µg =

0, Li and Wang [8] completely classified these hypersurfaces without umbilical points

and vanishing Möbius form. If x has two distinct constant para-Blaschke eigenvalues,

the classification was obtained by Zhong and Sun [14]. If x has three distinct con-

stant para-Blaschke eigenvalues, what classification can we obtain? In this article,

we obtain the classification of para-Blaschke isoparametric hypersurfaces with three

distinct para-Blaschke eigenvalues, one of which is simple. We should notice that, in

[11], the authors classified the para-Blaschke isoparametric hypersurfaces with three

distinct Blaschke eigenvalues, one of which is simple or with three distinct Möbius

principal curvatures, one of which is simple, thus, this article may be considered

as a continuing study to the topic of para-Blaschke isoparametric hypersurfaces in

Sn+1(1). We shall prove the following:

Theorem 1.1 (Main Theorem). Let x be an n(n ≥ 3)-dimensional immersed para-

Blaschke isoparametric hypersurface in the unit sphere Sn+1(1) with three distinct

para-Blaschke eigenvalues, one of which is simple. Then x is locally Möbius equiva-

lent to

(1) CSS(p, q, r) for some constants p, q, r given by Example 2.1, or

(2) a Euclidean isoparametric hypersurface with three or four distinct Eu-

clidean principal curvatures.

Remark 1.1. In the second case of Main Theorem, if n = 3, by Cartan’s result in

[1], we know that it is in fact a tube of constant radius over a standard Veronese

embedding of RP 2. If n = 4, from [6], we know that it is either the image of σ of

the cone x̃ : N3 ×R+ 7→ R5 defined by x̃(x, t) = tx, where t ∈ R+ and x : N3 7→
S4 ↪→ R5 is the Cartan isoparametric immersion in S4 with three Euclidean principal

curvatures, or the Euclidean isoparametric hypersurfaces in S5 with four distinct

Euclidean principal curvatures. Therefore, we see that Main Theorem reduces to

Theorem 4.3 of [15] and Theorem 4.2 of [16].

Remark 1.2. For the Möbius isoparametric hypersurfaces and Blaschke isopara-

metric hypersurfaces, we should notice that Hu and Li [5] obtained the immersed

Möbius isoparametric hypersurfaces with three distinct Möbius principal curvatures,
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one of which is simple, Li and Peng [9] obtained the immersed Blaschke isoparamet-

ric hypersurfaces with three distinct Blaschke eigenvalues one of which is simple.

2. Möbius fundamental formulas

In this section, we review the fundamental formulas on Möbius geometry in

Sn+1(1) (see [13]).

Let x : M 7→ Sn+1(1) be an n-dimensional hypersurface of Sn+1(1) without

umbilical points. For an immersed hypersurface x : M 7→ Sn+1(1) ↪→ Rn+2 of

Sn+1(1) without umbilical points, we define its Möbius position vector Y : M 7→
Ln+3 by Y = ρ(1,x), where ρ2 = n

n−1{
∑

i,j h
2
ij − nH2}. Let ∆ be the Laplace-

Beltrami operator of Möbius metric g = ρ2dx · dx. We define N = − 1
n∆Y −

1
2n2 ⟨∆Y,∆Y ⟩Y , the structure equations on M with respect to the Möbius metric g

can be written as follows:

dY =
∑
i

ωiYi, (2.1)

dN =
∑
i

ψiYi + ϕEn+1, (2.2)

dYi = −ψiY − ωiN +
∑
j

ωijYj + ωin+1En+1, (2.3)

dEn+1 = −ϕY −
∑
i

ωin+1Yi, (2.4)

where {ψi, ωij , ωin+1, ϕ} are 1-forms on M with

ωij + ωji = 0, dωi =
∑
j

ωij ∧ ωj , (2.5)

ψi =
∑
j

Aijωj , Aij = Aji, ωin+1 =
∑
j

Bijωj , Bij = Bji, ϕ =
∑
i

Ciωi, (2.6)

and Aij , Bij and Ci are locally defined functions:

Ci =− ρ−2{H,i +
∑
j

(hij −Hδij)ej(log ρ)}, (2.7)

Aij =− ρ−2{Hessij(log ρ)− ei(log ρ)ej(log ρ)−Hhij} (2.8)

− 1

2
ρ−2

(
|∇(log ρ)|2 − 1 +H2

)
δij ,

Bij =ρ
−1(hij −Hδij), (2.9)

here Hessij , ∇ are the Hessian matrix and the gradient with respect to the induced

metric dx · dx. From [13]

dωij =
∑
k

ωik ∧ ωkj −
1

2

∑
k,l

Rijklωk ∧ ωl, Rijkl = −Rjikl, (2.10)

∑
i

Bii = 0,
∑
i,j

B2
ij =

n− 1

n
, trA =

1

2n
(1 + n2R). (2.11)
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Let Ci,j , Aij,k, Bij,k be the covariant derivative of Ci, Aij , Bij . From (2.1)-(2.4), we

infer that

Aij,k −Aik,j = BikCj −BijCk, (2.12)

Ci,j − Cj,i =
∑
k

(BikAkj −BkjAki), (2.13)

Bij,k −Bik,j = δijCk − δikCj , (2.14)

Rijkl = BikBjl −BilBjk + δikAjl + δjlAik − δilAjk − δjkAil, (2.15)

where Rijkl denotes the curvature tensor with respect to the Möbius metric g and

R is the normalized Möbius scalar curvature of the immersion x. Assume that the

Möbius form Φ ≡ 0, we have for all indices i, j, k that

Aij,k = Aik,j , Bij,k = Bik,j ,
∑
k

BikAkj =
∑
k

BkjAki. (2.16)

Denote by D =
∑

i,j Dijωi ⊗ ωj the (0, 2) para-Blaschke tensor,

Dij = Aij + λBij , 1 ≤ i, j ≤ n, (2.17)

where λ is a constant. The covariant derivative of Dij is defined by∑
k

Dij,kωk = dDij +
∑
k

Dikωkj +
∑
k

Dkjωki. (2.18)

From (2.16) and (2.17), we have for all indices i, j, k that

Dij,k = Dik,j . (2.19)

Defining the second covariant derivative of Dij by∑
l

Dij,klωl = dDij,k +
∑
l

Dlj,kωli +
∑
l

Dil,kωlj +
∑
l

Dij,lωlk, (2.20)

we have the Ricci identity

Dij,kl −Dij,lk =
∑
m

DmjRmikl +
∑
m

DimRmjkl. (2.21)

We recall the following example given by [4].

Example 2.1. For any natural number p, q, p + q < n and real number r ∈ (0, 1),

consider the immersed hypersurface u : Sp(r) × Sq(
√
1− r2) × R+ × Rn−p−q−1 7→

Rn+1

u = (tu′, tu′′, u′′′),

u′ ∈ Sp(r) ⊂ Rp+1, u′′ ∈ Sq(
√

1− r2) ⊂ Rq+1, u′′′ ∈ Rn−p−q−1.

then x = σ ◦ u : Sp(r) × Sq(
√
1− r2) × R+ × Rn−p−q−1 7→ Sn+1(1) is a hyper-

surface in Sn+1(1) without umbilical points and with vanishing Möbius form, which

is denoted by CSS(p, q, r). From [4] and [9], by a direct calculation, we know that

CSS(p, q, r) has three distinct Möbius principal curvatures and three distinct para-

Blaschke eigenvalues.
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3. Proof of Main Theorem

Throughout this section, we shall make the following convention on the ranges

of indices:

1 ≤ a, b ≤ m1, m1 + 1 ≤ p, q ≤ m1 +m2,

m1 +m2 + 1 ≤ α, β ≤ m1 +m2 +m3 = n, 1 ≤ i, j, k ≤ n.

Let A, B and D denote the n × n-symmetric matrices (Aij), (Bij) and (Dij) ,

respectively, where Aij , Bij and Dij are defined by (2.8), (2.9) and (2.17). From

(2.16) and (2.17), we know that BA = AB, DA = AD and BD = DB. Thus, we

may always choose a local orthonormal basis {E1, E2, . . . , En} such that

Aij = Aiδij , Bij = Biδij , Dij = Diδij , (3.1)

where Ai, Bi and Di are the Blaschke eigenvalues, the Möbius principal curvatures

and the para-Blaschke eigenvalues of the immersion x. We may prove the following:

Proposition 3.1. Let x be an n(n ≥ 3)-dimensional immersed para-Blaschke isopara-

metric hypersurface in Sn+1(1) with three distinct para-Blaschke eigenvalues, one of

which is simple. If the para-Blaschke tensor is not parallel, then x is a Möbius

isoparametric hypersurface with three or four distinct Möbius principal curvatures.

Proof of Proposition 3.1. Let D1, D2 and D3 be the three distinct constant para-

Blaschke eigenvalues of x with multiplicities m1, m2 and m3. From (2.18), we have

Dij,k = Ek(Di)δij + Γj
ik(Di −Dj), (3.2)

where Γj
ik is the Levi-Civita connection for the Möbius metric g given by

ωij =
∑
k

Γj
ikωk, Γj

ik = −Γi
jk. (3.3)

Thus, by (3.2), we have

Dij,k = Γj
ik(Di −Dj). (3.4)

It follows that

Dab,k = Dpq,k = Dαβ,k = 0 for any a, b, p, q, α, β, k. (3.5)

Since the para-Blaschke tensor is not parallel, we see that the only possible nonzero

elements in {Dij,k} are of the form {Dap,α}. Since n ≥ 3, without loss of generality,

we may assume that m3 = 1, m1 ≥ 1 and m2 ≥ 1.

From (2.10), (2.5) and (3.3), the curvature tensor of x may be given by (see

[10])

Rijkl =El(Γ
j
ik)−Ek(Γ

j
il) +

∑
m

Γj
imΓm

lk (3.6)

−
∑
m

Γj
imΓm

kl +
∑
m

Γm
ikΓ

j
ml −

∑
m

Γm
il Γ

j
mk.
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Thus, from (3.4) and (3.5), we have

Γp
ab = Γα

ab = 0, Γa
pq = Γα

pq = 0, Γa
αβ = Γp

αβ = 0, (3.7)

Γp
aα =

Dap,α

D1 −D2
, Γa

αp =
Dαa,p

D3 −D1
, Γα

pa =
Dpα,a

D2 −D3
. (3.8)

From (3.7) and (3.8), we have

Γa
nn = Γp

nn = 0, Γn
aa = Γn

pp = 0. (3.9)

Γp
an =

Dap,n

D1 −D2
, Γp

nb =
Dbp,n

D3 −D2
, Γn

bq =
Dbq,n

D1 −D3
, (3.10)

Γn
qb =

Dbq,n

D2 −D3
.

Thus, we have

Rapbq = Γp
anΓ

n
qb − Γp

anΓ
n
bq − Γn

aqΓ
p
nb =

Dap,nDbq,n +Daq,nDbp,n

(D1 −D3)(D2 −D3)
. (3.11)

On the other hand, from (2.15), we have

Rapbq =(BaBp +Aa +Ap)δabδpq (3.12)

=
{
(Ba − λ)(Bp − λ) +D1 +D2 − λ2

}
δabδpq.

It follows from (3.11) and (3.12) that

Dap,nDbq,n +Daq,nDbp,n

(D1 −D3)(D2 −D3)
=

{
(Ba − λ)(Bp − λ) +D1 +D2 − λ2

}
δabδpq. (3.13)

If a = b, we have

2Dap,nDaq,n

(D1 −D3)(D2 −D3)
=

{
(Ba − λ)(Bp − λ) +D1 +D2 − λ2

}
δpq. (3.14)

If p = q, we have

2Dap,nDbp,n

(D1 −D3)(D2 −D3)
=

{
(Ba − λ)(Bp − λ) +D1 +D2 − λ2

}
δab. (3.15)

If m1 = 1, it follows that

2D1p,nD1q,n

(D1 −D3)(D2 −D3)
=

{
(B1 − λ)(Bp − λ) +D1 +D2 − λ2

}
δpq. (3.16)

Since the para-Blaschke tensor is not parallel, we may prove that there exists

exactly one p, such thatD1p,n ̸= 0. In fact, if there exists at least two p1, p2, (p1 ̸= p2)

such that D1p1,n ̸= 0, D1p2,n ̸= 0. But from (3.16), we have D1p1,nD1p2,n = 0, this

is a contradiction.

If m2 = 1, it follows that

2Dam1+1,nDbm1+1,n

(D1 −D3)(D2 −D3)
=

{
(Ba − λ)(Bm1+1 − λ) +D1 +D2 − λ2

}
δab.

The same reason implies that there exists exactly one a, such that Dam1+1,n ̸= 0.

Ifm1 ≥ 2 andm2 ≥ 2, we may prove that there exists exactly one a and exactly

one p such that Dap,n ̸= 0. In fact, if there exists at least two a1, a2, (a1 ̸= a2) such

that Da1p,n ̸= 0, Da2p,n ̸= 0. From (3.15), we see that Da1p,nDa2p,n = 0, this is a
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contradiction. The same reason implies that there exists exactly one p, such that

Dap,n ̸= 0.

Combining the above three cases, we see that if m1 ≥ 1 and m2 ≥ 1, there

exists exactly one a and exactly one p, say a1 and p1, such that

Da1p1,n ̸= 0, Dap,n = 0, for a ̸= a1, ∀p, or for ∀a, p ̸= p1. (3.17)

By (3.14) and (3.17), we get

(Ba1 − λ)(Bp1 − λ) +D1 +D2 − λ2 =
2D2

a1p1,n

(D1 −D3)(D2 −D3)
, (3.18)

(Ba − λ)(Bp − λ) +D1 +D2 − λ2 = 0, a ̸= a1, p ̸= p1, (3.19)

(Ba − λ)(Bp1 − λ) +D1 +D2 − λ2 = 0, a ̸= a1, (3.20)

(Ba1 − λ)(Bp − λ) +D1 +D2 − λ2 = 0, p ̸= p1. (3.21)

From (3.4)–(3.6), (2.15) and for the reason above, we get

(Ba1 − λ)(Bn − λ) +D1 +D3 − λ2 =
2D2

a1p1,n

(D1 −D2)(D3 −D2)
, (3.22)

(Ba − λ)(Bn − λ) +D1 +D3 − λ2 = 0, a ̸= a1 (3.23)

(Bp1 − λ)(Bn − λ) +D2 +D3 − λ2 =
2D2

a1p1,n

(D2 −D1)(D3 −D1)
, (3.24)

(Bp − λ)(Bn − λ) +D2 +D3 − λ2 = 0, p ̸= p1. (3.25)

We may prove that Da1p1,n is a constant. In fact, from (2.20), (3.3), (3.4) and (3.5),

we have ∑
l

Dab,plωl =
∑
l

Dnb,pDna,l +Dna,pDnb,l

D3 −D1
ωl.

Thus

Dab,pl =
Dnb,pDna,l +Dna,pDnb,l

D3 −D1
, ∀ a, b, p, l. (3.26)

By reasoning as above, we also have

Dpq,al =
Dna,pDnl,q +Dna,qDnl,p

D3 −D2
, ∀ a, p, q, l, (3.27)

Dnn,ap = 0, ∀ a, p. (3.28)

From (2.21), we have Dij,kl − Dij,lk = (Di − Dj)Rijkl. By (2.15) and Bij = Biδij ,

we know that if three of {i, j, k, l} are distinct, then Rijkl = 0. Thus, if three of

{i, j, k, l} are distinct, we have

Dij,kl = Dij,lk. (3.29)
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From (2.20), (3.4) and (3.5), we have

dDa1p1,n =Da1p1,na1ωa1 +
∑

l=a,a̸=a1

Da1p1,nlωl +Da1p1,np1ωp1

+
∑

l=p,p̸=p1

Da1p1,nlωl +Da1p1,nnωn.

Thus, it follows from (3.26)–(3.29) that dDa1p1,n = 0, that is, Da1p1,n is constant.

It follows from (3.23) and (3.25) that Ba = Bb for any a ̸= b, a ̸= a1, b ̸= a1
and Bp = Bq for any p ̸= q, p ̸= p1, q ̸= p1. Therefore, we know that x has at most

five distinct Möbius principal curvatures: Ba, Ba1 , Bp, Bp1 , Bn.

From (3.20) and (3.23), (3.21) and (3.25), (3.22) and (3.23), we have

(Ba − λ)(Bp1 −Bn) +D2 −D3 = 0, a ̸= a1, (3.30)

(Bp − λ)(Ba1 −Bn) +D1 −D3 = 0, p ̸= p1, (3.31)

(Ba1 −Ba)(Bn − λ) =
2D2

a1p1,n

(D1 −D2)(D3 −D2)
, a ̸= a1. (3.32)

Thus, we obtain that Ba ̸= λ(a ̸= a1), Bp ̸= λ(p ̸= p1), Bn ̸= λ. From (3.18), (3.22)

and (3.24), we see that

△1(Bn − λ)2 = △2△3, (3.33)

where

△1 =
2D2

a1p1,n

(D1 −D3)(D2 −D3)
+ λ2 −D1 −D2,

△2 =
2D2

a1p1,n

(D1 −D2)(D3 −D2)
+ λ2 −D1 −D3,

△3 =
2D2

a1p1,n

(D2 −D1)(D3 −D1)
+ λ2 −D2 −D3,

are constants. If △1 = 0, from (3.18), we get Ba1 = λ or Bp1 = λ. It follows from

(3.20) and (3.21) that D1 + D2 − λ2 = 0. Thus (3.18) implies that Da1p1,n = 0, a

contradiction. Therefore, we know that △1 ̸= 0. From (3.33) and Bn ̸= λ, we get

△2 ̸= 0 and △3 ̸= 0. Thus (Bn − λ)2 = △2△3

△1
is constant, that is, Bn is constant.

From (3.22)–(3.25), we see that Ba1 , Ba(a ̸= a1), Bp1 , Bp(p ̸= p1) are constants.

We may prove that m2 = 1. In fact, if m2 ≥ 2, then there exists some

p ̸= p1 such that (3.18)–(3.25) hold. It follows from (3.19), (3.23) and (3.25) that

D1 +D2 − λ2 ̸= 0, D1 +D3 − λ2 ̸= 0, D2 +D3 − λ2 ̸= 0. From (3.20) and (3.23),

(3.21) and (3.25), we get

Bp1 − λ =
λ2 −D1 −D2

λ2 −D1 −D3
(Bn − λ), Ba1 − λ =

λ2 −D1 −D2

λ2 −D2 −D3
(Bn − λ). (3.34)

From (3.22) and (3.24), we have

(Ba1 − λ)(Bn − λ) +D1 +D3 − λ2

D3 −D1
+

(Bp1 − λ)(Bn − λ) +D2 +D3 − λ2

D3 −D2
= 0.
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From (3.34) and by a direct calculation, we see that

(λ2 −D1 −D2){λ2(D1 +D2 − 2D3) + 2(D2
3 −D1D2)}

(λ2 −D2 −D3)(λ2 −D1 −D3)(D1 −D3)(D2 −D3)

×
{
(Bn − λ)2 − (λ2 −D1 −D3)(λ

2 −D2 −D3)

λ2 −D1 −D2

}
= 0. (3.35)

If (Bn −λ)2 = (λ2−D1−D3)(λ2−D2−D3)
λ2−D1−D2

, by (3.22) and (3.34), we see that Da1p1,n = 0,

this is a contradiction. Thus from (3.35), we get

λ2(D1 +D2 − 2D3) + 2(D2
3 −D1D2) = 0. (3.36)

Similarly, from (3.18) and (3.22), we get

(Ba1 − λ)(Bp1 − λ) +D1 +D2 − λ2

D1 −D2
+

(Ba1 − λ)(Bn − λ) +D1 +D3 − λ2

D1 −D3
= 0.

From (3.34) and by a direct calculation, we see that

λ2(2D1 −D2 −D3)− 2(D2
1 −D2D3)

(λ2 −D1 −D3)(D1 −D2)(D1 −D3)

×
{
(Ba1 − λ)(Bn − λ) +D1 +D3 − λ2

}
= 0.

From (3.22), we know that (Ba1 − λ)(Bn − λ) +D1 +D3 − λ2 ̸= 0. Thus

λ2(2D1 −D2 −D3)− 2(D2
1 −D2D3) = 0. (3.37)

If λ = 0, we see from (3.36) and (3.37) that D1 = D3, a contradiction. If λ ̸= 0, by

a direct calculation, we see from (3.36) and (3.37) that D2
1 + D2

2 + D2
3 = D1D2 +

D2D3 +D1D3. Thus (D1 −D2)
2 + (D2 −D3)

2 + (D3 −D1)
2 = 2(D2

1 +D2
2 +D2

3 −
D1D2 − D2D3 − D1D3) = 0. It follows that D1 = D2 = D3, also a contradiction.

Therefore, we know that m2 = 1 and x has at most four distinct constant Möbius

principal curvatures: Ba, Ba1 , Bm1+1, Bn. From (2.11), we know that the number

of the distinct Möbius principal curvatures is not one. We may also see that the

number of the distinct Möbius principal curvatures is not two. In fact, if it is two,

from Li et al [7], we know that the Möbius second fundamental form is parallel, this

indicates that, from Lemma 4.6 of [15], the Blaschke tensor is parallel. Thus the

para-Blaschke tensor is parallel, a contradiction. Therefore, we see that the number

of the distinct Möbius principal curvatures is only three or four. This completes the

proof of Proposition 3.1. �

Proof of Theorem 1.1 (Main Theorem). If the para-Blaschke tensor is parallel, since

x has three distinct para-Blaschke eigenvalues, from the result of Cheng , Li and Qi

[3], we know that x is locally Möbius equivalent to CSS(p, q, r) for some constants

p, q, r given by Example 2.1.

If the para-Blaschke tensor is not parallel, from Proposition 3.1, we know that

x is a Möbius isoparametric hypersurface with three or four distinct Möbius principal

curvatures. Since the para-Blaschke eigenvalues and the Möbius principal curvatures

are constant, we see that x has constant Blaschke eigenvalues and the normalized

Möbius scalar curvature R is constant by (2.11). From g = ρ2dx · dx, we can choose
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a local orthonormal basis for dx ·dx such that hij = λiδij , and Bij = Biδij , where λi
and Bi are the Euclidean principal curvatures and the Möbius principal curvatures,

respectively. From (2.9), we have

Bi = ρ−1(λi −H). (3.38)

Thus Bi−Bj = ρ−1(λi−λj), this implies that the number of the distinct Euclidean

principal curvatures is also three or four. Let r be the normalized Euclidean scalar

curvature. We know that r = R. From (2.15), we have

Rijij = BiBj +Ai +Aj = (Bi − λ)(Bj − λ) +Di +Dj − λ2, i ̸= j. (3.39)

By (3.18)–(3.25) and (3.39), we have

Ra1p1a1p1 =
2D2

a1p1,n

(D1 −D3)(D2 −D3)
, Rapap = 0, for a ̸= a1, p ̸= p1,

Rap1ap1 = 0, for a ̸= a1, Ra1pa1p = 0, for p ̸= p1,

Ra1na1n =
2D2

a1p1,n

(D1 −D2)(D3 −D2)
, Ranan = 0, for a ̸= a1,

Rp1np1n =
2D2

a1p1,n

(D2 −D1)(D3 −D1)
, Rpnpn = 0, for p ̸= p1.

Thus

R =
1

n(n− 1)

{
Ra1p1a1p1 +

∑
a ̸=a1,p ̸=p1

Rapap +
∑
a ̸=a1

Rap1ap1 +
∑
p ̸=p1

Ra1pa1p

+Ra1na1n +
∑
a ̸=a1

Ranan +Rp1np1n +
∑
p̸=p1

Rpnpn

}
= 0.

It follows that r = 0. From the Gaussian equation n(n− 1)(r− 1) = n2H2 −
∑
i,j
h2ij ,

we have ρ2 = n2(1 +H2). From (2.7), we have

0 = H,i + ρBiei(log n
√

1 +H2) =

√
1 +H2 + nBiH√

1 +H2
H,i. (3.40)

We may prove that H must be constant. In fact, if H is not constant, then there

is some i such that H,i ̸= 0. Thus, for such i
√
1 +H2 + nBiH = 0, that is,

1 + (1 − n2B2
i )H

2 = 0. Thus, we see that 1 − n2B2
i ̸= 0 and H2 = 1

n2B2
i −1

is

constant, a contradiction. Since H is constant, we see that ρ is also constant. It

follows from (3.38) that λi are constants for any i. Thus, we see that x is locally

Möbius equivalent to a Euclidean isoparametric hypersurface with three or four

distinct Euclidean principal curvatures. This completes the proof of Theorem 1.1

(Main Theorem). �

4. Conclusions

To sum up, in this article, we study the topic of para-Blaschke isoparametric

hypersurfaces and obtain the classification of para-Blaschke isoparametric hyper-

surfaces with three distinct para-Blaschke eigenvalues, one of which is simple. The
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obtained result is the sequential study of the topic in [11], where we classified the

para-Blaschke isoparametric hypersurfaces with three distinct Blaschke eigenvalues,

one of which is simple or with three distinct Möbius principal curvatures, one of

which is simple. We should notice that our result generalizes the results of [15] and

[16] (Theorem 4.3 of [15] and Theorem 4.2 of [16]) to high dimensional para-Blaschke

isoparametric hypersurfaces in the unit sphere Sn+1(1).

Acknowledgement Project supported by NSF of Shaanxi Educational De-

partment (11JK0479, 2010JK642).

REFERENCES

[1] E. Cartan, Sur des familles remarquables d’hypersurfaces isoparametriques dans les espace

spheriques, Math. Z., 45 (1939), 335–367.
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Math., 151 (2007), 202–222.

[7] H. Li, H.L. Liu, C.P. Wang and G.S. Zhao, Möbius isoparametric hypersurface in Sn+1 with
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