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PARA-BLASCHKE ISOPARAMETRIC HYPERSURFACES IN THE
UNIT SPHERE S"*l(1) (IT)

Shichang Shu!, Bianping Su?

Let D = A + A\B be the para-Blaschke tensor of the immersion x,
where A is a constant, A and B are the Blaschke tensor and the Mobius second
fundamental form of x. A hypersurface x : M +— S™1(1) in the unit sphere
S™ (1) without umbilical points is called a para-Blaschke isoparametric hyper-
surface if the Mébius form ® wvanishes identically and all of its para-Blaschke
eigenvalues are constants. In [11], we classified the para-Blaschke isoparametric
hypersurfaces with three distinct Blaschke eigenvalues, one of which is simple or
with three distinct Mébius principal curvatures, one of which is simple. In this
article, we continue to study the topic of para-Blaschke isoparametric hypersur-
faces and obtain the classification of para-Blaschke isoparametric hypersurfaces
with three distinct para-Blaschke eigenvalues, one of which is simple.

Keywords: Mobius metric, para-Blaschke tensor, para-Blaschke eigenvalue, Para-
Blaschke isoparametric
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1. Introduction

In Mobius differential geometry, Wang [13] studied invariants of hypersurfaces
in the unit sphere S"*1(1) under the Mobius transformation group. Let x : M +
S"+1(1) be an n-dimensional immersed hypersurface without umbilical points in
S"t1(1). We choose a local orthonormal basis {e;} for the induced metric I =
dx - dx with dual basis {6;}. Let II =}, ; hij ® 0; be the second fundamental
form and H = %ZZ hi; the mean curvature of the immersion x. By putting p? =
5> h?j — nH?}, Wang [13] defined the Mébius metric , the Mébius form, the
Blaschke tensor and the Mdbius second fundamental form of the immersion x by
g = p2dX -dx, ¢ = pZZ Ci0;, A = p2 Zi,j AUQl & 9]' and B = p2 Zi,j szel X 9]',
respectively, where C;, A;;, B;; are defined by (2.7)—(2.9). It was proved that g, ®, A
and B are Mobius invariants. We should notice that it is one of the important aims
to characterize submanifolds in terms of Mobius invariants. Concerning this topic,
there are many important results, one can see [2]-[12]. Recently, by making use of
the two important Mobius invariants, the Blaschke tensor A and the Mdbius second
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fundamental form B of the immersion x, Cheng, Li and Qi [3], Zhong and Sun [14]
defined a symmetric (0,2) tensor D = A + AB which is so called the para-Blaschke
tensor of x, where A is a constant. An eigenvalue of the Blaschke tensor is called
a Blaschke eigenvalue of x, an eigenvalue of the Mdbius second fundamental form
is called a Mdbius principal curvature of x and an eigenvalue of the para-Blaschke
tensor is called a para-Blaschke eigenvalue of x. It is reasonable to introduce the
definition: a hypersurface x : M + S"1(1) without umbilical points is called a
Blaschke isoparametric hypersurface, (resp., a Mdbius isoparametric hypersurface),
(resp., a para-Blaschke isoparametric hypersurface), if the Mébius form & = 0 and
the Blaschke eigenvalues, (resp., the Mobius principal curvatures), (resp., the para-
Blaschke eigenvalues) of the immersion x are constants.

If x has one distinct constant para-Blaschke eigenvalue, that is, A+AB+pug =
0, Li and Wang [8] completely classified these hypersurfaces without umbilical points
and vanishing Mobius form. If x has two distinct constant para-Blaschke eigenvalues,
the classification was obtained by Zhong and Sun [14]. If x has three distinct con-
stant para-Blaschke eigenvalues, what classification can we obtain? In this article,
we obtain the classification of para-Blaschke isoparametric hypersurfaces with three
distinct para-Blaschke eigenvalues, one of which is simple. We should notice that, in
[11], the authors classified the para-Blaschke isoparametric hypersurfaces with three
distinct Blaschke eigenvalues, one of which is simple or with three distinct M&bius
principal curvatures, one of which is simple, thus, this article may be considered
as a continuing study to the topic of para-Blaschke isoparametric hypersurfaces in
S"F1(1). We shall prove the following:

Theorem 1.1 (Main Theorem). Let x be an n(n > 3)-dimensional immersed para-
Blaschke isoparametric hypersurface in the unit sphere S"*1(1) with three distinct
para-Blaschke eigenvalues, one of which is simple. Then x is locally Mébius equiva-
lent to

(1) CSS(p,q,r) for some constants p,q,r given by Example 2.1, or

(2) a Euclidean isoparametric hypersurface with three or four distinct Eu-
clidean principal curvatures.

Remark 1.1. In the second case of Main Theorem, if n = 3, by Cartan’s result in
[1], we know that it is in fact a tube of constant radius over a standard Veronese
embedding of RP?. If n = 4, from [6], we know that it is either the image of o of
the cone T : N3 x Rt + R? defined by Z(x,t) = tx, where t € RT and x : N3 —
S4 < RS is the Cartan isoparametric immersion in S* with three Euclidean principal
curvatures, or the Euclidean isoparametric hypersurfaces in S° with four distinct
FEuclidean principal curvatures. Therefore, we see that Main Theorem reduces to
Theorem 4.3 of [15] and Theorem 4.2 of [16].

Remark 1.2. For the Mobius isoparametric hypersurfaces and Blaschke isopara-
metric hypersurfaces, we should notice that Hu and Li [5] obtained the immersed
Mébius isoparametric hypersurfaces with three distinct Mobius principal curvatures,
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one of which is simple, Li and Peng [9] obtained the immersed Blaschke isoparamet-
ric hypersurfaces with three distinct Blaschke eigenvalues one of which is simple.

2. Mobius fundamental formulas

In this section, we review the fundamental formulas on Md&bius geometry in
SnHL(1) (see [13]).

Let x : M — S""1(1) be an n-dimensional hypersurface of S"*1(1) without
umbilical points. For an immersed hypersurface x : M + S"t1(1) — R"*2 of
S"+1(1) without umbilical points, we define its Mobius position vector Y : M
L™ by Y = p(1,x), where p* = 20{>"; . hi; — nH?}. Let A be the Laplace-
Beltrami operator of Mobius metric ¢ = p?dx - dx. We define N = —%AY -
ﬁ(AY, AY)Y, the structure equations on M with respect to the Mdbius metric g
can be written as follows:

dy =Y wY;, (2.1)

AN = " 0Y; + ¢Eni1, (2.2)
7
dY; = —¢iY — wiN + Zwinj + meEnH, (23)
J
dBni1 = —0Y = ) wini1Yi, (2.4)
Q

where {1);, w;j, wint1, ¢} are 1-forms on M with

wij +wj; =0, dw; = Zwij A wj, (2.5)
J

Yi =Y Aijwj, Aij=Aji, winp1 =Y Byw;, Biyj=Bj, ¢=Y Cwi, (2.6)
J J (

and A;;, B;; and C; are locally defined functions:

Ci=—p *{H;+ Y _(hij — Hé;j)ej(log p)}, (2.7)
j
Ajj = — p~*{Hess;j(log p) — e;(log p)e;(log p) — Hhi;} (2.8)
1 _
— 3P 2(IV(log p)|* — 1+ H?) b5,
Byj =p~ ' (hij — Héyj), (2.9)

here Hess;;, V are the Hessian matrix and the gradient with respect to the induced
metric dx - dx. From [13]

1
dwij =Y wik Awij — 3 > Rijrawk Awi, R = —Rjiki, (2.10)
k kil

n—1 1
> Bi=0, > Bjj= . trtA = —(1+n’R). (2.11)
7 1,7

n
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Let Cjj, Aijk, Bijr be the covariant derivative of C;, A;;, Bi;. From (2.1)-(2.4), we
infer that

Aijk — Aikj = BirCj — Bi;Cy, (2.12)

Cij—Cji= Z(BikAkj — By Ayi), (2.13)
%

Bijk — Bik,j = 04;Cy — 0irCj, (2.14)

Rijii = BixBji — BuBji + 6. Aji + 051 Aik — duAji — 651 Au, (2.15)

where R;;; denotes the curvature tensor with respect to the Mobius metric g and
R is the normalized Mobius scalar curvature of the immersion x. Assume that the
Mobius form ® = 0, we have for all indices i, 7, k that

Aijk = Aitjy Bij = Bings ) BivAij = ) BrjAwi. (2.16)
k k

Denote by D = Z” D;jw; ® w; the (0,2) para-Blaschke tensor,
Djj = Aij + ABij, 1<i,j<n, (2.17)

where A is a constant. The covariant derivative of D;; is defined by
Z Dijrwy = dD;j + Z Dipwyj + Z Dy jwp;- (2.18)
k k k

From (2.16) and (2.17), we have for all indices i, j, k that
Defining the second covariant derivative of D;; by

> Dijuwi =dDijr+ > Dijgwii + > Digwi; + Y Dijiwik, (2.20)

! l l l

we have the Ricci identity

Dij 1 — Dij = Z Dy Rk + Z Dim Ry jkl - (2.21)
m m

We recall the following example given by [4].

Example 2.1. For any natural number p,q, p+ q < n and real number r € (0,1),
consider the immersed hypersurface u : SP(r) x S4(v/1—1r2) x Rt x Rn P~ 1
Rn—i—l

- (tu',tu”,u”’),

u' € SP(r) c RPTY W’ € 891 —r2) c RITY, o/ e RPP97L
then x = ocou : SP(r) x SI(v/1—172) x Rt x R*"P~41 s §"+L(1) is a hyper-
surface in S"tL(1) without umbilical points and with vanishing Mdobius form, which
is denoted by CSS(p,q,r). From [{] and [9], by a direct calculation, we know that

CSS(p,q,r) has three distinct Mobius principal curvatures and three distinct para-
Blaschke eigenvalues.
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3. Proof of Main Theorem

Throughout this section, we shall make the following convention on the ranges
of indices:

1<a,b<mi, mi+1<p,qg<mi+may,

mi+me+1<a,f<m+me+mgs=mn, 1<ijk<n.
Let A, B and D denote the n x n-symmetric matrices (A;;), (Bj;) and (Dyj) ,
respectively, where A;;, B;; and D;; are defined by (2.8), (2.9) and (2.17). From
(2.16) and (2.17), we know that BA = AB, DA = AD and BD = DB. Thus, we
may always choose a local orthonormal basis {E1, Fa, ..., E,} such that

Aij = Aibij, Bij = Bidij, Dij = D;dij, (3.1)

where A;, B; and D; are the Blaschke eigenvalues, the Mobius principal curvatures

and the para-Blaschke eigenvalues of the immersion x. We may prove the following;:

Proposition 3.1. Let x be an n(n > 3)-dimensional immersed para-Blaschke isopara-
metric hypersurface in S"*1(1) with three distinct para-Blaschke eigenvalues, one of
which is simple. If the para-Blaschke tensor is not parallel, then x is a Mdbius
isoparametric hypersurface with three or four distinct Mobius principal curvatures.

Proof of Proposition 3.1. Let Dy, Dy and D3 be the three distinct constant para-
Blaschke eigenvalues of x with multiplicities mi, mg and mg. From (2.18), we have

Dy = Ey(Dy)éij + T(D; — D), (3.2)

where ng is the Levi-Civita connection for the Mobius metric g given by

wij = Y Thwr, TI =-T%. (3.3)
k
Thus, by (3.2), we have
Dijr = ng(Di — Dj). (3.4)
It follows that
Dap . = Dpg . = Dopr, =0 for any a,b,p,q,a,f,k. (3.5)

Since the para-Blaschke tensor is not parallel, we see that the only possible nonzero
elements in {D;; 1} are of the form {D,,,}. Since n > 3, without loss of generality,
we may assume that mg =1, m; > 1 and mo > 1.

From (2.10), (2.5) and (3.3), the curvature tensor of x may be given by (see
10))

Rijin =E/(T%) — Be(T3) + > T4, T (3.6)
m

DR ¥ SN 5 KRR NS v v
m m

m
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Thus, from (3.4) and (3.5), we have

7, =T =0, T4 =T%=0, I%=I7,=0, (3.7)
Di—Dy  Ds—D,’ P Dy—Ds
From (3.7) and (3.8), we have

I, = (3.8)

FZn = Ffm =0, Fga = ng =0. (39)
D D D
an = ?17” ’ Zb = b_p,n ) lT;Lq = 71)_(]7” ) (310)
Dy — Dy D3 — Dy Dy — Ds
n __ quvn
©® " Dy — D3
Thus, we have
Doy nD DgygnD
Rapbq = an Zb — an gq T 1P = ap,n-bg,n + agq,n’bp,n ) (311)

“ b (D1 — Ds)(D2 — Ds)
On the other hand, from (2.15), we have
Rapbq :(BGBP + Aa + Ap)5a65pq (3.12)
={(Ba = A)(Bp — \) 4+ D1 + Dy — \?} 6104

It follows from (3.11) and (3.12) that

Dap,nqu,n + Daq,nDbp,n

(D1 — D3)(D2 — Ds)
If a = b, we have
2Dap,nDaq,n

= {(Ba = A)(Bp = A) + D1+ D2 — X} 6abpg. (3.13)

= {(By = A)(By — \) + D1 + Dy — A*} §,,. 3.14
D —Dy)(Dy - D) {( )(Bp = A) + D1+ Dy — A} 4y (3.14)
If p = q, we have
2Da nD n
p.nbp, = {(By = \)(Bp = A) + Dy + Dy — A2} 8. (3.15)

(D1 — Ds3)(D2 — Ds)
If m; = 1, it follows that
2D1p7n_D]_q7n

(D1 — D3)(D2 — D3

Since the para-Blaschke tensor is not parallel, we may prove that there exists
exactly one p, such that Dy, ,, # 0. In fact, if there exists at least two p1, p2, (p1 # p2)
such that D1y, n, # 0, Dip,n, # 0. But from (3.16), we have D1y, nDip,n = 0, this
is a contradiction.

If mo = 1, it follows that

;= {(B1 = A\)(By — A) + D1 + Dy — X} 6. (3.16)

2Dam1+1 nDbm1+1n 2
’ 1 — {(By — A\)(Bpy 41 — Dy + Dy — ub-
(D1 — D3)(Ds — D3) {( N)Bmi1 = A)+ D+ Dy = A} bap

The same reason implies that there exists exactly one a, such that Dy, 41, # 0.
If m; > 2 and my > 2, we may prove that there exists exactly one a and exactly

one p such that Dy, # 0. In fact, if there exists at least two a1, az, (a1 # a2) such
that Dgpn # 0, Daypn # 0. From (3.15), we see that Dg,pnDaspn = 0, this is a
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contradiction. The same reason implies that there exists exactly one p, such that

Dypn # 0.
Combining the above three cases, we see that if m; > 1 and mo > 1, there
exists exactly one a and exactly one p, say a; and pi, such that

Daypyn #0, Dgpn =0, for a#ai,Vp, or for Va,p# pi. (3.17)

By (3.14) and (3.17), we get

2D?
(Ba, = A)(Bp, —A) + D1+ Dy — X = o D;Sl(%:_ )’ (3.18)
(Ba —N)(Bp—A) + D1+ Dy =N =0, a# a1, p#p, (3.19)
(Bo —A)(Bp, = A) + D1+ Dy — 2\ =0, a#ay, (3.20)
(Bay = AN)(By —A) + Dy + Dy — N2 =0, p#p1. (3.21)

From (3.4)-(3.6), (2.15) and for the reason above, we get

2D?
(Bay = A\)(By, —A) + Dy + D3 — \? = apLn , (3.22)
(D1 — D2)(D3 — Do)
(Ba = N)(Bp =\ + Dy +D3—X =0, a#ay (3.23)
2D?
(Bp, = A)(Bn, — \) + Do+ D3 — \? = apLn , (3.24)
(D2 — D1)(D3 — Dy)
(By = A)(Bp —A)+ Dy + D3 — X2 =0, p#pi. (3.25)

We may prove that Dg,p, » is a constant. In fact, from (2.20), (3.3), (3.4) and (3.5),
we have

Dy »Drat + DnanD

pna, na,pnb,l

§ Dgp prw = E wy
l

l D3 — Dy
Thus
Db pDna,i + DnapDnbi
Dyppp = — 2270 PV a, b, p, . 3.26
ab,pl D3 — _D1 ) a, 0, p, ( )
By reasoning as above, we also have
DyornD Dyo.oD
quyal = o %ztDza’q nl’pa v a,p, Q7la (327)
Dynap =0, V a,p. (3.28)

From (2.21), we have Dij}kl - Dij,lk = (Dl - Dj)Rijkl' By (2.15) and Bij = Biéijy
we know that if three of {3, j,k,{} are distinct, then R;jp = 0. Thus, if three of
{i,j, k,1} are distinct, we have

Dij i1 = Dij k- (3.29)
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From (2.20), (3.4) and (3.5), we have

dDalm,n :Da1p1,nalwa1 + E Dalplvnlwl + Dalpl,nplwpl

l=a,a#a1

+ Z Da1p1 nlw + Dalpl,nnwn-
I=p,p#p1
Thus, it follows from (3.26)—(3.29) that dDg,p, » = 0, that is, Dg,p, » is constant.
It follows from (3.23) and (3.25) that B, = By for any a # b,a # a1,b # a;
and B, = By for any p # q,p # p1,q # p1. Therefore, we know that x has at most
five distinct Mobius principal curvatures: By, By, , Bp, Bp,, Bn.
From (3.20) and (3.23), (3.21) and (3.25), (3.22) and (3.23), we have

(Ba — A)(By, — Bp) + Dy — D3 =0, a+# a, (3.30)

(B, — \)(Bay — Bpy) + Dy — D3 =0, p#pi, (3.31)
2D21p1 n

(Ba, — Ba)(Bn — \) = ’ a#a. (3.32)

(D1 — D2)(D3 — D2)’

Thus, we obtain that B, # A(a # a1), By # A(p # p1), Bn # A. From (3.18), (3.22)
and (3.24), we see that

A1(By = A = Dol (3.33)

where

AI = 2D§1p1,n —|— )\2 - Dl - D2
(D1 — D3)(Dg — D3) ’
2D?
A: aipi,m +)\2—D —_D,
7 (D1 — D2)(Ds — Dy) b
2D?
Aa — aipi,n +)\2_D —D,
7 (Dy = Dy)(Ds — Dy) L
are constants. If Ay = 0, from (3.18), we get By, = A or By, = A. It follows from
(3.20) and (3.21) that Dy + Dy — A? = 0. Thus (3.18) implies that Dy,p, n = 0, a
contradiction. Therefore, we know that A; # 0. From (3.33) and B,, # A, we get
Ny # 0 and Az # 0. Thus (B, — \)? = %?3 is constant, that is, B, is constant.
From (3.22)—(3.25), we see that By, , Bq(a # a1), Bp,, Bp(p # p1) are constants.
We may prove that mo = 1. In fact, if mo > 2, then there exists some
p # p1 such that (3.18)—(3.25) hold. It follows from (3.19), (3.23) and (3.25) that
Dy + Dy — X2 #0, Dy + D3 — A2 #0, Dy + D3 — A2 # 0. From (3.20) and (3.23),
(3.21) and (3.25), we get

A — Dy — Dy A2 — Dy — Dy
"By~ ), By A==
)\2—D1—D3( ) ' A2 — Dy — Dj
From (3.22) and (3.24), we have
(Bay — A)(Bn, — A\) + Dy + D3 — \? N (Bp, — A)(Bn — A) + Dy + D3 — \? _
Dg—Dl D3_D2

By, — A= (B, —A).  (3.34)

0.
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From (3.34) and by a direct calculation, we see that
(A2 — D1 — D2){\*(Dy + Dy — 2D3) + 2(D% — D1 D)}
(A2 — Dy — D3)(A\2 — Dy — D3)(Dy — D3)(Dy — D3)

2 (W =Di-D5)(3 - Dy~ D3)|
x{(Bn A) DD, = 0.

(3.35)

If (B, — N)? = AL PIO "D =Ds) - (3.99) and (3.34), we see that Dy, p, . = 0,

this is a contradiction. Thus from (3.35), we get
M(Dy + Dy — 2D3) +2(D% — Dy Dy) = 0. (3.36)
Similarly, from (3.18) and (3.22), we get
(Bay — A)(Bp, — A) + D1 + Dy — A2 N (Bay = A)(Bn — A) + Dy + D3 — A\? _
Dy — Dy Dy —Ds
From (3.34) and by a direct calculation, we see that
N (2Dy — Dy — D3) — 2(D? — D2 Ds)
(A2 — Dy — D3)(D1 — D3)(D1 — D3)
X {(Bay = N)(Bn — A) + D1 + D3 — A} = 0.
From (3.22), we know that (Bs, — A)(Bn — A) + D1 + D3 — A2 # 0. Thus
M\2(2Dy — Dy — D3) — 2(D? — Dy D3) = 0. (3.37)

If A =0, we see from (3.36) and (3.37) that D; = D3, a contradiction. If A # 0, by
a direct calculation, we see from (3.36) and (3.37) that D? + D2 + D2 = D1 Do +
DsDs + D1 Ds. Thus (D1 — D2)2 + <D2 — l)g)2 + (D3 — D1)2 = Q(D% + D% + D% —
DDy — DyDs — D1 D3) = 0. It follows that Dy = Dy = Ds, also a contradiction.
Therefore, we know that ms = 1 and x has at most four distinct constant Mobius

0.

principal curvatures: Bg, Bga,, Bm,+1, Bn. From (2.11), we know that the number
of the distinct Mobius principal curvatures is not one. We may also see that the
number of the distinct Mdbius principal curvatures is not two. In fact, if it is two,
from Li et al [7], we know that the M&bius second fundamental form is parallel, this
indicates that, from Lemma 4.6 of [15], the Blaschke tensor is parallel. Thus the
para-Blaschke tensor is parallel, a contradiction. Therefore, we see that the number
of the distinct M6bius principal curvatures is only three or four. This completes the
proof of Proposition 3.1. O

Proof of Theorem 1.1 (Main Theorem). If the para-Blaschke tensor is parallel, since
x has three distinct para-Blaschke eigenvalues, from the result of Cheng , Li and Qi
[3], we know that x is locally Mdbius equivalent to C'SS(p, ¢, r) for some constants
p,q,T given by Example 2.1.

If the para-Blaschke tensor is not parallel, from Proposition 3.1, we know that
X is a Mobius isoparametric hypersurface with three or four distinct Mébius principal
curvatures. Since the para-Blaschke eigenvalues and the Mobius principal curvatures
are constant, we see that x has constant Blaschke eigenvalues and the normalized
Mobius scalar curvature R is constant by (2.11). From g = p?dx - dx, we can choose
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a local orthonormal basis for dx-dx such that h;; = \;d;;, and B;; = B;d;;, where \;
and B; are the Euclidean principal curvatures and the Mobius principal curvatures,
respectively. From (2.9), we have
Bi=p Y\ —H). (3.38)

Thus B; — B; = p~1()\; — \;), this implies that the number of the distinct Euclidean
principal curvatures is also three or four. Let r be the normalized Euclidean scalar
curvature. We know that » = R. From (2.15), we have

Rijij = BiBj+ Ai+ Aj = (Bi = \)(Bj —\) + D;+Dj — X, i#j.  (3.39)
By (3.18)—(3.25) and (3.39), we have

2D?

aipi,n

Ra1p1a1p1 = (Dl — D3)(D2 — D3)7 Rapap = 07 for a 7é ai, p #plv

Ropiapy =0, for a# a1, Rapap =0, for p#ps,

Ra nain — 2D21p1,n Ranan =0, for a ?é aq
Y (Dy — D3) (D3 — Dy)’ ’ ’

2D?2

a1p1,n

npin — ) npn — Y, fq .
Rpl P1 (DQ—D]_)(Dg_D]_) Rpp 0 or p#pl

Thus
1
R :m{Ralplalpl + Z Rapap + Z Raplapl + Z Ralpalp
aF#ay,p#p1 a#ay pEpL
t Ralnaln + Z Ranan + Rmnpln + Z anpn} =0.
aFay P#£P1

It follows that = 0. From the Gaussian equation n(n —1)(r — 1) = n?H? - 3" h?j,
,J

we have p? = n%(1 + H?). From (2.7), we have

B \/1+H2+nB¢HH

T i
We may prove that H must be constant. In fact, if H is not constant, then there
is some i such that H; # 0. Thus, for such i v1+ H? + nB;H = 0, that is,
1+ (1 —n?B?)H? = 0. Thus, we see that 1 — n?B? # 0 and H? = ﬁ
constant, a contradiction. Since H is constant, we see that p is also constant. It
follows from (3.38) that \; are constants for any i. Thus, we see that x is locally
Mobius equivalent to a Euclidean isoparametric hypersurface with three or four

distinct Euclidean principal curvatures. This completes the proof of Theorem 1.1
(Main Theorem). O

0= H;+ pBie;(logny/1+ H?) (3.40)

is

4. Conclusions

To sum up, in this article, we study the topic of para-Blaschke isoparametric
hypersurfaces and obtain the classification of para-Blaschke isoparametric hyper-
surfaces with three distinct para-Blaschke eigenvalues, one of which is simple. The
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obtained result is the sequential study of the topic in [11], where we classified the
para-Blaschke isoparametric hypersurfaces with three distinct Blaschke eigenvalues,
one of which is simple or with three distinct Mobius principal curvatures, one of
which is simple. We should notice that our result generalizes the results of [15] and
[16] (Theorem 4.3 of [15] and Theorem 4.2 of [16]) to high dimensional para-Blaschke
isoparametric hypersurfaces in the unit sphere S™*1(1).
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