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A NOTE ON A ODE MODEL

OF MICRO RNA - DEPENDENT REGULATION

OF MESSENGER RNA LEVELS

Mircea Olteanu1 and Radu Ştefan2

We study the qualitative behavior (invariance, boundedness and equilibria)

of the solutions of a mathematical model describing the dynamics of microRNA

AGO complexes and mRNA targets interaction.
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1. Introduction

Consider the following system of differential equations [8]

dx1
dt

= α1 − µx1 − β (S − y1 − y2)x1 + ρ1y1

dy1
dt

= β (S − y1 − y2)x1 − ν1y1 (1)

dx2
dt

= α2 − µx2 − β (S − y1 − y2)x2 + ρ2y2

dy2
dt

= β (S − y1 − y2)x2 − ν2y2

where all coeficients are strictly positive. Here α1, α2 are the rates of transcription

of two distinct species of targeted mRNA, with concentrations x1 and x2, respec-

tively; β represents the association rate to the corresponding microRNA-loaded AGO

species (having the concentrations y1 and y2), while ρ1, ρ2 stand for the dissociation

rates from the loaded microRNA. S is the total amount of miRNA-loaded AGO and

y1 + y2 < S. Finally, νi, i = 1, 2 and µ are the elimination rates of the RNAs.

We have adapted the notation from [8], where a brief description of the above

mathematical model has been done. Other similar ODE models for mRNA - mi-

croRNA interaction have been studied in the literature (see [10], [4], [1], [5], [11],

[3]). The case with two messengers and two microRNA species seems to have gained

a lot of interest when studying the interaction mechanisms.

1Professor, Department of Mathematical Methods and Models, Faculty of Applied Sciences,

University ”Politehnica” of Bucharest, Romania, E-mail: mircea.olteanu@upb.ro
2Professor, Department of Automatic Control and Systems Engineering, Faculty of Auto-

matic Control and Computer Science, University ”Politehnica” of Bucharest, Romania, E-mail: 
radu.stefan@upb.ro (corresponding author)

171



172 Mircea Olteanu, Radu Ştefan

In the sequel, we will analyze the behavior of the system (1) under several

assumptions on its coefficients (see [8]). To be more specific, we suppose that

ρ2 ≥ ρ1, νi − ρi = ν, i = 1, 2.

2. Qualitative behavior

Our goals are: the boundedness of the solutions, the invariance of the positive

octant and equilibria.

Remark 2.1. The above system of differential equations is defined by a polyno-

mial vector field, hence the existence and uniqueness theorem applies to the Cauchy

problem associated with (1).

By using a similar technique as in [6], it can be shown that the positive octant

R4
+ is a positively invariant set for the system.

Proposition 2.1. The positive octant R4
+ = (0,∞)4 is a positively invariant set for

the system (1).

Proof. The proof makes direct use of the following result, contained in Proposition

4.3 in [6]:

Consider the system

ċk = −ak(t)ck + bk(t), k = 1, n. (2)

where ak(t), bk(t) are continuous, positive functions on the maximal existence in-

terval for the solutions of (2). Then for any k either ck(t) > 0 or ck(t) ≡ 0 on the

whole definition set of the solution.

To be more specific, rewrite the system (1) as

dx1
dt

= − (µ+ β (S − y1 − y2))x1 + α1 + ρ1y1

dy1
dt

= − (βx1 + ν1) y1 + β (S − y2)x1
dx2
dt

= − (µ+ β (S − y1 − y2))x2 + α2 + ρ2y2

dy2
dt

= − (βx2 + ν2) y2 + β (S − y1)x2

from where, under the obvious notation c1 = x1, c2 = y1, c3 = x2, c4 = y2 one gets

dck
dt

= −ak(t)ck + bk(t), k = 1, 2, 3, (3)

with ak(t) and bk(t) taking positive values. Now, one immediately deduces that

relation (4.2.4) in [6] holds and the proof follows now straightforward by invoking

the result cited at the beginning of the proof. �

Throughout the rest of the paper, by ”solution” of the ODE (1) we understand

”positive solution”.
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Proposition 2.2. The solutions of the ODE model (1) are bounded and can be

extended to the real line.

Proof. The method is based on [7] (Section 4, Chapter 3) and uses a similar technique

to that in [5]. By adding the first two equations in (1) we get

d(x1 + y1)

dt
≤ α1 −M(x1 + y1),

where M = max{µ, ν}. Hence x1 + y1 is bounded. From the addition of the first

three equations in (1), one deduces the boundedness of x1 + y1 + x2. Thus x2 is

bounded and the rest of the argument goes on in the same manner. �

Equilibria

We are looking for equilibrium points in the positive octant R4
+. Let us write

the corresponding algebraic equations defining the equilibrium points of the system:

0 = α1 − µx1 − β (S − y1 − y2)x1 + ρ1y1

0 = β (S − y1 − y2)x1 − ν1y1 (4)

0 = α2 − µx2 − β (S − y1 − y2)x2 + ρ2y2

0 = β (S − y1 − y2)x2 − ν2y2
The following result holds.

Theorem 2.1. For every positive set of parameters αi, ρi, νi, i = 1, 2, β, µ and S,

the system (4) has at least one and at most three solutions (x∗1, y
∗
1, x

∗
2, y

∗
2) in R4

+.

Proof. By adding the first two and the last two equations in (4), one gets

0 = α1 − µx1 − νy1
0 = α2 − µx2 − νy2

(5)

from where

y∗1 =
α1 − µx∗2

ν
, y∗2 =

α2 − µx∗2
ν

. (6)

By replacing now y1 and y2 in the first and third equations in (4) it results that

x∗2 =
A1

x∗1
+B1 − x∗1 (7)

x∗1 =
A2

x∗2
+B2 − x∗2 (8)

where

Ai =
αiνi
βµ

, Bi =
α1 + α2 − Sν

µ
− νi
β
, i = 1, 2.

Then, the equilibrium points of the system are the solutions of the following equa-

tions

x∗1 =
A2

A1
x∗
1

+B1 − x∗1
+B2 −

A1

x∗1
−B1 + x∗1, y∗1 =

α1 − µx∗1
ν

. (9)
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Similar formulas hold for x2 and y2.

After straightforward algebraic computations, equation (9) can be rewritten as a

third degree polynomial equation in x∗1:

p(x∗1) = (B1−B2)x
∗ 3
1 + (A1 +A2 +B1B2−B2

1)x∗ 21 + (A1B2−2A1B1)x
∗
1−A2

1. (10)

Since p(0) = −A2
1 < 0 and p(+∞) > 0 (B1 > B2, because ρ2 > ρ1), it follows that

p has at least one positive real root, x∗1. By subtracting now equation (8) from (7),

one deduces that
A2

x∗2
=
A1

x∗1
+ (B1 −B2) > 0,

hence x∗2 > 0. The positivity of y∗1, y
∗
2 follows immediately by using a similar argu-

ment with the second and fourth equation of the system (4).

It results that the system (1) has at least one equlibrium point in the positive

octant. But since the polynomial equation (10) might also have three positive real

roots, it follows that the system (1) could present at most three equilibrium points.

�

3. Numerical examples. Conclusions.

As suggested in [8], let us choose the following set of values for the system

coefficients: α1 = 10, α2 = 1, β = 3, ρ1 = 2.16, ρ2 = 80.64, ν1 = 2.32, ν2 = 80.80,

µ = 0.1 and S = 70, respectively.

Fig. 1. Typical dynamics
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Fig. 2. Transient response: shorter settling times for x2 and y2

Fig. 3. Limitation of y1 + y2

By applying a Monte Carlo method one observes that the ”other” mRNA 
targets and their associated AGO microRNA complexes, x2 and y2, respectively, are 
approaching the steady state faster than the mRNA targets x1 and their associated 
complexes y1 - see Figure 2.

Once can also remark (Figure 3) that the amount of microRNA-loaded AGO, 
y1 + y2, remains always bounded by S.
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Solving the polynomial equation (10), one can easily compute the equilibrium

point values: x∗1 = 5.2873, y∗1 = 59.2011, x∗2 = 6.5995, y∗2 = 2.1253. These are

consistent with steady-state values observed in the simulation results on a sufficiently

long time horizon (Figure 1). The numerical experiments suggest that this point is

unique, due to the fact that the polynomial p(x) in (10) proved to have for different

parameter combinations only one positive real root (and two negative ones).

This comes to confirm that, for a given set of coefficients, there is always a

biologically consistent equilibrium point [8]. All these mathematical issues may have

a biological relevance in modelling cross-talks in a micro-RNA target network.

Our future work will start by investigating the structural properties of the

solutions of equations (4)-(10), in order to identify the (probably unique) biologi-

cally relevant equilibrium. Then, we will address Lyapunov stability issues of this

equilibrium, aiming to complete the picture of the qualitative behavior of the system

in the positive octant.
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[11] M. Olteanu and R. Ştefan A note on the stability analysis of a class of nonlinear systems - an

LMI approach U.P.B. Sci. Bull., Series A, Vol. 80, Iss. 4, pp. 3-10, 2018.




