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A NOTE ON A ODE MODEL
OF MICRO RNA - DEPENDENT REGULATION
OF MESSENGER RNA LEVELS
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We study the qualitative behavior (invariance, boundedness and equilibria)
of the solutions of a mathematical model describing the dynamics of microRNA
AGO complexes and mRNA targets interaction.
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1. Introduction

Consider the following system of differential equations [8]

% = a1 —px1—BS -y —y)z1+pyn

% = B —y1—y2)z1 — 1y (1)
% = g — px2 — B (S —y1 —y2) z2 + p2y2

% = B(S—y1—y2)x2 — 1212

where all coeficients are strictly positive. Here o, ao are the rates of transcription
of two distinct species of targeted mRNA, with concentrations x1 and x9, respec-
tively; (B represents the association rate to the corresponding microRNA-loaded AGO
species (having the concentrations y; and y9), while p;, pa stand for the dissociation
rates from the loaded microRNA. S is the total amount of miRNA-loaded AGO and
y1 +y2 < S. Finally, v;, i = 1,2 and p are the elimination rates of the RNAs.

We have adapted the notation from [8], where a brief description of the above
mathematical model has been done. Other similar ODE models for mRNA - mi-
croRNA interaction have been studied in the literature (see [10], [4], [1], [5], [11],
[3]). The case with two messengers and two microRNA species seems to have gained
a lot of interest when studying the interaction mechanisms.
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In the sequel, we will analyze the behavior of the system (1) under several
assumptions on its coefficients (see [8]). To be more specific, we suppose that

N

p2 2 p1, Vi—pi=v,1=1,
2. Qualitative behavior

Our goals are: the boundedness of the solutions, the invariance of the positive
octant and equilibria.

Remark 2.1. The above system of differential equations is defined by a polyno-
mial vector field, hence the existence and uniqueness theorem applies to the Cauchy
problem associated with (1).

By using a similar technique as in [6], it can be shown that the positive octant
Ri is a positively invariant set for the system.

Proposition 2.1. The positive octant R% = (0,00)* is a positively invariant set for
the system (1).

Proof. The proof makes direct use of the following result, contained in Proposition
4.3 in [6]:
Consider the system

ek = —ag(t)ex + bi(t), k=1,n. (2)
where ay(t), bi(t) are continuous, positive functions on the mazximal existence in-
terval for the solutions of (2). Then for any k either ci(t) > 0 or cix(t) =0 on the
whole definition set of the solution.

To be more specific, rewrite the system (1) as

% = —(p+BS -y —y2))r1+a+m,my
% = —(Bri4+v)y +B(S —y2) 21
% = —(p+B(S—y1—y2) 2+ a2+ pay2
% = —(Bra+1)y2 +B(S—y1)x

from where, under the obvious notation ¢; = x1, ca = y1, ¢3 = x2, ¢4 = y2 one gets
dck
dt
with ax(t) and bg(t) taking positive values. Now, one immediately deduces that
relation (4.2.4) in [6] holds and the proof follows now straightforward by invoking
the result cited at the beginning of the proof. O

= _ak(t)ck + bk(t)’ k= ]-a 2a 37 (3)

Throughout the rest of the paper, by ”solution” of the ODE (1) we understand
”positive solution”.
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Proposition 2.2. The solutions of the ODE model (1) are bounded and can be
extended to the real line.

Proof. The method is based on [7] (Section 4, Chapter 3) and uses a similar technique
to that in [5]. By adding the first two equations in (1) we get
d(z1 +y1)
dt
where M = max{u,v}. Hence z1 + y; is bounded. From the addition of the first
three equations in (1), one deduces the boundedness of x; + y1 + x9. Thus x5 is
bounded and the rest of the argument goes on in the same manner. O

<oy — M(z1+ 1),

Equilibria
We are looking for equilibrium points in the positive octant Ri. Let us write
the corresponding algebraic equations defining the equilibrium points of the system:

0 = ar—px1—B(S—y1—y2) 21+ p1ya

0 = B(S—y1—y2)r1— 111 (4)
0 = ap—pxe—B(S—y1—y2) x2+ paye

0 = B(S—y1—y2) T2 — 10Y2

The following result holds.

Theorem 2.1. For every positive set of parameters o, p;, Vi, i = 1,2, 3, pn and S,
the system (4) has at least one and at most three solutions (z7,y;, x5, y3) in RY.

Proof. By adding the first two and the last two equations in (4), one gets
0 = a1 —pzr1—vy

0 = ao— pures—rvy

from where . .
* *
Y = y Yo = .

v v
By replacing now y; and g9 in the first and third equations in (4) it results that
x Ay .
Ty = — =+ Bl — I (7)
1
* Az .
Ty = — =+ BQ — T9 (8)
Lo
where
A=V g atamSv v
Bu [ B
Then, the equilibrium points of the system are the solutions of the following equa-
tions 4 A .
* 2 1 * * a1 — §T
¥y=5—— - +tB2——(—Bi+a], yj= a8 )

A+ B — a3} T v
Zy
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Similar formulas hold for z9 and yso.
After straightforward algebraic computations, equation (9) can be rewritten as a
third degree polynomial equation in z7:

p(l‘?) = (Bl — BQ)I‘TS + (Al + AQ + B1B2 — B%)ZL‘){2 + (AlBQ — 2A1B1)JE){ — A% (10)

Since p(0) = —A2 < 0 and p(+00) > 0 (B > Ba, because ps > p1), it follows that
p has at least one positive real root, xj. By subtracting now equation (8) from (7),
one deduces that

A A
2=+ (B1-B) >0,
Lo Ty

hence 5 > 0. The positivity of yj, y5 follows immediately by using a similar argu-
ment with the second and fourth equation of the system (4).

It results that the system (1) has at least one equlibrium point in the positive
octant. But since the polynomial equation (10) might also have three positive real
roots, it follows that the system (1) could present at most three equilibrium points.

O

3. Numerical examples. Conclusions.

As suggested in [8], let us choose the following set of values for the system
coefficients: a; = 10, ae =1, f = 3, p1 = 2.16, p2 = 80.64, v; = 2.32, v» = 80.80,
u=0.1 and S = 70, respectively.
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Fig. 1. Typical dynamics
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Fig. 3. Limitation of y; + vy

By applying a Monte Carlo method one observes that the ”other” mRNA
targets and their associated AGO microRNA complexes, xo and y2, respectively, are
approaching the steady state faster than the mRNA targets x; and their associated
complexes y; - see Figure 2.

Once can also remark (Figure 3) that the amount of microRNA-loaded AGO,
Y1 + Y2, remains always bounded by S.
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Solving the polynomial equation (10), one can easily compute the equilibrium
point values: z] = 5.2873, y] = 59.2011, x5 = 6.5995, y5 = 2.1253. These are
consistent with steady-state values observed in the simulation results on a sufficiently
long time horizon (Figure 1). The numerical experiments suggest that this point is
unique, due to the fact that the polynomial p(z) in (10) proved to have for different
parameter combinations only one positive real root (and two negative ones).

This comes to confirm that, for a given set of coefficients, there is always a
biologically consistent equilibrium point [8]. All these mathematical issues may have
a biological relevance in modelling cross-talks in a micro-RNA target network.

Our future work will start by investigating the structural properties of the
solutions of equations (4)-(10), in order to identify the (probably unique) biologi-
cally relevant equilibrium. Then, we will address Lyapunov stability issues of this
equilibrium, aiming to complete the picture of the qualitative behavior of the system
in the positive octant.
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