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CRITICAL STRESSES, CRITICAL GROUPS OF STRESSES 
AND STRENGTHS OF TUBULAR STRUCTURES WITHOUT 

AND WITH CRACKS 

Valeriu V. JINESCU1, Vali - Ifigenia NICOLOF2, Angela CHELU3,                  
Simona - Eugenia MANEA4 

One analysis the strength of tubular samples and tubular junctions without 
and with cracks. Non-linear behaviour is considered. Strength calculation has been 
proposed for: – un-cracked and cracked tubular specimens mixed-mode loaded; – 
un-cracked and cracked tubular joints mixed-mode loaded. The obtained 
relationships for strength calculation take into account the deterioration, the 
residual stress, as well as the scattering of mechanical characteristics involved in 
the loading process. The relationships proposed in the paper were verified against 
results reported in literature. 

 
Keywords: mixed-mode loading; critical stresses; crack; tubular sample; tubular 

branch junction. 

1. Introduction 

The calculation of the deterioration and failure stress of cracked tubular 
sample is useful in structural integrity assessment of pressure equipment, 
particularly of piping, as well as for tubular mechanical structures.  

The plastic limit loads of cylindrical tubes have been analyzed in the 
papers [1-8], which cover the case of cracked pipes having mean radius-to-
thickness ratios greater than five, as well as less than five for thick-walled pipes 
[9]. 

In general, the limit load was arbitrarily defined as the load which 
provides yielding (local or global). For example, the papers [8] and [10] provides 
plastic limit load solutions of cylinders with part-through surface cracks, and 
under combined axial tension, internal pressure and global bending, using elastic-
perfectly plastic material behavior [8]. Both circumferential and axial cracks, 
external and internal cracks, are considered. On the other side the paper [9] 
presents plastic limits loads parameters for cracked thick-walled pipes with axial 
and circumferential through-wall and surface cracks. In the plastic limit analyses, 
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generally, the materials were assumed to be elastic–perfectly plastic. In reality the 
materials behavior beyond the yield stress is non-linear. 

This paper presents a non-linear, deterioration dependence, of the critical 
stresses and critical loading parameters for tubular sample and branch pipe 
junction without and with cracks, mixed – mode loaded. Both, axial and 
circumferential surface cracks are considered. The deterioration is calculated for 
thin-walled cylinders under a single loading (axial force, global bending or 
internal pressure), as well as under combined loading (axial force and global 
bending, internal pressure and global bending, internal pressure and axial force). 

2. State - of - the - art for cracked structure sample strength calculation 

The failure condition of materials with cracks is obtained by superposing 
crack participation and stress, σ, participation. For example, Morozov has 
proposed the following criterion of rupture [11; 12], 
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where IK  is the stress intensity factor in the case of mode I failure; IcK  is the 
toughness; crσ  is the critical stress of the specimen without cracks (may be the 
yield stress or the ultimate stress). 

For flat plates with cracks, under the same stress σ , the ratio 
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where crc2  is the critical crack length under stress σ . The last two relations yield 
the critical stress for a cracked specimen (eq. (3) in Table 1). 

The bending stress in a welded structure with a crack of depth a  is given 
by eq. (4) as it was reported in [13; 14], where ( )aσb  and bσ  are the bending 
stress component for cracked and un-cracked joints, respectively; t  - is the 
structure thickness. Andreikiv [15] proposed the failure criterion (5), where ε , 

crε  is the effective and the critical strain, respectively, while m  is the exponent 
determined experimentally. From equations (2) and (5) one obtains the critical 
specific strain of the cracked specimen given by eq. (6). 

Table 1 
Mechanical characteristics for cracked sample 
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3. A general proposal of strength calculation in the case of non – linear 
behavior 

Let us consider the nonlinear, power law, behavior of the specimen, under 
normal stress, σ, and shear stress, τ, 

 ,γ τand εσ 1
τσ

kk MM ⋅=⋅=  (7) 
where ε  is the strain; γ  is the shear stress; σM , τM , k  and 1k  are material 
constants.  

In recent works [16 - 18], on the basis of principle of critical energy 
(PCE), were proposed the following relations for the critical stresses of specimens 
with cracks: 
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where the total deterioration ( )caD ;σ  depends on the crack depth, σaa ≡ , and 
the crack length c2  in the direction perpendicular to the normal stress σ , while 
deterioration ( )caD ;τ  depends on the depth of the crack, τaa ≡ , and the crack 
length c2  in the direction of shear stress τ. 

The relations proposed in the literature [8-10] for yield loading in tubular 
specimens with cracks, generally can be written as in eq. (8), namely 

( )( )[ ]0.5
yL ca;D1YY −⋅= , (9) 

where LY  is the limit load of the cracked tubular specimen; yY  is the limit load of 
the crackless tubular specimen.  

4. Strength of un-cracked tubular sample mixed – mode loaded 

Piping systems, as well as pressure equipment with nozzles, are always 
subjected to combined pressure and loadings (bending moment, torsional moment, 
forces…), thus the studies need to be carried out of combined loadings. Generally 
some mechanical structures and their components are stressed by simultaneous or 
successive applied loads. These loads together represent a loading group. If under 
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group of loads the critical state is achieved, the group is named critical group of 
loads.  

a. Un-cracked tubular structures. General case. Consider a certain 
structure whose nonlinear material behaves according to relations (7). Under a 
group of loads such as iF ( )ni   ... 3  2; ;1= , the total participation of specific 
energies introduced into the structure material is written as [19], 
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where criF ,  is the critical value of the generalized load iF , while 1δ =F  if iF  
acts in the direction of the process and 1δ −=F , if it opposes the evolution of the 
process. The PCE introduces the term critical participation ( )tPcr , a time (t) 
dependent variable [20],  

( ) ( ) ( ) resTcrcr PtDPtP −−= 0 ,  (11) 
where [21], 
 ( ) ( )∑=

i
iT tDtD ,  (12) 

is the total deterioration, a dimensionless parameter time dependent, a sum of the 
partial deteriorations, ( )tDi , due to different loads/actions (corrosion, aging, 
erosion, crack, creep, fatigue, hydrogen, neutrons etc…). 

( )0crP  is the value of ( )tPcr  at 0=t ; it takes values between ( ) 00min, >crP  and 
( ) 10max, ≤crP , depending on the scatter of the material mechanical characteristics 

involved in the loading process. If the mechanical characteristics are deterministic 
values, than ( ) 10 =crP . The residual stress ( )resσ  influence is introduced through 
the participation of residual stress specific energy, resP  [20]. 

For crackless structures and no residual stresses ( ) ( )0crcr PtP = ; the 
critical state is reached when ( )0crT PP = . Consequently, the group of static loads 
becomes critical if, 
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b. If a tubular structure is under loads (Fig. 1) p  (pressure), F (force) and 

bM  (bending moment) relation (13) becomes, 

( )0δδ
1α

,

1α1α

crM
crb

b
F

crcr
P

M
M

F

F

p
p

=⋅⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⋅⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+++

, (14) 



Critical stresses, critical groups […] strengths of tubular structures without and with cracks    169 

where 1δ =M  in the section where bM  causes elongation and 1δ −=M  in the 
section where bM  produces compression. 

 
Fig. 1.Tubular specimen loaded with internal pressure, p, tensile axial force, F, and bending 

moment Mb. 
 

In interpreting the experimental data, in general, one can see 
that ( ) 10 ≠crP  is a random value. Consequently, the critical group is not a single 
value but a stochastic distribution between ( )0P mincr,  and ( )0max,crP , depending 
on the probability of structure material failure. These justify the scatter of 
experimental data. Several test points may be outside the upper ( )( )0max,crP  and 
lower ( )( )0min,crP  bounds. This may be caused by inaccuracy of material property 
and experimental measurement. The proposed criterion (14) for critical group of 
loads is an effective criterion for the fracture of defect – free tubular sample.  

c. For simultaneous loading with p and Mb equation (14) becomes, 
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For linear-elastic loading ( )yσσmax ≤ , 11α == k . If one adds to the 

above ( ) 10 =crP  corresponding to the deterministic values of the mechanical 
characteristics, then the relationship (15) is converted to, 
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This relationship was obtained on experimental data with tube specimens 
made from carbon steel (St 20) and austenitic steel ( 10T 12X18H ). For critical 
parameters the following relations have been proposed [23], 

scrbcr SMp ⋅⋅=⋅⋅= 2.0,2.0 σ2     and   βlnσ
3

2 , (16) 

which is the yield pressure and the yield bending moment, respectively, i.e. the 
values of those loads that determine the transition to a plastic state of the section 
to the outer radius, where the maximum stress becomes equal to the yield stress. 
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Stress yσσ 2.0 =  is the yield stress corresponding to a residual strain of 0.2%; sS  

is the static moment of the area section and 12β RR=  (Fig. 1) 
d. For simultaneous loading with axial force and bending moment, if force 

F  produces elongation ( )1δ =F , then in the section where 0σ >b  ( )1δ =M  eq. 
(14) becomes,  
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e. For simultaneous loading under internal pressure and tensile axial 
force, relation (14) becomes, 
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In the eqs. (17) and (18), for a linear-elastic material one replaces 
11α == k  and for deterministic values of the mechanical characteristics of the 

material, one replaces ( ) 10 =crP . 

5. Strength of cracked tubular samples mixed – mode loaded 

In the case of mechanical samples with cracks the deterioration ( ) .0≠tDT  
If the damage is caused by a crack with depth a  and length 2c , then 

( ) ( ) ( ) ( )θa;DtDor    ca;DtD TT ≡≡ , where c2  is the length of the axial crack, 
while 2θ  is the angle at the centre of the circumferential crack on the tube 
element (Fig. 2). For structures with cracks one should replace ( )0crP  with 

( ) ( ) ( )[ ]caDPcr ;0 tPcr −=  in all previous relationships. 

 
- a -                            - b- 

Fig. 2. Circumferential cracks in tubular samples with semi-elliptical cross section (a; b) at inner 
surface (a) and outer surface (b). 

For the linear-elastic behavior of the structure material 11α == k , in the 
section under the highest load, relations (15), (17) and (18) become: 
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where one considered: - tensile axial force ( 1=Fδ ); - the sections where the 
bending moment produces tensile stresses ( 1=Mδ ). The right member in these 
relationships takes values ranging 

( ) ( ) ( ) ( ) ( ) ( ) θa;D0PtP   and    θa;D0PtP mincr,mincr,maxcr,maxcr, −=−=  (20) 
Any of the eqs. (19) describes a quarter of a circle with radius 

( ) ( )[ ] 5.0;0 θaDPcr − . 

 
Fig. 3. The interdependence between crFF  and crbb MM ,  for a tube specimen, when 1.0=ta  

and 1.0=πθ  (a) and between crpp  and crbb MM ,  in case 75.0=ta  and 4.0=πθ  (b) 
Curves are drawn with relations (19). Experimental points were taken from work [8]. 

 
The interpretation of the experimental data [8] on tubular specimens based 

on relations (19) emphasizes the dependence of the kind represented in Fig. 3. For 
example, with loading featuring an axial force and bending moment (Fig. 3, a), 
the points fall between the circles with radius ( ) 785.0=tPcr  and 882.0 . With 
loading featuring an internal pressure and bending moment (Fig. 3, b) the 
experimental points fall between circles of radius ( ) 774.0=tPcr  and 838.0 . As 
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shown in figure 3 the results agree very well eq. (19), which takes into account the 
crack depth (a/t) and the crack extension ( )πθ . 

The general criterion (14), obtained in the paper, where ( )0crP  is replaced 
by ( )tPcr  and its particular cases (19) are able to take into account the influence 
of deterioration upon the value of the critical participation. 

6. Strength of tubular branch junction loaded with internal pressure 
and bending moment 

A branch junction (Fig. 4) was assumed to be subjected to combined 
pressure and bending. The mean radius of the pipe is denoted ( )215.0 RRRm +=  
and that of the branch pipe by ( )215.0 rrrm += . 

 
Fig. 4. The branch pipe junction used in the paper [22]. 

a. Un-cracked tubular branch junction. For un-cracked branch [24] with a 
medium bore branch with 27.0=Rr  ( mm 5.59=r , mm 5.222=R , 8=t mm; 

20=T mm) the limit load is given by the circular interaction curve, described by 
eq. (16). In this eq. ( )0== Mpp Lcr  and ( )0, == pMM Lcrb  denote the plastic 
limit loads for un-cracked branch junction under internal pressure and under 
bending, respectively. An elastic-perfect plastic material was assumed 
( )yσσmax ≤ . 

For large bore branch ( )63.0=Rr  after Meyong et al. [24] the interaction 
of pressure and bending is slightly higher than the parabolic interaction curve 
described by the eq.  
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but lower than the circular interaction given by eq. (16).  
b. Cracked tubular branch junction. It is important to have information on 

limit loads of cracked branch junctions in structural integrity assessment of piping 



Critical stresses, critical groups […] strengths of tubular structures without and with cracks    173 

components. The paper [24] describes the effect of cracks on the plastic limit 
loads of branch junctions under combined pressure and bending. Limit loads for 
single loading [24] of a branch junction: - un-cracked branch, depending on the 
branch geometry, collapse can occur either in the intersection or in the pipe; - at 
through – wall cracks the limit loads decrease almost with increasing relative 
crack length. 

The problem is to correlate the limit load with the deterioration due to 
crack, in the case of a single load, as well as in the case of combined loads. This 
may be obtained by using the eqs. (19). The relevant dimensions of the branches 
reported by Myeong et al are inscribed in Fig. 5 [24]. 

 
Fig. 5. A branch with a crack in the lower weld toe: 1 – run pipe; 2 – branch pipe; 3 – weld. 

 
The limit loads as dimensionless variables ( Lpp  and bLb MM ) for 

through – wall cracked branch junctions under combined pressure and in-plane 
bending to the branch pipe, for the crack in the crotch of the weld toe, is shown in 
Fig. 6, a. The curves correspond approximately to 0.8Pcr =  and 0.9. By 
comparing these curves with the first eq. (19) one obtains ( ) ( )αa;D0PP crcr −= . 
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                                       - a -                                                                              - b - 

Fig. 6. The correlation: a - between bLb MM  and Lpp  for through wall cracked branch 
( 1=Ta ) in the case of crack located in the lower weld toe on the crotch (Fig. 5): 

125.0=πα  (○); 25.0=πα  (●); 44.0=πα  (□); 50.0=πα  (▲) [24];  
b - between bLb MM  and Lpp  for surfaced cracked branches in the case of crack located in the 

lower weld toe flank ( 50.0=πβ ): 50.0=Ta  (○); 0.1=Ta  (●) [24]. 
The curves drawn with the first eq. (19). 

 
With ( ) 10Pcr =  for through wall ( Ta = ) crack, one obtains the following 

mean values of deteriorations (Fig. 6, a): 
( ) ( ) 19.09.01a;D 2 =−=α  - in the case of 9.0Pcr = , when α/π = 0.125 … 0.25; 

( ) ( ) 36.08.01a;D 2 =−=α  - in the case of 8.0Pcr = , when α/π = 0.44 … 0.50. 
Because 1Ta = , there results ( ) ( )αα Da;D ≡ ; the deterioration depends only on 
the crack length expressed through the angle 2α (Fig. 5, a). 

In the case represented in Fig. 6, b where the crack is on the toe flank  
(Fig. 5, c), the correlation between the reported pressure, Lpp , and reported 
bending moment, bLb MM , may be done with the first eq. (19) with 

0.80Pcr =  and 0.924. For the crack length corresponding to angle πβ =2  the 
deterioration ( ) ( )aDa;D ≡β  depends only on the crack depth ( Ta ). 
Consequently, the deteriorations are: 
( ) ( ) 36.080.01a;D 2 =−=β  for 80.0Pcr = , where a/T = 1.0; 

( ) ( ) 1462.0924.01a;D 2 =−=β  for ,924.0Pcr =  where a/T = 0.50. 
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The curves described with the first eq. (19) are in good agreement with the 
data reported by Myeong et al [24]. 

In the tubular branch junction considered here, the crack is in the run pipe 
(Fig. 5). The effect of a semi-elliptical crack in the branch pipe has been analyzed 
by finite element method, starting with the concepts of stress intensity factor [25]. 
Instead of the well known concepts of fracture mechanics in the paper we have 
used the concept of deterioration. This makes easier the strength calculation, 
especially in the case of mixed mode loading. 

7. Conclusions 

On the basis of principle of critical energy (PCE), there have been 
proposed relations for critical normal stress and for critical shear stress (8), 
depending on the damage caused by cracks, in the general case of the nonlinear 
behavior of the material structure (7).  

Further were presented the strength calculation of crackless tubular 
specimens and branch pipe junction mixed-mode loaded ((13) and (14)). An 
analysis is made of the particular loading cases involving two different loads 
(internal pressure and bending moment; axial force and bending moment; axial 
force and internal pressure). 

On the basis of PCE eqs. of the critical group were obtained, expressed in 
terms of forces, by considering the stochastic distribution of the mechanical 
characteristics of the materials (14). Work on particular cases yielded relations for 
loading with two different loads ((15), (17), (18)) of specimens without cracks in 
materials with nonlinear behavior. For the same groups of particular loads there 
have been deduced relations (19) for tubular specimens with cracks. 

The relations obtained were verified against experimental data provided by 
literature for tubular specimens and for tubular branch junction. 
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