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HARMONIC WAVELET ANALYSIS - CONNECTION
COEFFICIENTS FOR NONLINEAR PDE

Simona Mihaela BIBIC1

Undinele armonice au fost aplicate recent pentru rezolvarea prob-
lemelor de evoluţie şi, mai general, pentru a descrie operatori diferenţiali.
În această lucrare sunt studiate proprităţile diferenţiale ale acestora şi este
prezentată metoda de calcul a coeficienţilor de conexiune pentru probleme
neliniare.

Harmonic wavelets were recently applied to the solution of evolution prob-
lems and, more generally, to describe operators. In this paper are studied
their differential properties and, is analyzed the problem of the computation
of connection coefficients for nonlinear problems.
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1. Introduction

The investigation of wavelet solution of differential problems (linear and
nonlinear) [2, 3, 4, 5, 7] is been one of the most interesting applications of
wavelet theory [1, 8, 10, 9]. In the mathematics , the harmonic wavelet theory
was introduced by Newland [1], in 1993. Harmonic wavelets [1, 2, 3, 4, 5, 6,
9, 10] are complex functions and band-limited in the Fourier domain, so that
they can be used to study frequency changes as well as oscillations in a small
range time interval.

Besides the many advantages of using them (such as e.g., the localization
and compression), harmonic wavelets have a main property, i.e., they form or-
thonormal bases (in suitable functional spaces). Thus, they easily fulfill one of
the basic requirements of the Petrov-Galerkin method. If we restrict, in par-
ticular, to the Petrov-Galerkin method, wavelet harmonic bases are efficiently
used to define the solution of PDE equations, integral equations, and more gen-
eral integro-differential equations and operators (see e.g., [2, 3, 4, 5]). Thus,
the solution of the differential (or integro-differential) problem is searched as
a series of harmonic wavelets [1, 2, 3, 4, 5] and it determined (up to a given
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approximation) when its wavelet coefficients are computed (from an equivalent
ordinary differential problem).

The present work takes a closer look at the problem of computation of
connection coefficients for nonlinear problems, more specifically, for quadratic
nonlinearities.

2. Harmonic wavelets

By definition [1], the harmonic scaling ϕ(x) (the father wavelet) and
wavelet ψ(x) (the mother wavelet) are complex functions of the form

ϕ(x)
def
=

ei2πx − 1

2πix
(1)

respectively ,

ψ(x)
def
=

ei4πx − ei2πx

2πix
. (2)

Also, in corresponding multiresolution analysis, it observes that

ψ(x) = ei2πxϕ(x) = 2ϕ(2x)− ϕ(x) . (3)

If we assume as Fourier transform of f(x) the function f̂(ω)

f̂(ω)
def
= F [f(x)]

def
=

∫
R
f(x)e−iωx dx (4)

we can easily get Fourier transform for (1) and (2), i.e.,

ϕ̂(ω) = ℵ (ω + 2π) (5)

ψ̂(ω) = ℵ(ω) (6)

where ℵ(ω) is the characteristic function

ℵ (ω) =

 1, 2π ≤ ω ≤ 4π

0, elsewhere.
(7)

The dilated and translated instances of (1-2) are

ϕnk(x) = 2
n
2ϕ(2nx− k) (8)

ψnk (x) = 2
n
2ψ(2nx− k) (9)

for ∀n, k ∈ Z two parameters: n is the scale (refinement, compresion, or
dilataion) parameter and k is the localization (translation) parameter. The
first parameter shrinks or squeeze on the basic instance while the second can
be used to shift the basic instance up to any point.

By taking into account the property of the Fourier transform, i.e.,

F [f (ax± b)] =
1

|a|
e±

iωb
a f̂
(ω
a

)
(10)
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it is easy to prove that

ϕ̂nk(ω) = 2−
n
2 e−i

ωk
2n ℵ

( ω
2n

+ 2π
)

(11)

ψ̂nk (ω) = 2−
n
2 e−i

ωk
2n ℵ

( ω
2n

)
(12)

with ∀n, k ∈ Z.
Moreover, concerning the application of the Petrov-Galerkin method to

PDE, it is assumed that a certain unknown function (with its derivatives) can
be expressed in terms of a basis (and its derivatives).

For this reason, in the Fourier domain, according to

F

[
d`

dx`
f(x)

]
= (iω)` f̂ (ω) (13)

and (11-12), the `-th order derivatives of the harmonic scaling and wavelet
basis have the explicit forms

̂d`

dx`
ϕnk(x) =

2−
n
2

2π
(iω)` e−i

ωk
2n ℵ

( ω
2n

+ 2π
)

(14)

i.e.,

̂d`

dx`
ψnk (x) =

2−
n
2

2π
(iω)` e−i

ωk
2n ℵ

( ω
2n

)
. (15)

3. Connection coefficients for nonlinear problems

In order to solve the nonlinear problems with Petrov-Galerkin, the non-
linear terms of PDE give rise to some more general connection coefficients [2, 3]
and this leads to serious difficulties of numerical computation. Therefore, if
we will restrict the calculus to quadratic terms, it follows that

Φsnr
pkh

def
=

〈
ψsp(x)ψnk (x) , ψrh(x)

〉
(16)

Γ
(`)snr

pkh

def
=

〈
ψsp(x)

d`

dx`
(ψnk (x)) , ψrh(x)

〉
(17)

∆
(`, r)snr

pkh

def
=

〈
d`

dx`
(
ψsp(x)

) dj

dxj
(ψnk (x)) , ψrh(x)

〉
(18)

The inner product of two functions f(x), g(x), in Hilbert space L2 (R),
fulfills the Parceval equality and is defined

〈f(x) , g(x)〉 ≡
∫
R
f(x) g(x)dx =

1

2π

∫
R
f̂(ω) ĝ(ω)dω =

1

2π

〈
f̂(ω) , ĝ(ω)

〉
(19)
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Then, the group of coefficients can be rewritten as

Φsnr
pkh =

1

2π

〈
̂ψsp(x)ψnk (x) , ψ̂rh(x)

〉
(20)

Γ
(`)snr

pkh =
1

2π

〈
̂

ψsp(x)
d`

dx`
(ψnk (x)) , ψ̂rh(x)

〉
(21)

∆
(`, r)snj

pkh =
1

2π

〈
̂d`

dx`
(
ψsp(x)

) dj

dxj
(ψnk (x)) , ψ̂rh(x)

〉
. (22)

Thus, we need to find the coefficients (16-18). Therefore, we’ll compute,
previously, the formulas

̂ψsp(x)ψnk (x) (23)

̂
ψsp(x)

d`

dx`
(ψnk (x)) (24)

̂d`

dx`
(
ψsp(x)

) dj

dxj
(ψnk (x)) . (25)

Taking into account the Fourier transform properties, i.e., the convolu-
tion in the frequency, we have that

̂f(x) g(x) =
1

2π
f̂(ω) ∗ ĝ(ω) =

1

2π

∫
R
f̂(ω − τ) ĝ(τ)dτ

=
1

2π

∫
R
f̂(τ) ĝ(ω − τ)dτ = ̂g(x) f(x) . (26)

In our case, according to (26), the expressions (23-25) are given by the
following results.

Theorem 3.1. For given s, n, k, p ∈ Z, it is

̂ψm
ε (x)ψM

θ (x) = ̂ψM
θ (x)ψm

ε (x) =

=
2−

m+M
2

2π
e−i

ωε
2m

{
ℵ
(
ω − 2M+1π

2m

)∫ ω−2m+1π

2M+1π

eiτ(
ε

2m
− θ

2M
)dτ+

+ ℵ
(
ω − 2M+2π

2m

)∫ 2M+2π

ω−2m+2π

eiτ(
ε

2m
− θ

2M
)dτ +

[
ℵ
(

ω

2m + 2M

)
−

− ℵ
(
ω − 2M+1π

2m

)
− ℵ

(
ω − 2M+2π

2m

)]∫ ω−2m+1π

ω−2m+2π

eiτ(
ε

2m
− θ

2M
)dτ

}
(27)

where m = s+n−|s−n|
2

, M = s+n+|s−n|
2

and ε, θ ∈ {k, p}.
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Proof. Taking account by (26), the relation (23) can be written as

̂ψsp(x)ψnk (x) =
1

2π
ψ̂sp(ω) ∗ ψ̂nk (ω) =

1

2π

∫
R
ψ̂sp(ω − τ) ψ̂nk (τ)dτ

τ→ω−ξ
=

1

2π

∫
R
ψ̂nk (ω − τ) ψ̂sp(τ)dτ = ̂ψnk (x)ψsp(x) . (28)

On the other hand, according to (28) and (12), it follows that

̂ψsp(x)ψnk (x) =
1

2π

∫
R
ψ̂sp(ω − τ) ψ̂nk (τ)dτ

=
1

2π

∫
R

(
2−

s
2 e−i

(ω−τ)p
2s ℵ

(
ω − τ

2s

))
·
(

2−
n
2 e−i

τk
2n ℵ

( τ
2n

))
dτ

=
2−

s+n
2

2π
e−i

ωp
2s

∫
R

eiτ(
p
2s
− k

2n )ℵ
(
ω − τ

2s

)
ℵ
( τ

2n

)
dτ (29)

respectively,

̂ψnk (x)ψsp(x) =
2−

s+n
2

2π
e−i

ωk
2n

∫
R

eiτ(
k
2n
− p

2s )ℵ
(
ω − τ

2n

)
ℵ
( τ

2s

)
dτ . (30)

When s 6= n, let’s say s < n, we have

̂ψsp(x)ψnk (x) =

=
2−

s+n
2

2π
e−i

ωp
2s

{
ℵ
(
ω − 2n+1π

2s

)∫ ω−2s+1π

2n+1π

eiτ(
p
2s
− k

2n )dτ+

+ ℵ
(
ω − 2n+2π

2s

)∫ 2n+2π

ω−2s+2π

eiτ(
p
2s
− k

2n )dτ + +

[
ℵ
(

ω

2s + 2n

)
−

− ℵ
(
ω − 2n+1π

2s

)
− ℵ

(
ω − 2n+2π

2s

)]∫ ω−2s+1π

ω−2s+2π

eiτ(
p
2s
− k

2n )dτ

}
. (31)

When s > n, we obtain

̂ψsp(x)ψnk (x) =

=
2−

s+n
2

2π
e−i

ωk
2n

{
ℵ
(
ω − 2s+1π

2n

)∫ ω−2n+1π

2s+1π

eiτ(
k
2n
− p

2s )dτ+

+ ℵ
(
ω − 2s+2π

2n

)∫ 2s+2π

ω−2n+2π

eiτ(
k
2n
− p

2s )dτ + +

[
ℵ
(

ω

2n + 2s

)
−

− ℵ
(
ω − 2s+1π

2n

)
− ℵ

(
ω − 2s+2π

2n

)]∫ ω−2n+1π

ω−2n+2π

eiτ(
k
2n
− p

2s )dτ

}
. (32)
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For s = n the last part of proof is imediately. Also, it easily follows that

̂ψnk (x)ψnp (x) =
2−n

2π
e−i

ωk
2n

[
ℵ
( ω

2n
− 2π

)∫ ω−2n+1π

2n+1π

eiτ
k−p
2n dτ+

+ ℵ
( ω

2n
− 4π

)∫ 2n+2π

ω−2n+2π

eiτ
k−p
2n dτ

]
. (33)

and, by the change of variable τ → ω − ξ, it is

̂ψnk (x)ψnp (x) =
2−n

2π
e−i

ωp
2n

[
ℵ
( ω

2n
− 2π

)∫ ω−2n+1π

2n+1π

eiξ
p−k
2n dξ+

+ ℵ
( ω

2n
− 4π

)∫ 2n+2π

ω−2n+2π

eiξ
k−p
2n dξ

]
. (34)

�

In particular, according to formula (27) and taking into account that
k = p = 0, we have the following corollary.

Corollary 3.1. For k = p = 0, it is

̂ψs0(x)ψn0 (x) = ̂ψn0 (x)ψs0(x) =

=
2−

m+M
2

2π

{
ℵ
(
ω − 2M+1π

2m

)[
ω −

(
2m+2 + 2M+1

)
π
]

+

+ ℵ
(
ω − 2M+2π

2m

)[(
2m+1 + 2M+2

)
π − ω

]
+ 2m+1π

[
ℵ
(

ω

2m + 2M

)
− ℵ

(
ω − 2M+1π

2m

)
− ℵ

(
ω − 2M+2π

2m

)]}
.

(35)

Furthermore, the following corollary holds.

Corollary 3.2. For n = s and k = p, it is

̂ψnk (x)ψnk (x) =

=
2−n

2π
e−i

ωk
2n

[
ℵ
( ω

2n
− 2π

) (
ω − 2n+2π

)
+ ℵ

( ω
2n
− 4π

) (
2n+3π − ω

)]
.

(36)
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Theorem 3.2. For given s, n, k, p ∈ Z, and ` ∈ N, it is

̂
ψm
ε (x)

d`

dx`
(ψM

θ (x)) =
̂

ψM
θ (x)

d`

dx`
(ψm

ε (x)) =

=
2−

m+M
2

2π
e−i

ωε
2m (i)`

{
ℵ
(
ω − 2M+1π

2m

)∫ ω−2m+1π

2M+1π

τ `eiτ(
ε

2m
− θ

2M
)dτ+

+ ℵ
(
ω − 2M+2π

2m

)∫ 2M+2π

ω−2m+2π

τ `eiτ(
ε

2m
− θ

2M
)dτ +

[
ℵ
(

ω

2m + 2M

)
−

− ℵ
(
ω − 2M+1π

2m

)
− ℵ

(
ω − 2M+2π

2m

)]∫ ω−2m+1π

ω−2m+2π

τ `eiτ(
ε

2m
− θ

2M
)dτ

}
(37)

where m = s+n−|s−n|
2

, M = s+n+|s−n|
2

and ε, θ ∈ {k, p}.

Proof. Taking account by (24), (26), (15), we have

̂
ψsp(x)

d`

dx`
(ψnk (x)) =

2−
n+s
2

2π
i`e−i

ωp
2s

∫
R
τ `eiτ(

p
2s
− k

2n )ℵ
(
ω − τ

2s

)
ℵ
( τ

2n

)
dτ (38)

̂d`

dx`
(ψnk (x)) ψsp(x) =

=
2−

n+s
2

2π
i`e−i

ωk
2n

∫
R

(ω − ξ)` eiξ(
k
2n
− p

2s )ℵ
(
ξ

2n

)
ℵ
(
ω − ξ

2s

)
dξ

(39)

from where, with the change of variable τ → ω − ξ, we easily obtain that
formulas (38) and (39) are equivalent. By a direct computation and according
to Theorem 3.1, and (38-39), the formula (37) is proven. When ` = 0, (23)
trivially follows. Moreover, for s = n we obtain that

̂
ψnp (x)

d`

dx`
(ψnk (x)) =

̂d`

dx`
(ψnk (x)) ψnp (x) (40)

̂
ψnp (x)

d`

dx`
(ψnk (x)) =

2−n

2π
e−i

ωk
2n (i)`

[
ℵ
( ω

2n
− 2π

)∫ ω−2n+1π

2n+1π

τ `eiτ
k−p
2n dτ+

+ ℵ
( ω

2n
− 4π

)∫ 2n+2π

ω−2n+2π

τ `eiτ
k−p
2n dτ

]
(41)

̂d`

dx`
(ψnk (x)) ψnp (x) =

2−n

2π
e−i

ωp
2n (i)`

[
ℵ
( ω

2n
− 2π

)∫ ω−2n+1π

2n+1π

(ω − ξ)`eiξ
p−k
2n dξ+

+ ℵ
( ω

2n
− 4π

)∫ 2n+2π

ω−2n+2π

(ω − ξ)`eiξ
p−k
2n dξ

]
. (42)

�
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Theorem 3.3. For given s, n, k, p ∈ Z and `, j ∈ N, it is

̂d`

dx`
(ψm

ε (x))
dj

dxj
(
ψM
θ (x)

)
=

̂dj

dxj
(
ψM
θ (x)

) d`

dx`
(ψm

ε (x)) =

=
2−

m+M
2

2π
e−i

ωε
2m i`+j

{
ℵ
(
ω − 2M+1π

2m

)∫ ω−2m+1π

2M+1π

(ω − τ)` τ jeiτ(
ε

2m
− θ

2M
)dτ+

+ ℵ
(
ω − 2M+2π

2m

)∫ 2M+2π

ω−2m+2π

(ω − τ)` τ jeiτ(
ε

2m
− θ

2M
)dτ +

[
ℵ
(

ω

2m + 2M

)
−

−ℵ
(
ω − 2M+1π

2m

)
− ℵ

(
ω − 2M+2π

2m

)]∫ ω−2m+1π

ω−2m+2π

(ω − τ)` τ jeiτ(
ε

2m
− θ

2M
)dτ

}
.

(43)

where m = s+n−|s−n|
2

, M = s+n+|s−n|
2

and ε, θ ∈ {k, p}.

Proof. It follows imediately according to Theorem 3.1 and Theorem 3.2. More-
over, for s = n, we obtain the following

̂d`

dx`
(
ψnp (x)

) dj

dxj
(ψnk (x)) =

=
2−n

2π
e−i

ωk
2n i`+j

[
ℵ
( ω

2n
− 2π

)∫ ω−2n+1π

2n+1π

(ω − τ)` τ jeiτ
k−p
2n dτ+

+ ℵ
( ω

2n
− 4π

)∫ 2n+2π

ω−2n+2π

(ω − τ)` τ jeiτ
k−p
2n dτ

]
(44)

respectively, by the change of variable τ → ω − ξ

̂d`

dx`
(
ψnp (x)

) dj

dxj
(ψnk (x)) =

=
2−n

2π
e−i

ωp
2n i`+j

[
ℵ
( ω

2n
− 2π

)∫ ω−2n+1π

2n+1π

ξ` (ω − ξ)j eiξ
p−k
2n dξ+

+ ℵ
( ω

2n
− 4π

)∫ 2n+2π

ω−2n+2π

ξ` (ω − ξ)j eiξ
p−k
2n dξ

]
(45)

�



Connection coefficients for nonlinear problems 35

Thus, taking account by (20), (21, (22)

Φsnr
pkh =

1

2π

〈
̂ψsp(x)ψnk (x) , 2−

r
2 e−i

ωh
2r ℵ

( ω
2r

)〉
(46)

Γ
(`)snr

pkh =
1

2π

〈
̂

ψsp(x)
d`

dx`
(ψnk (x)) , 2−

r
2 e−i

ωh
2r ℵ

( ω
2r

)〉
(47)

∆
(`, r)snj

pkh =
1

2π

〈
̂d`

dx`
(
ψsp(x)

) dj

dxj
(ψnk (x)) , 2−

r
2 e−i

ωh
2r ℵ

( ω
2r

)〉
(48)

from where, according to the Theorems 3.1-3.3, we finally get the coefficients
(16), (17) and (18), respectively.

However, in particular, we can easily get simple expressions for the con-
nection coefficients. With a direct (numerical) computation we have, e.g.,

Φ000
000 =

1

4π2
〈ℵ (ω − 2π) (ω − 4π) + ℵ (ω − 4π) (8π − ω) , ℵ (ω)〉 = 0

Γ
(1)000

000 =
i

4π2

〈
ℵ (ω − 2π)

∫ ω−2π

2π

τdτ + ℵ (ω − 4π)

∫ 4π

ω−4π
τdτ, ℵ (ω)

〉
= 0

∆
(1, 1)000

000 = − 1

4π2

〈
ℵ (ω − 2π)

∫ ω−2π

2π

(ω − τ) τdτ+

+ℵ (ω − 4π)

∫ 4π

ω−4π
(ω − τ) τdτ, ℵ (ω)

〉
= 0 .

4. Conclusions

In general, the computation of the connection coefficients is not always
an accessible way. Therefore, the application of the Petrov-Galerkin method
for the wavelet approximation of solution of PDE depends on the connection
coefficients. It should be noticed that it is not possible to be given a simple
formula for their explicit form, because it involves many difficult computations.
However, in particular, we can easily get simple expressions for the connection
coefficients.
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