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A NEW THREE-STEP ITERATIVE ALGORITHM FOR SOLVING THE
SPLIT FEASIBILITY PROBLEM

Meiling Feng', Luoyi Shi?, Rudong Chen®

In this paper, we propose a new three-step iterative algorithm for solving the
split feasibility problem in Hilbert space. Under proper assumptions, the sequence gen-
erated by the new iterative algorithm converges strongly to a solution of the SFP. Con-
vergence rate of our algorithm is faster than previously existing iterative algorithms. To

illustrate the effectiveness of our algorithm, we provide some numerical results.
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1. Introduction

Let H; and Hs be two real Hilbert spaces, C' and @ be closed, convex, and nonempty
subsets of Hy and Hs, respectively. And let A : Hy — Hs be a bounded and linear operator.
The split feasibility problem (abbreviate SFP) can be mathematically described by finding
a point z in C' such that

zeC, Az € Q. (1.1)

The SFP was first proposed by Censor and Elfving [5] for solving a class of inverse prob-
lems. Recently, since the SFP is widely applied in medical image reconstruction [9, 10],
the intensity-modulated radiation therapy [6, 7] and signal processing [3], it has gained
extremely attention.

There are various algorithms to solve the SFP, see [3, 4, 6, 13, 18, 19] and the references
therein. Particularly, Byrne [4] presented a CQ-algorithm, for which the iterative step zy is
formulated as follows:

Tpt1 = Po[l — vA* (I — Pg)Alzi, k >0, (1.2)

where 0 < v < W, Pc and Pg denote the projections onto sets C' and @), respectively,
and A* : H5 — HY is the adjoint of A. Due to the CQ-algorithm’s own virtues—simple
calculation, it has become a practical tool to solve the SFP, and various versions of the
CQ-algorithm have been applied in many literature, such as [13, 18], etc.
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The three-step iterative was first introduced by Noor to consider the approximate
solutions of variation inclusions in Hilbert space [11]. It is more valid than one-step and two-
step iterative methods for solving the problems of pure and applied sciences [2]. Recently,
three-step iterative has been used to solve the SFP, and it has gained great efficiency, such
as Dang’s [8]. He introduced the following three-step iterative algorithm:

wp = (1 — an)xn + anPo[(1 — X\p)Ul 2y,
Up = (1 - ﬂn)xn + BnPC[(l - An)U]Wn, (1.3)
Tn+1 = (1 - ’Yn)xn + ’YnPC[(l - An)[]]vna

where U = I — yA*(I — Pg)A, and {a}, {Bn}, {7}, {\} are real sequences in (0,1). In
addition, Mihai [15] introduced a new three-step iterative method for finding fixed points of
nonexpansive mapping.

Inspired by the above works, we combine the idea of Mihai’s three-step iterative with
Byrne’s CQ-algorithm for solving the SFP (1.1). This is the core part of this paper. The
structure of the present paper is as follows. In Section 2, we provide some concepts and
lemmas that will be very useful for our convergence analysis. In Section 3, we propose the
three-step iterative method and prove its convergent results. In Section 4, we illustrate that

our algorithm is effective by some numerical results. In the last part, we summarize this

paper.

2. Preliminaries

For the sake of convenience, we present some notations used in this paper. Let
H be a real Hilbert space, its inner product and norm are denoted by (-,-) and | - |,
respectively. I denotes the identity operator in H. F(T') denotes the fixed points of T, i.e.,
FT)={x€ H:Tx =z}. ©, — x and z,, — z denote sequence {x,} converges weakly
and strongly to z, respectively. In this paper, we assume that the solution set €2 of the SFP
(1.1) is nonempty, let

Q={recC:AzcQ}=CnA'Q,

then, Q is closed, convex, and nonempty set.

In addition, let C' be a closed, convex, and nonempty subset of Hilbert space H, for
x € H, Pc and d(z, C) denote the orthogonal projection from z onto C' and metric distance
from x onto C, respectively, which are defined by

Po(z) = argrréiél |z —y| and d(z,C) := inf{||Jz —y|| : y € C}.
y

The following lemma presents some important properties of the orthogonal projection
operator, in which (i) is taken from [1, theorem 3.14]; (ii) and (iii) from [1, proposition 4.8].

Lemma 2.1. ([1]) Let C be a closed, convex, and nonempty subset of H, then for any
x,y € H and z € C,

(i) (x — Pox,z — Pex) < 0;

(i) | Pex — Peyl® < (Pex — Poy, @ — y);

(iii) |Pex — 2| < ||z — 2[|* — || Pex — «|*.
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Definition 2.1. Let T': H — H be an operator, then
(7) T is nonexpansive if

T2 — Tyl < ||z —vyll, Va,y € H;

(it) T is averaged if
T=01-a)l+as,
where « € (0,1), and S : H — H is nonexpansive;
(#97) T is v-inverse strongly monotone(v-ism), with v > 0, if

(x —y, Tz —Ty) > v||Tx —Ty|* ¥V z,y € H;
(iv) T is A-Lipschitz continuous, with A > 0, if
[Te =Tyl < Alz —yll, V 2,y € H;
(v) T is firmly nonexpensive, if
(x —y,Tx —Ty) > |[Tx — Ty|?*, ¥V z,y € H.

Lemma 2.2. (Lemma 2.1, [3]) An operator U is averaged if and only if its complement
V=I-U isv-ism withl/>%.
Lemma 2.3. (Lemma 1, [12]) Let {z,} be a sequence of Hilbert space H. If {x,} converges

weakly to x, then for any y € H and y # x, we have lim inf ||z, — z| < lim inf ||z, — y||.
n—oo n—oo

Lemma 2.4. (Demiclosed principle)(Lemma 2, [12]) Let C be a closed, convex, and
nonempty subset of real Hilbert space H, and T : C' — C be a monexpansive mapping.
Then I — T 14s demiclosed at zero, i.e., if x;, = x € C and x, — Txp — 0, then x = Tx.

Lemma 2.5. (Lemma 1.3, [14]) Let X be a uniformly convex Banach space and0 < p < t, <
qg<1forallne N. Let {x,} and {yn} be two sequences of X such that lim sup ||z,| <,
n— 00

lim sup||yn|| < 7 and lim sup |[t,z, + (1 — th)ynll = 7 hold for some r > 0. Then
lim ||, — yn| = 0.
n—oo

3. The three-step iterative algorithm and its convergence analysis
Now, we propose our three-step iterative algorithm.

Algorithm 3.1. For an arbitrarily initial point xg € Hy, the sequence {x,} is generated by

up = (1 — ap)xn + T,
vp = (1 = Bp)un + BnTun, (3.1)

Tn+1 = (1 - ’Yn)Tun + ’YnTU’m
where T' = Po[I —yA*(I — Pg)A], and {an}, {Bn}, {7n} are three real sequences in (0,1).

Remark 3.1. Since the solution set of the SFP (1.1) is nonempty, it is not hard to find
that x* € C solves (1.1) if and only if it solves the fixed point equation:

Poll —~yA*(I — Pg)Alz =z, z € C.

Then, the solution set of the SFP (1.1) is equal to fized points of T, i.e., F(T) = Q =
CNA™LQ # 0. Concrete detail can be found in [16, 17].
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Lemma 3.1. Let operator T = Pg[I — yA*(I — Pg)A], where 0 < v < \Ij\lz' Then T is

nonexpansive.
Proof. Let U = A*(I — Pg)A. Firstly, we prove that U is L-Lipschitz continuous
with L = ||A||%. In fact, for V z,y € C, we have
Uz — Uyl|* =||A*(I - Po)Az — A*(I — Po)Ay|?
<L||(I - Pg)Ax — (I - Pg) AyP
—L|[Az — Ay — (Po Az — PoAy)|?
—L(| Az — Ayl + | Po Az — PoAy|?
— 2(Ax — Ay, Po Az — PoAy)).
By Lemma 2.1(ii), we obtain
(Az — Ay, PoAz — PoAy) > | PoAx — PoAy|*.
Therefore,
|Uz — Uyll? < L(| Az — Ayl — || PoAz — PoAy|?)
< LAz — Ay|?
< L2z —yl*.
Then, U is L-Lipschitz continuous, which means that U is %—ism. Hence, YU is %—ism.
Next, we show that T is nonexpensive. By Lemma 2.2, V = I — U is averaged

mapping. Then, V = (1 —t)I +tS, where t € (0,1), S : C — C is nonexpansive. Taking
z,y € C, we have

Ve = Vyl| = [[(1 = t)x + Sz — (1 - t)y — tSy|
< (I =z =yl +tl|Sz - Syl
< A=)z =yl +tlz -yl
= [lz —yll.
Thus, V is nonexpensive mapping. Note that T'= PoV, Po and V are both nonexpensive.

Consequently, T is nonexpansive mapping. The proof is completed.

Lemma 3.2. Let {x,} be the sequence generated by Algorithm 3.1. Then,
exists for any * € F(T).

lim ||z, — z*|
n—oo

Proof. Taking a point z* € F(T). Since T is nonexpensive, by (3.1), for all n € N,

we have
un — 2| = [[(1 — an)zn + anTa, — 2™
< (I —an)llzn — 2" + anl|Tzn — 2|
<A —an)lzn — 2™ + anllzn — 27|
= [len — 27|,
ie.,

Jun — 2" < flan — 27|, (3.2)
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Similarly, we obtain
[vn — 2™ < [lan — 2" (3-3)
Combining (3.2) and (3.3), we get
[#n1 — 2| = [[(1 = v0)Tun + 0 Tvn — 27|

<@ =) Tun — 27| + vnl|Tvn — 27|

< (U= )llun = 2% + Anllon — 27|

< (U= n)llen — 2"+ allzn — ]

= [Jen — 2.
Since x* is chosen arbitrarily in F(T'), one deduces that {||z, — z*||}, is decreasing, then

lim ||x, — 2*| exists for any z* € F(T'). The proof is completed.
n—oo

Lemma 3.3. Let {x,} be the sequence generated by Algorithm 3.1. Then lim ||z, —Tx,|| =
n—o0
0.

Proof. By Lemma 3.2, lim ||z, — 2*|| exists for any «* € F(T). Suppose that
n— oo

nh_)rr;<> |zn, — 2| = a(a > 0). (3.4)
By (3.2) and (3.3), we have
nh_}rrgo sup |Ju, — 2*|| < a, (3.5)
and
nlgl;o sup v, — 2*]| < a. (3.6)

Since T is nonexpensive mapping, we obtain

|70 — 2| < llan — 2", I Tun —&*[| < Jtn — &, [Tvn — 2] < [fon — 2"

Taking the superior limit on both sides, we get

nl;rrgo sup || Tz, — 2" < a, (3.7)
nh_}rréo sup || Tu, — 2*|| < a, (3.8)
and
nlgrolo sup || Tv, — ¥ < a. (3.9)
Since
o= Jim lenes ="l = B 0= 90)(Tun = 2) +9a(Ton =), (310)

combining (3.8), (3.9) and (3.10), from Lemma 2.5, we infer that
nh_)rrgo | Tun — Tu,|| = 0.
Now
[enr — 2| = [[(1 =) (Tun — 27) + yn(Ton — 27)||
<N Tun = 27| + il Tun — Tonl|,
which implies that
a < lim inf||Tu, — 2*|. (3.11)

n—oo
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From (3.8) and (3.11), we obtain

lim ||Tu, —z*| = a.
n— oo

Moreover,
[Tun — 2| < [ Tup — Ton|| + || Ton — 27|
< [ Tun = Ton || + |lvp — 27,

which implies that
a < lim inf v, — 2. (3.12)

n—oo

Combining (3.6) and (3.12), we obtain

lim |jv, —z*| = a.
n— o0

Since T is nonexpensive, by Lemma 2.4, we get

nh_)rr;o llun, — Tuy|| = 0.
Due to
[on — 2™ = [|(1 = Bn)un + BpTun — 2|
= [[(un — %) + Bn(Tun — un)||
< llun = @[ + BullTun — unl,
we have

a < lim inf ||u, — x*|. (3.13)
n—roo

According to (3.5) and (3.13), we obtain

lim |ju, —z*| = a,
n— oo
hence,
a= lim |lu, —z"|
n—oo
= lim ||(1 — ap)zn + apTz, — "]
n—oo
= nhﬁn;() (1 —an)(zn — %) + an(Ta, — )|,
that is,
lim |[(1 —an)(zn — 2%) + an(Tx, — z7)|| = a. (3.14)
n—oo

Combining (3.4), (3.7) and (3.14), from Lemma 2.5, we have
lim @, — Tz,| =0.
n—oo

The proof is completed.

Theorem 3.1. Let {x,} be the sequence generated by Algorithm 3.1. Then {x,} converges
weakly to a point in €.
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Proof. By Remark 3.1, Q = F(T) # 0. Hence, we only need to show that the
sequence {z,} converges weakly to a point in F(T).

Taking * € F(T), by Lemma 3.2, nhﬁrr;o |z — ™| exists.

First, we show that the subsequences of {z,} only have a weak limit in F(T). Let
{zn,} and {z,;} be two subsequences of {z,}, the weak limits of {z,,} and {z,,} are
denoted by u and v, respectively. By Lemma 3.3, we have nlgr;o |€n, — Tan,|| = 0. By
Lemma 2.4, I — T is demiclosed at zero. Hence, we gain Tu = u, i.e., u € F(T). Similarly,
we can prove that v € F(T).

Next, we show the uniqueness of weak limit. Since T' = Po[I — yA*(I — Pg)A4] is
nonexpansive mapping, by Lemma 3.2, nh_}n;o ||z, —2*|| exists. Suppose that u # v, according

to Lemma 2.3, we have

lim ||z, —u| = lim |z, —ul| < lIm |2, — v
n—oo n;—00 n;—00

= lim |z, —v| = lim |z, — v
< lim ||z, —ull = lm [z, —ul.

This is clearly contradictory, hence, u = v. Therefore, {z,} converges weakly to a point in
F(T), that is, the sequence {z,} converges weakly to a point in Q. The proof is completed.

Theorem 3.2. Let {x,} be the sequence defined by Algorithm 3.1. Then {x,} converges to
a point in Q if and only if lim infd(x,,Q) = 0.
n—oo

Proof. Obviously, necessity is true. We only need to prove sufficiency.
Since lim infd(z,,Q) = 0. From Remark 3.1, we have F(T) = Q # 0. Hence
n—oo
lim infd(x,, F(T)) = 0. For any «* € F(T), lim |z, — z*|| exists by Lemma 3.2, thus,
n—o00 n—00
lim d(x,, F(T)) exists and lim d(x,, F(T)) = 0.
n—oo n—oo
Next, we prove that {x,} is a Cauchy sequence in C. Since lim d(z,, F(T)) = 0, for
n—oo
any € > 0, there exists ng € N such that for all n > ng, d(z,, F(T)) < 5. Meanwhile,

inf{||zn, — %] : 2 € F(T)} < %
therefore, there exists € F((T) such that ||z,, — Z|| < 5. For m,n > ng, we have
[2n — Tl < [l2n — 2] + [|2m — Z]|.
In addition, from the proof of Lemma 3.2, we know that ||z, — 2*|| is decreasing for n, then
[zn — zm |l < 2[|z0, — 7| <,

which yields that {z,} is a Cauchy sequence in C.

Note that C is a closed subset in H;, hence, there exists £ € C such that x,, — Z.
From ILm d(xn, F(T)) = 0, one deduces that d(&, F'(T)) = 0. Since F(T) is closed set, we
have ine OZ%(T) Again, using F(T) = Q, we obtain & € Q. Hence, {z,} converges to a point
in Q. The proof is completed.

Theorem 3.3. Let {z,} be the sequence generated by Algorithm 3.1. If there exists a
nondecreasing function f : [0, 4+00) — [0, 4+00) with f(0) =0, f(r) > 0, for any r € (0,4+00),
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such that ||z — Tzl > f(d(z, F(T)), for all x € C, then {x,} converges strongly to a point
in Q.

Proof. From Lemma 3.3, we have
lim |x, — Tz,| = 0.
n— oo
According to the assumption of T', we obtain
i < Ii — = 0.
nh_fgo fld(@y, F(T)) < nll_{rolo [2n — Tl =0

Since f : [0,400) — [0,+00) satisfies f(0) = 0, f(r) > 0, for any r € (0,400), we can
deduce that

lim d(z,, F(T)) =0,

n—oo

by Remark 3.1, we have F(T') = 2, which implies that
nl;rr;o d(xy, ) = 0.

It follows from Theorem 3.2 that {z,} converges strongly to a point in Q. The proof is

completed.

4. Numerical experiment

In this section, we provide a concrete example including numerical results and compare
Algorithm 3.1 with Dang’s [8] algorithm (i.e., (1.3)) to declare that our algorithm is more
effective. All codes were written in Matlab 2012b.

Example 4.1. Let Hy = Hy = R}, C ={x € R®: |z|| <1}, Q = {x € R® : ||z|| < 2} and
take

-3 1 2
A= -1 0 1
1 2 -1
Then the projections Po and Pg of x onto sets C' and Q are as follows:
z, [l <1
Po(z) =
2 llzl =1
and
z, [z <2

”72”337 ||| > 2.
Meanwhile, choose o, = %, Bn = %, Y = %, and~y =0.01in (1.8) and (3.1). And X\,, = 0.03
in Dang’s (1.3). Take an initial point xo = {2,1,0}. We take ||z,41 — 2n] < 107° as the
standard of stopping in the process of calculation.

In the following table, n, t and a = ||z,+1 — z,| denote iterative steps, CPU time
and error, respectively. After the calculation, we can compare our results with Dang’s as
follows:

From the above table, we can find that, under the same conditions, the results of our
algorithm are superior to Dang’s. In short, the results of numerical experiment show that
our algorithm is more efficient than Dang’s.
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n t a

sequence (3.1) | 238 | 0.031250 | 0.0000099

Dang’s (1.3) | 514 | 0.093750 | 0.0000100

5. Conclusions

We propose a new three-step iterative algorithm to solve the split feasibility problem.

Under proper assumptions, our algorithm can converge strongly to a solution of the split

feasibility problem (1.1). Numerical results show the effectiveness of our algorithm.

(10]

(11]

(12]

(13]

(14]

(15]

Acknowledgements

This research was supported by NSFC Grants No:11226125; No:11301379; No:11671167.

REFERENCES

Bauschke H.H., and Combettes P.L., Convex Analysis and Monotone Operator Theory in Hilbert Space.
Springer, London (2011)

Bnouhachem A., and Noor M.A., Three-steps iterative algorithms for mixed variational inequalities.
Appl. Math. Comput. 183, 436-446 (2006)

Byrne C., An unified treatment of some iterative algorithms in signal processing and image reconstruc-
tion. Inverse Probl. 20(1), 103-120 (2004)

Byrne C., Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Probl.
18(2), 441-453 (2002)

Censor Y., and Elfving T., A multiprojection algorithm using Bregman projections in a product space.
Numer. Algorithms 8(2-4), 221-239 (1994)

Censor Y., Elfving T., Kopf N., and Bortfeld T., The multiple-sets split feasibility problem and its
applications for inverse problems. Inverse Probl. 21(6), 2071-2084 (2005)

Censor Y., Bortfeld T., Martin B., and Trofimov A., A unified approach for inversion problems in
intensity-modulated radiation therapy. Phys. Med. Biol. 51(10), 2353-2365 (2006)

Dang Y.Z., and Gao Y., The strong convergence of a three-step algorithm for the split feasibility
problem. Optim. Lett. 7(6), 1325-1339 (2013)

He H., Ling C., and Xu H.K., An implementable splitting algorithm for the ¢;1-norm regularized split
feasibility problem. J. Sci. Comput. 67, 281-298 (2015)

Lorenz D.A., Schépfer F., and Wenger S., The linearized Bregman method via split feasibility problems:
analysis and generalizations. SIAM J. Imaging Sci. 7(2), 1237-1262 (2014)

Noor M.A., New approximation schemes for general variational inequalities. Journal of Mathematical
Analysis and Appl. 251, 217-229 (2000)

Opial Z., Weak convergence of the sequence of successive approximations for nonexpensive mappings.
Bull. Amer. Math. Soc. 73, 591-597 (1967)

Qu B., and Xiu N., A note on the CQ algotithm for the split feasibility problem. Inverse Probl. 21(5),
1655-1665 (2005)

Schu J., Weak and strong convergence to fixed points of asymptotically nonexpensive mappings. Bull.
Asut. Math. Soc., 43(1), 153-159 (1991)

Thakur B.S., Thakur D., and Postolache M., A new iteration scheme for approximating fixed Points of
nonexpensive mapping. Faculty of Sciences and Math. University of Nis, Serbia. 10, 2711-2720 (2016)



102 Meiling Feng, Luoyi Shi, Rudong Chen

[16] Xu H.K., A variable Krasnosel’skii-Mann algorithm and the multiple-set split feasibility problem. In-
verse Probl. 22(6), 2021-2034 (2006)

[17] Xu H.K., Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces.
Inverse Probl. 26, 105018 (2010). 17pp.

[18] Yang Q., The relaxed CQ algotithm solving the split feasibility problem. Inverse Probl. 20(4), 1261-1266
(2004)

[19] Zhao J., and Yang Q., Several solution methods for the split feasibility problem. Inverse Probl. 21(5),
1791-1799 (2005)



