
U.P.B. Sci. Bull., Series C, Vol. 84, Iss. 2, 2022 ISSN 2286-3540

SYSTEMATIZATION OF TRUSTED I/O SOLUTIONS FOR
ISOLATED EXECUTION ENVIRONMENTS

Florin-Alexandru Stancu1, Alexandru-Alin Mircea, Răzvan Rughiniș, Mihai
Chiroiu

Nowadays, operating systems have become increasingly complex,
with codebases of millions of lines inadvertently containing security bugs.
Modern CPUs promise a solution to this with Trusted Execution technolo-
gies (e.g., ARM TrustZone, Intel SGX) which can be employed to isolate
critical applications from unauthorized access even from more privileged ac-
tors (e.g., system kernel or hypervisor). However, as the traditional way to
interface with I/O peripherals is by using drivers part an now-considered
untrustworthy OS, separate solutions must be devised to secure user input
or output to trusted environments by ensuring an authenticated pathway.

Our paper provides a systematization of the available trusted I/O path
solutions by reviewing the scientific works in this field and extracting com-
mon attributes and differences. We categorize them by supported peripheral
type and trusted platform, comparing the usability, security and complexity
of their implementations. Finally, we discuss the results and give future
directions for improvement.

Keywords: security, trusted execution, TEE, device virtualization, trusted
I/O path, hardware

1. Introduction
In the security world, increased software complexity is often regarded

as common source for vulnerabilities, introducing a large attack surface that
is becoming more and more difficult to validate. Moreover, an application’s
security depends on the framework / libraries used, the underlying operating
system [13], an optional virtual machine monitor [19] and the system’s firmware
and hardware. This is commonly referred to as the Trusted Computing Base
(TCB) which, in the above example, is totaling to tens of millions of lines of
code which may negatively affect the security of the system.

To help improve the trustworthiness of critical applications, hardware-
assisted execution isolation technologies started to emerge, promising a smaller
TCB and better verifiability. Popular ones include ARM TrustZone, Intel Soft-
ware Guard Extensions and AMD Secure Encrypted Virtualization available in
commercial CPUs. These allow pieces of code to run in isolated regions called

1Dept. of Computer Science and Engineering, University POLITEHNICA of Bucharest,
Romania, e-mail: florin.stancu@upb.ro

3



4 Florin-Alexandru Stancu, Alexandru-Alin Mircea, Răzvan Rughiniș, Mihai Chiroiu

Trusted Execution Environments (TEE), where their execution flow and pri-
vate data are protected even against higher-privileged components such as the
OS kernels or hypervisors.

This new security framework does not come without any downsides,
though. Traditionally, the operating system is used to interface with the ex-
ternal world (e.g., network, storage, hardware peripherals for user interaction).
TEEs can still leverage these services from an OS running side by side, but
their behaviour is considered untrusted and must be secured by other means.

In this paper, we take on the Trusted I/O problem: establishing secure
communication channels between trusted environments and user-interacting
hardware peripherals. Common use cases include: keyboard / touch screen
for password or PIN number input (for remote application authentication) or
transaction validation (e.g., authorizing money transfer) or trusted display /
printer output to prevent malware from viewing sensitive data (e.g., secret
documents) or altering specific screen regions (phishing protection).

Our contributions are:
• A thorough description of the popular TEE platforms and trusted I/O

path architectures;
• An extensive survey of the available I/O security solutions;
• A comparison table for the trusted path implementations by software

complexity (TCB size), applicable trusted execution platform and device
usability;
The rest of the paper is organized as follows: in Section 2, we give some

background on current TEE technologies, in Section 3 we define the Trusted
I/O Path problem and generalized approaches, in Section 4 we present the
available state of the art, which we follow up with the systematization and
discussion in Section 5, concluding with Section 6.

2. Background
A trusted execution environment (TEE) can be described as an iso-

lated memory region and CPU execution context where programs can run
with platform-assured confidentiality and integrity protections from the nor-
mal (rich) environment, especially against higher-privileged components (OS
kernel, hypervisor, firmware or even physical tampering), often regarded as un-
trustworthy. Its primary goal is to protect sensitive workloads where security
is important by minimizing the TCB of the system.

Although software-only TEE implementations have been tried (Virtual
Ghost [3], SofTEE [10] using various instrumentation techniques for deprivi-
leging the OS kernel), such approaches usually incur huge performance over-
head upon the whole system (including normal / untrusted operation) and,
arguably, still retain large TCB sizes with the added complexity of the instru-
mentation code. Consequently, modern TEEs are designed as a combination
of software (firmware / CPU microcode) and hardware features (CPU and



Systematization of Trusted I/O solutions for Isolated Execution Environments 5

Fig. 1. TrustZone Architecture

chipset modifications, other secure elements) for realizing the platform’s isola-
tion requirements [24].

Intel Trusted Execution Technology (TxT) [8] was first introduced
in 2006 as a series of CPU architectural extensions to support trusted com-
puting principles. It made it possible for a trusted program to launch late
(after the system was initialized and the normal OS has started) by calling the
SINIT instruction, creating a Dynamic Root for Trusted Measurement and
refreshing the the TCB to a clean slate. It was meant to be used together with
the Intel Virtualization Technology (VMX [20]) to spawn a virtual machine
monitor (VMM) to securely isolate multiple VMs, and also integrates with a
Trusted Platform Module chip to provide code / data integrity measurement,
sealing and remote attestation features.

Several research projects obtained trusted execution environments out
of the DRTM technologies. Notable ones are Flicker [16], a framework for
executing small pieces of application code in a isolated environment (one at a
time), and TrustVisor [15], a secure hypervisor with a very small footprint
(≈ 6K LoC) providing memory isolation and integrity measurements, able to
run multiple trusted applications while keeping the normal operating system
responsive.

For embedded applications, ARM-based system on chips have the Trust-
Zone [1] feature providing hardware-enforced separation between two do-
mains: the Secure World, where a Trusted Execution Environment can be
implemented, and the Normal World, where the rich software stack resides
(i.e., the untrusted operating system and user applications), as illustrated in
Figure 1. The TrustZone architecture has a new Secure Configuration Register
containing the NonSecure (NS) flag used for memory / interrupt request au-
thorization by the various on-chip peripherals. An additional privilege level is
also introduced: the Secure Monitor, responsible for context switching, usually
implemented as part of the trusted firmware together with the secure platform
initialization.



6 Florin-Alexandru Stancu, Alexandru-Alin Mircea, Răzvan Rughiniș, Mihai Chiroiu

return(untrusted)
App Enclave

Userspace

Kernel space

Operating System

Execute 
trusted 
code

ECall

OCalls

syscalls

CPU

Fig. 2. Intel SGX architecture and call flow

Finally, a different approach for a TEE is taken by Intel with their newest
Software Guard Extensions [9] for their general purpose x86 CPU family. SGX
isolates userspace applications to run in special execution contexts called En-
claves, with hardware-level protections against a privileged Operating System
reading their memory or altering the execution flow, resulting in a minimal
TCB comprised only of the CPU hardware, its microcode / embedded firmware
and the enclave software [2]. From the user’s perspective, an SGX application
installs and launches the same as any other program of the Operating System.
For a developer, the application must be split in two major components: the
enclave code (which will be executed inside the TEE), and the untrusted pro-
gram (used initially to load the enclave and provide untrusted OS services, e.g.
networking, file system, peripheral access). The untrusted userspace programs
and their enclaves may switch back and forth using Enclave Calls and Outside
Calls as present in Figure 2.

3. Problem Description
Many security-critical applications require interaction with the peripher-

als (e.g., keyboard, display, touchscreen) or some other devices (e.g., industrial
equipment connected over serial adapters). These applications would greatly
benefit from being isolated inside a Trusted Execution Environment, but the
usual way they interact with the hardware is by making use of untrusted Op-
erating System services (via its device drivers). To protect against this, either
access to the specific hardware peripherals needs to be denied from the OS,
or a trusted communication channel must be established with the application
TEE such that a malicious Man-in-the-Middle kernel would be unable to in-
terfere. This is defined as the Trusted I/O Path problem [25], and there are
multiple approaches for solving it depending on the peripheral device’s class
and available platform features.



Systematization of Trusted I/O solutions for Isolated Execution Environments 7

3.1. Attacker model
As to any security research problem, the threat model needs to be de-

fined. The trusted I/O path assumptions are the same as the TEE platform’s:
any component outside of the TCB is untrusted. Notably, the OS kernel space
where the device drivers usually reside is considered to be compromised, so an
adversary may have privileged access to any untrusted device at any time (e.g.,
is able to modify internal registers, remap DMA regions, capture interrupts).
The Man-in-the-Middle OS may also have a transparent (undetectable) behav-
ior and still manage to access the user’s secrets (e.g., key logging). An OS can
also do denial of service attacks as to make devices unavailable to a TEE: some
solutions might tackle this angle, but are usually regarded as out of scope.

Various hardware security problems such as device firmware vulnerabil-
ities or platform-specific side channels (e.g., speculative execution) are con-
sidered as a complementary research direction and not discussed here. Also,
physical access actors are ignored by most works in this field. Thus, we con-
sider a valid trusted path solution must only guarantee confidentiality and
integrity of the I/O data exchange.

3.2. Trusted path solutions
Some trusted platforms were designed with proper abstractions to sup-

port trusted paths. The obvious example here is ARM TrustZone, where a
trusted firmware runs at an extra-privileged exception level (i.e., the Monitor
Mode) and is able to configure hardware security registers to block I/O access
(memory and interrupts) for specific devices from the Normal World, though
the granularity depends on the actual System on Chip (SoC) implementation.
Similarly, in virtualization-based TEE technologies (e.g., Intel TxT, Flicker
and TrustVisor) the Virtual Machine Monitor also employs a privileged ex-
ecution context which can be used implement device emulation (optionally
sped up by CPU virtualization features) to alter the Operating System’s view,
though the resulting TCB complexity may be high.

Other trusted execution technologies like Intel SGX were designed such
that programs are only able to access the CPU resources from the least-
privileged user mode, which brings an additional problem: going through a
potentially-malicious Operating System is mandatory. In this case, there are
several viable approaches, each presenting downsides, e.g.: adding a small hy-
pervisor implementing hardware access mediation to the TCB (increasing its
size), or use specialized hardware (either chipset, third party middleware or
end devices) supporting a trusted authentication protocol.

Furthermore, from a usability point of view, some applications require
that some devices alternate between secure and normal operation. For example
a keyboard or touch screen is required for normal OS utilization but also for
e.g., password authentication or transaction confirmations in several trusted
uses. The same for the display: it would be inconvenient to have a user own



8 Florin-Alexandru Stancu, Alexandru-Alin Mircea, Răzvan Rughiniș, Mihai Chiroiu

two separate monitors. So, a trusted I/O implementation must support access
multiplexing, which requires even more security safeguards; for example, an
adversary might use phishing-type attacks or steal secrets using peripheral side
channels (historic / cached device data).

4. State of the Art
In this section, multiple works in the Trusted I/O Path field will be pre-

sented, highlighting their novelty concepts, notable differences and improve-
ments. Note that, to each of the articles, a single-word alias has been given,
which will be used through the rest of the paper for easy identification.

Zurich Trusted Information Channel (ZTIC [21])
The paper describes one of the first implementations of an external USB

device establishing a trusted path with a remote service. It is marketed as
a solution for securing sensitive Internet transactions (e.g., banking applica-
tions). Although it doesn’t employ a Trusted Execution Environment (uses
a trusted server instead), it illustrates the concept of authenticated channel
termination for taking user confirmation input (via embedded buttons) and
displaying transaction data using a small LCD screen.

Bumpy: Safe Passage for Passwords and Other Sensitive Data
(Bumpy [14])

Similarly to the previous paper, Bumpy takes care of sensitive input and
output between a web server and a DRTM-based TEE (Flicker [16]) for pro-
tecting user input and display from keyloggers / screen scrapers. It uses a
special input sentence to trigger the beginning of a secure transaction by using
a custom-made USB interposer between the keyboard and the trusted environ-
ment. Instead of using the untrusted PC monitor, a smartphone application
is proposed as alternative (trusted) display. The full protocol, from input to
server then to output, is described and thoroughly analyzed.

Unidirectional Trusted Path (UTP [7])
The authors developed a system for authenticating that a transaction

with a remote server was initiated by a human user in the face of untrusted
client-side stack (malicious OS). It does so by using a trusted environment
(Intel TxT / Flicker, but the solution is described as generic) and ensuring
a trusted path by using hypervisor I/O mediation. They implement virtu-
alization drivers for keyboard and a text-only VGA display mode. The uni-
directionality from the solution’s naming comes from the fact that it only
ensures a one-way validation: from user to server, and not the other way
around. Authentication is aided by Trusted Platform Module measurements
of the executed client code.

Building Verifiable Trusted Path on Commodity x86 Comput-
ers (VTP x86 [25])



Systematization of Trusted I/O solutions for Isolated Execution Environments 9

The paper gives comprehensive study of I/O virtualization challenges,
arguing the fact that device driver-based isolation is insufficient for provid-
ing secure I/O to a TEE (due malicious re-configuration of memory maps).
A new hypervisor is designed with countermeasures for all classes of attacks
discovered so far, allowing for the establishment of a valid trusted path. An
implementation is demonstrated using TrustVisor [15] with isolation drivers to
secure a PS/2 keyboard and VGA display. Finally, a couple of architectural
changes for the x86 platform are suggested to help simplify such solutions,
hence decrease the size of the system’s TCB.

Intel Protected Audio and Video Path (Intel PAVP [18])
Intel’s PAVP is a commercial, trusted display solution for hardware-

accelerated decoding of encrypted video streams from trusted sources. An
authenticated session is established between a PAVP-enabled graphics chip /
core and a trusted party (a TEE, in our case) resulting in a shared symmetric
key which cannot be extracted even by privileged software. Unfortunately, it
is only available on Intel’s integrated GPUs and only usable with a commercial
license agreement.

Building Trusted Path on Untrusted Device Drivers for Mobile
Devices (TrustUI [11])

TrustUI is a solution for ARM mobile devices for providing an input and
output trusted path for mobile devices. It employs TrustZone for a trusted ex-
ecution environment, but avoids implementing full separation drivers by using
several anti-grabbing / anti-spoofing techniques. For secure input, the on-
screen keyboard is randomized when shown. The display output is protected
by locking the framebuffer while the trusted application running and trapping
normal OS calls for reading it. Additionally, anti-phishing / overlay protec-
tion is implemented by using a small RGB LED on the phone only usable
by the Secure Microkernel for the user for cross-checking with a randomized
background color rendered by the trusted program.

Wimpy Kernels for On-demand Isolated I/O (Wimpy [26])
The paper presents a new security architecture for having trusted on-

demand I/O access (shared with the normal Operating System) by their equiv-
alent of a TEE (called wimp apps due to their small TCB). The I/O isolation
is accomplished by modifying a micro-hypervisor (a formally verified XMHF,
in their implementation) and wimp kernel (addon to the untrusted OS) which
outsources the device drivers to the untrusted kernel and only does a series
of minimal verifications to exclude malicious actions. They demonstrate their
solution by taking on Linux’s USB subsystem and showing the code sharing
techniques to drastically reduce the TCB of the applications.

Trusted display on untrusted commodity platforms (GSK [23])
The authors engineer a novel GPU separation kernel architecture for

bringing trusted display to commodity computers. By using a micro-hypervisor,
they avoid virtualizing each GPU object and simply implement address space



10 Florin-Alexandru Stancu, Alexandru-Alin Mircea, Răzvan Rughiniș, Mihai Chiroiu

separation for preventing unauthorized access. To avoid memory re-mapping
attacks using various GPU configuration methods, they mediate write access to
the GPU command buffer while a trusted application rendering is in progress.
A proof of concept is realized using a TrustVisor TEE [15] and the Intel inte-
grated graphics, preserving the high performance standards required for graph-
ics.

SGXIO: Generic Trusted I/O Path for Intel SGX
SGXIO offers the means for SGX applications to have trusted path to I/O

devices. It uses a virtualization-based architecture, establishing an authenti-
cated channel between the enclaves and the hypervisor while going through the
untrusted OS. The I/O mediation is realized through security drivers, which
the authors note that they require careful design to keeping the TCB small.
The hypervisor’s integrity and authentication with SGX enclaves is realized by
using a TPM-assisted measured boot scheme, while proposing a user-centric
protocol (typing secrets on the keyboard) for the local attestation of the TEE
applications.

Bastion-SGX: Bluetooth and architectural support for trusted
I/O on SGX (BASTION-SGX [17])

BASTION-SGX shows a different approach for establishing trusted I/O
paths for Bluetooth-based devices: secure TEE channel termination inside the
Bluetooth host controller chip. They analyze the structure of the controller’s
firmware and propose a series of lightweight code and protocol modifications
to secure wireless peripherals for TEE applications.

PROXIMITEE: Hardened SGX Attestation Using an Embed-
ded Device and Proximity Verification (ProximiTEE [5])

SGX enclaves’ remote attestation feature allows a remote party to verify
that the TEE in question is an honest one and meets the necessary condi-
tions for the data exchange. The authors show that this process is vulnerable
to relay attacks (e.g., using an attacker-controlled SGX-based intermediary).
The paper brings a new solution against such attacks by introducing a small
hardware device, ProximiKEY, sealing a private key and providing the remote
service with its public counterpart. For each attestation session, the local de-
vice is used with a distance bounding protocol and ensure relay protection.
Additionally, the authors argue that their ProximiKEY attestation process
can be extended to trusted I/O path between the user and the TEE enclaves.

Secure Input/Output for Intel SGX Enclaves (TIO [6])
With TIO, we designed a portable microcontroller-based device (the size

of a stick) having two USB ports (one for PC connection, one for a peripheral),
establishing trusted channels with Intel SGX enclaves otherwise lacking secure
I/O support. An authentication procedure is also discussed, using a one-time
bootable OS for provisioning public keys between the SGX enclaves and the
device. The device also takes usability into account: it supports a seamless
peripheral pass-through to the OS when secure access is not required by any



Systematization of Trusted I/O solutions for Isolated Execution Environments 11

application, as well as anti-phishing procedures. An implementation is realized
using for a trusted keyboard interface with the enclave with almost no latency
overhead.

Establishing Trusted I/O Paths for SGX client systems (Au-
rora [12])

Aurora comes with a novel approach for a virtualization-based I/O isola-
tion solution: it uses the System Management Mode, a highly-privileged level
(above the VMM) with a special SMRAM tamper-proof memory available on
commodity x86 systems (typically, only used by system firmware for critical
functions like power management). Their SMVisor is able to provide Intel
SGX enclaves with trusted I/O path with minimal performance impact. They
also use it to implement a high-frequency trusted realtime clock required by
cryptographic protocols requiring non-forgeable time.

5. Comparison and discussion
As presented in the previous section, the available trusted path solutions

are diverse, with varying application classes and platform requirements. In
here, we extracted their characteristics and present then in a unified table
(Table 1).

We used multilateral classification by: peripheral type (Human Input
Device / Display / others); the I/O isolation mechanisms used (virtualization-
based - Virt, chipset-based access control - Chip, external device - Ext); in-
terface / protocol: USB / Bluetooth / Network; for virtualization-based ap-
proaches, their implementation method: MMIO (memory mapped I/O) / de-
vice driver virtualization.

Note that the half-circle denotes a partial implementation of the feature;
for HID, it means only a subset on input devices are usable; for display, it means
text-only output. The additional TCB components are given (including the
added device / chip module, besides from the CPU platform).

A first observation is that implementing trusted graphical display is a
hard problem: many solutions only worked for partial, text-mode output ei-
ther using an external LCD or secure console output (using BIOS-like text
mode switching). As the only open full-display solution (excluding the propri-
etary Intel PAVP [18]), GSK [23] relies on virtualization and has a fairly high
TCB. This is mainly because of the inherent complexity of computer graphics,
which may become feasible once vendors implement appropriate GPU hard-
ware security abstractions for access control on individual resources.

We note that, for the Trusted Computing Base - a desirable comparison
metric, the size values were taken as-is from the papers and are unreliable
for this purpose because of differences in measurement methodologies (e.g.,
lines of code vs binary sizes, different supported devices / feature sets, target
platforms incurring framework overhead, unoptimized cryptographic libraries
used). Additionally, although the latency / overhead figures were published



12 Florin-Alexandru Stancu, Alexandru-Alin Mircea, Răzvan Rughiniș, Mihai Chiroiu

Table 1
Comparison of Trusted Path Solutions

Iso
latio

n

In
te

rfa
ce

HID Disp
lay

Oth
er

s

Targ
et

TEE

+Hyper
viso

r

+Chip
/firm

ware

+Ext.
Dev

TCB
LoC

Name Peripherals TCB Additions

ZTIC [21] Ext USB Remote 7 7 3 ≈ 110KB 1

Bumpy [14] Ext USB Flicker 7 7 3 ≈ 8.5k

Bumpy Display Ext Network 7 7 3 ≈ 10k

UTP [7] Virt Driver Flicker 3 7 7 ≈ 2.3k

VTP x86 [25] Virt MMIO TrustVisor 3 7 7 ≈ 15k

Intel PAVP [18] Chip GPU DRTM,
SGX

7 3 7 n/a

TrustUI [11] Virt Driver TrustZone 3 7 7 ≈ 10k

Wimpy [26] Virt MMIO DRTM 3 7 7 ≈ 3.5k

GSK [23] Virt GPU
MMIO

TrustVisor 3 7 7 ≈ 35k

SGXIO [22] Virt Driver SGX 3 7 7 n/a

BASTION-
SGX [17]

Chip Bluetooth
HCI

SGX 7 3 7 n/a

ProximiTEE [5] Ext USB SGX 7 7 3 ≈ 5k

SecDisplay [4] Virt USB TrustZone 3 7 7 ≈ 2k

TIO [6] Ext USB SGX 7 7 3 ≈ 27k 2

Aurora [12] SMM
Virt

MMIO SGX 7 3 7 ≈ 3.3k +
696KB 3

1 only binary size given 2 counts firmware, enclave framework & full asymmetric crypto
lib 3 hypervisor (LoC) + enclave library (compiled binary)

for some works, they were taken for various incomparable scenarios and are
ultimately dependent on the hardware / TEE platforms used, so we left them
out.

There are also important differences between hypervisor and trusted
hardware approaches. For virtualization-based solutions, the flexibility is greater
(support for multiple device classes), though great care must be taken to prop-
erly isolate I/O requests in order to counter all discovered attacks. Thus, a
complete implementation (i.e., secure device drivers) might become even more
difficult to validate. Although external device / on-chip implementations may
have a limited set of protocols supported (e.g., USB) due to the increased pro-
totyping costs, they bring better isolation and security due to the use of a clean
I/O interface and running most secure processing on a separate CPU and may
be easier to deploy in a personal or corporate environments (e.g., as plug and
play devices, not requiring invasive / privileged software). We recall that ARM
TrustZone allows for a hybrid isolation: it provides a special Monitor privilege
level (in place of a hypervisor) which, when coupled with System-on-Chip I/O



Systematization of Trusted I/O solutions for Isolated Execution Environments 13

request filtering, makes it possible to obtain smaller TCB sizes because there
is no need to emulate / mediate device access in most cases (including for
graphics devices). Unfortunately, this TEE platform is currently available for
mobile applications only.

6. Conclusion
In this paper, we reviewed several works targetting the Trusted I/O Path

problem for securing peripheral interactions in TEE applications. We have
found mixed solutions for all commercially available TEE platforms (ARM
TrustZone, Dynamic Root for Trusted Measurement, Intel SGX) supporting
most common device types and interfaces (e.g., HID keyboard / touch as input,
text or graphical display, as well as generic USB and Bluetooth).

There are several approaches for securely isolating the devices: virtualization-
based or using in-chip / external hardware, each with its advantages and pit-
falls especially regarding the applicable TEE platforms. As two extremes, the
ARM TrustZone has native direct support for I/O isolation, while Intel SGX
runs its applications in user mode and requires a privileged entity to mediate
access. We have also shown that some peripherals (e.g., the display / GPUs)
are more difficult than others to protect within trusted environments.

We argue that providing standardized trusted path support from the
platforms is important for increasing TEE adoption and applicability. We
hope that our systematization effort will help researchers in choosing the next
direction.

R E F E R E N C E S
[1] ARM Holdings. ARM TrustZone Security Extensions.
[2] V. Costan and S. Devadas. Intel SGX Explained. IACR Cryptology ePrint Archive,

2016(086):1–118, 2016.
[3] J. Criswell, N. Dautenhahn, and V. Adve. Virtual ghost: Protecting applications from

hostile operating systems. ACM SIGARCH Computer Architecture News, 42(1):81–96,
2014.

[4] J. Cui, Y. Zhang, Z. Cai, A. Liu, and Y. Li. Securing display path for security-sensitive
applications on mobile devices. Computers, Materials and Continua, 55(1):17, 2018.

[5] A. Dhar, I. Puddu, K. Kostiainen, and S. Capkun. Proximitee: Hardened sgx attestation
by proximity verification. In Proceedings of the Tenth ACM Conference on Data and
Application Security and Privacy, pages 5–16, 2020.

[6] D. C. T. F. A. Stancu and M. Chiroiu. TIO - Secure Input/Output for Intel SGX
Enclaves. In International Workshop on Secure Internet of Things (SIOT), 2019.

[7] A. Filyanov, J. M. McCuney, A.-R. Sadeghiz, and M. Winandy. Uni-directional trusted
path: Transaction confirmation on just one device. In 2011 IEEE/IFIP 41st Interna-
tional Conference on Dependable Systems & Networks (DSN), pages 1–12. IEEE, 2011.

[8] W. Futral and J. Greene. Fundamental principles of intel® txt. In Intel® Trusted Exe-
cution Technology for Server Platforms, pages 15–36. Springer, 2013.

[9] Intel. Intel SGX Software Guard Extensions.
[10] U. Lee and C. Park. Softee: Software-based trusted execution environment for user

applications. IEEE Access, 8:121874–121888, 2020.



14 Florin-Alexandru Stancu, Alexandru-Alin Mircea, Răzvan Rughiniș, Mihai Chiroiu

[11] W. Li, M. Ma, J. Han, Y. Xia, B. Zang, C.-K. Chu, and T. Li. Building trusted path on
untrusted device drivers for mobile devices. In Proceedings of 5th Asia-Pacific Workshop
on Systems, pages 1–7, 2014.

[12] H. Liang, M. Li, Y. Chen, L. Jiang, Z. Xie, and T. Yang. Establishing trusted i/o paths
for sgx client systems with aurora. IEEE Transactions on Information Forensics and
Security, 15:1589–1600, 2019.

[13] P. A. Loscocco, S. D. Smalley, P. A. Muckelbauer, R. C. Taylor, S. J. Turner, and J. F.
Farrell. The inevitability of failure: The flawed assumption of security in modern com-
puting environments. In Proceedings of the 21st National Information Systems Security
Conference, volume 10, pages 303–314, 1998.

[14] J. M. McCune. Safe passage for passwords and other sensitive data. In Proceedings of
the Network and Distributed System Security Symposium, 2009, 2009.

[15] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and A. Perrig. Trustvisor:
Efficient tcb reduction and attestation. In 2010 IEEE Symposium on Security and
Privacy, pages 143–158. IEEE, 2010.

[16] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter, and H. Isozaki. Flicker: An
execution infrastructure for tcb minimization. In ACM SIGOPS Operating Systems
Review, volume 42, pages 315–328. ACM, 2008.

[17] T. Peters, R. Lal, S. Varadarajan, P. Pappachan, and D. Kotz. Bastion-sgx: Bluetooth
and architectural support for trusted i/o on sgx. In Proceedings of the 7th International
Workshop on Hardware and Architectural Support for Security and Privacy, pages 1–9,
2018.

[18] X. Ruan. Platform Embedded Security Technology Revealed. Springer Nature, 2014.
[19] A. Thongthua and S. Ngamsuriyaroj. Assessment of hypervisor vulnerabilities. In 2016

International Conference on Cloud Computing Research and Innovations (ICCCRI),
pages 71–77. IEEE, 2016.

[20] R. Uhlig, G. Neiger, D. Rodgers, A. L. Santoni, F. C. Martins, A. V. Anderson, S. M.
Bennett, A. Kagi, F. H. Leung, and L. Smith. Intel virtualization technology. Computer,
38(5):48–56, 2005.

[21] T. Weigold, T. Kramp, R. Hermann, F. Höring, P. Buhler, and M. Baentsch. The
zurich trusted information channel–an efficient defence against man-in-the-middle and
malicious software attacks. In International Conference on Trusted Computing, pages
75–91. Springer, 2008.

[22] S. Weiser and M. Werner. Sgxio: Generic trusted i/o path for intel sgx. In Proceedings
of the seventh ACM on conference on data and application security and privacy, pages
261–268, 2017.

[23] M. Yu, V. D. Gligor, and Z. Zhou. Trusted display on untrusted commodity platforms.
In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communica-
tions Security, pages 989–1003, 2015.

[24] F. Zhang and H. Zhang. Sok: A study of using hardware-assisted isolated execution
environments for security. In Proceedings of the Hardware and Architectural Support for
Security and Privacy 2016, pages 1–8. 2016.

[25] Z. Zhou, V. D. Gligor, J. Newsome, and J. M. McCune. Building verifiable trusted path
on commodity x86 computers. In 2012 IEEE symposium on security and privacy, pages
616–630. IEEE, 2012.

[26] Z. Zhou, M. Yu, and V. D. Gligor. Dancing with giants: Wimpy kernels for on-demand
isolated i/o. In 2014 IEEE symposium on security and privacy, pages 308–323. IEEE,
2014.


	1. Introduction
	2. Background
	3. Problem Description
	3.1. Attacker model
	3.2. Trusted path solutions

	4. State of the Art
	5. Comparison and discussion
	6. Conclusion
	REFERENCES

