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COMMON SOLUTION OF SPLIT EQUILIBRIUM PROBLEM AND
FIXED POINT PROBLEM WITH NO PRIOR KNOWLEDGE OF
OPERATOR NORM

H.A. Abass®, F.U. Ogbuisi?, O.T. Mewomo®

In this paper, we introduce an iterative algorithm that does mot require any
knowledge of the operator norm for finding a common solution of split equilibrium prob-
lem and fixed point problem for infinite family of quasi-nonexpansive multi-valued map-
pings in real Hilbert spaces. Using our iterative algorithm, we state and prove a strong
convergence result for approximating a common solution of split equilibrium problem
and fized point problem for infinite family of quasi-nonexpansive multi-valued mappings
which also solves some variational inequality problem in real Hilbert spaces. An appli-
cation and a numerical example were also given. Our result complement some related
results in literature.
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erative scheme; Fixed point problem
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1. INTRODUCTION

Let H be a real Hilbert space and C a nonempty, closed and convex subset of H. Let
CB(C),K(C) and P(C) denote the families of nonempty closed and bounded subsets,
nonempty and compact subsets and nonempty proximinal subset of C respectively. The
Pompeiu Hausdorff metric on CB(C) is defined by

H(A, B) = max { sup d(z, B), supd(y, A) },

TEA yeEB

for all A, B € CB(C) where d(z, B) = infyep ||z — b||.
A point p € C is called a fixed point of a multi-valued mapping T, if p € Tp. We denote the
set of fixed point of T by F(T).

Definition 1.1. A multivalued mapping T : C — CB(C) is said to be
(i) a contraction if there exists a constant k € (0,1) such that

H(Tw,Ty) < klle —yll, ¥V z,y € C; (1)
(i1) nonexpansive if
H(Tw,Ty) <|lz —yll, Va,y € C; (2)
(i41) quasi-nonexpansive if
H(Tz,Tp) < ||z —pl|[,V z € C, pe F(T). (3)
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It is well-known that every nonexpansive multi-valued mapping T' with F(T) # @ is quasi-
nonexpansive, but not all quasi-nonexpansive mapping are nonexpansive. (Check Example
(4.1) in [20] to see that the inclusion is proper).

Definition 1.2. A bounded linear operator D on H is called strongly positive if there exists
a constant o > 0 such that

(Dz,z) > of|z||*,V z € C.
Definition 1.3. A multi-valued mapping T : H — CB(H) is said to be demi-closed at the

origin if for any sequence {x,} C H such that x,, converges weakly to x and d(x,, Tx,) — 0,
we have x € Tx.

Let C be a nonempty, closed and convex subset of a real Hilbert space H. For every point
x € H, there exists a unique nearest point in C, denoted by Pox, such that

lz = Pe(@)l| < [lv —yll, VyeC.
Pc is called the metric projection of H onto C. It is well known that Po is a nonexpansive
mapping of H onto C and satisfies:

[P () = Po(y)l| < (& —y, Po(x) — Po(y))- (4)
Moreover, Pc(x) is characterized by the following properties:
(z = Po(x),y — Po(x)) <0, (5)
and
llz = yll* > [lo = Pe(@)|]* + |ly = Po()|*, V€ H,y € C. (6)

For all z,y € H, it is well known that every nonexpansive operator T': H — H satisfies the
inequality below

((# =T(2) = (y=T(), T(y) = T(x)) < %ll(T(x) —z) = (T(y) - y)II%, (7)
and therefore, we have that for all z € H and y € F(T).
(o~ T@),y ~ T@) < 5|IT(x) — ] ®)

Equilibrium problem was introduced by Blum and Oettli [1] and this problem have had
a great impact and influence in the development of several branches of pure and applied
sciences, (see [8],[14],[18],[27],128], [29],[30],[31]).

Let H be a real Hilbert space and C a nonempty, closed and convex subsets of H . Let
F : C x C — R be a nonlinear bifunction, then the Equilibrum Problem (EP) is to find
x* € C such that

F(z*,y) >0, Vy€C. (9)

For solving EP, let C be a nonempty, closed and convex subset of Hilbert space H and
F: C x C = R be a bifunction satisfying the following assumptions:

(L1) F(z,x2) =0,V x € C;

(L2) F is monotone, i.e., F(z,y) + F(y,z) < 0,Vx € C,

(L3) for each z,y,z € C,limsup, ,o F(tz+ (1 —t)z,y) < F(z,y);

(L4) for each x € C,y — F(x,y) is convex and lower semi-continuous.

Let » > 0 and « € H. Then, there exists z € C such that

1

Assumptions (L1)-(L4) stated above was first used in [1].
In 2013, Kazmi and Rizvi [9] introduced and studied the following Split Equilibrium Problem
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(SEP):

Let Hy and H> be two real Hilbert spaces and C' and @ be nonempty closed and convex
subsets of H; and H respectively. Let F; : C x C' — R, F5 : Q X Q — R be two nonlinear
bifunctions and A : H; — Hs be a bounded linear operator, then the SEP is to find z* € C
such that

Fi(z*,z) >0, Vx e, (11)
and such that
y* = Az € Q solves Fr(y*,y) >0, Vy € Q. (12)

The inequalities (11) and (12) constitute a pair of equilibrium problems. The image y* =
Az* of the solution of (11) in H; under a given bounded linear operator A, is also the
solution of (12) in Hy. We denote the solution set of (11) and (12) by EP(Fy) and EP(F5)
respectively.

The solution set of SEP (11) and (12) is denoted by © := {p € EP(Fy) : Ap € EP(F,)}.
Recently, Kazmi and Rizvi [9] introduced the following iterative scheme to approximate a
common solution of SEP, a variational inequality problem and a fixed point problem for
nonexpansive mapping S in real Hilbert spaces.

Up = TF (z, + yA*(TF2 — 1) Axy,);
Yn = Pe(ty — AnDuy,); (13)
Tpt+1 = OpU + ﬂnxn + ’YnSyna

where r,, C (0,00), A, € (0,27),D : C — Hy is a 7— inverse strongly monotone mapping
and {an}, {Bn}, {7} are sequences in (0,1). They proved a strong convergence result using
iterative algorithm (13)

Very recently, Deepho et al.[6] considered an iterative scheme to approximate a common
element of the set of solutions of split variational inclusion problem and the set of common
fixed point problem of a finite family of k-strictly pseudo-contractive nonself mappings. A
strong convergence theorem was established under suitable conditions, which also solves
some variational inequality problem in real Hilbert spaces. They denote the solution set of
the split variational inclusion problem by I' and proved the following theorem.

Theorem 1.1. Let Hy and Hy be two real Hilbert spaces and let C C Hy and Q C Hy be
nonempty, closed and convex subsets. Let A : Hy — Hy be a bounded linear operator and
D a strongly positive bounded linear operator on Hy with a coefficient T > 0. Assume that
{Ti}N., : C — Hy is a finite family of k;— strict pseudo-contraction mappings such that
Y :=NNF(T;)NT # 0. Let f be a contraction mapping with a coefficient p € (0,1) and
Zf\il n =1 for alln >0, for a given zo € C,a, By € (0,1) and 0 < 7 < %. Let {z,} be
a sequence generated as follows:

Uy = Jf‘ (zn, +’yA*(J)]\32 —1)Az,),

Yn = Buttn + (1= Bn) Siey 0y Titin, (14)
Tny1 = anTf(zn) + (I — anD)yn,n > 1,

where A > 0 and J)\B" (i = 1,2) is the resolvent of the mazimal monotone mappings B;(i =
1,2) respectively. Suppose the following conditions are satisfied;

(C1) limyyoo 0, =0, Y00 Jay =00 and Yoo |y, — 1] < 00;

(C2) ki < B, <1< 1, lim)2, B =1 and > 0, |Bn — Br-1] < 00;

(C3) S0, iy Inf™ ="V < oo

Then the sequence {x,} generated by the iterative scheme converges strongly to ¢ € Y which
solves the variational inequality (D — 7f)q,q—p) <0V p € T.
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Also, Suantai et al. [24] introduced an iterative scheme for solving SEP and fixed point
problem of nonspreading multi-valued mappings in real Hilbert spaces and proved that a
modified Mann iteration converges weakly to a common solution of the considered problems.
Motivated by the works of Suantai et al. [24], Deepho et al. [6], Kazmi and Rizvi [9], we
introduce an iterative method that does not require any knowledge of the operator norm for
approximating a common solution of SEP (11)- (12) and fixed point problem of an infinite
family of quasi-nonexpansive multi-valued mappings.

Furthermore, we obtain a strong convergence theorem for approximating the common solu-
tion of SEP and fixed point problem for infinite family of quasi-nonexpansive multi-valued
mappings which also solves some variational inequality problem in real Hilbert spaces. The
result presented in this paper improves and complements some recent corresponding known
results in this research area (see [6]).

2. PRELIMINARIES

In this section, we state some well known results which will be used in the sequel. Through-
out this paper, we denote the weak and strong convergence of a sequence {x,} to a point
x € H by x,, — x and x,, — x respectively.

Let H be a real Hilbert space, then the following inequalities hold

[lu = o] = [Ju|[* = [[o]* = 2(u = v, ), (15)
llu+ 0l < [lull* + 2(v,u + v), (16)

and
X+ (1= N)v[]? = Allul]? + (1= V[ol> = A1 = N)[|u—v]]?, (17)

for all u,v € H and X € [0, 1].

Lemma 2.1. [5] Let C be a nonempty, closed and convexr subset of a real Hilbert space H
and F : C x C — R be a bifunction satisfying (L1) — (L4). Forr > 0 and x € H, define a
mapping T : H — C as follows:

1
foz{zEC:F(z,y)—&—;(y—z,z—x)ZO,VyEC}.

Then the following hold:
(i) TF is nonempty and single-valued;
(ii) T is firmly nonexpansive, that is ¥ x,y € H,

TF 2 = TFyl)? <(TFz = TFy, a2 — y);

(iii) F(TF) = EP(F);
(iv) EP(F) is closed and convez.

Lemma 2.2. [13] Assume D is a strongly positive bounded linear operator on a Hilbert space
H with a coefficient T > 0 and 0 < p < ||D||=t. Then ||I — uD|| <1 — u7.

Lemma 2.3. [19] Every Hilbert space H satisfies the Opial condition that is, for any se-
quence {z,} with ©, — x, the inequality iminf,,_, « ||z, — z|| < liminf, . ||z, — yl|, holds
for every y € H with y # x.

Lemma 2.4. [26] Assume {a,} is a sequence of nonnegative real sequence such that

an+1 < (1 —op)an + 040,, n >0,

where {on} is a sequence in (0,1) and {0,} is a real sequence such that

(i) 3onzy On = 0,
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(ii) imsup,, . 6, <0 or > > | |0,0,] < c0.
Then lim,,_,oo a, = 0.

Lemma 2.5. [13] Let C be a nonempty, closed and convex subset of a Hilbert space H.
Assume that f : C — C is a contraction with coefficient u € (0,1) and D is a strongly
positive linear bounded operator with a coefficient @ > 0. Then, for 0 < o < %,

(@ =y, (D=of)z—(D=0cf)y) > (@ —oullz —yll>, @yeH.
That is, D — o f is strongly monotone with coefficient & — opu.
Lemma 2.6. [3] Let E be a uniformly convex real Banach space. For arbitrary r > 0, let
B,(0) := {z € E : ||z|| < r}. Then, for any given sequence {x;}32, C B,(0) and for any
given sequence {\;}32, of positive numbers such that y .o, N = 1, there exists a continuous
strictly increasing conver function

9:[0,2r] = R, g(0) =0,
such that for any positive integers i, j with i < j, the following inequality holds:

1" Nl = 3 Aillel? = ol — ).
i=1

i=1

Lemma 2.7. [11](Demiclosedness principle) Let C be a nonempty, closed and convex subset
of a real Hilbert space H and T : C — K(C) be a quasi-nonexpansive multi-valued mapping
. Let {x,} be a sequence in C such that x,, = p and lim,_, d(z, T2,) =0, then p € Tp.

3. MAIN RESULT

Theorem 3.1. Let Hy and Hy be two real Hilbert spaces, C and @ be nonempty, closed and
convex subsets of Hy and Hy respectively. Let A : Hy — Hsy be a bounded linear operator
and D be a strongly positive bounded linear operator on Hy with coefficient T > 0. Let T; :
C — K(C),i=1,2,3,..., be an infinite family of quasi-nonexpansive multi-valued mappings
and Fy : C x C = R, Fy: Q x Q — R be bifunctions satisfying assumptions (L1) — (L4),
where Fy is upper semi-continuous in the first argument. Suppose I' := N2, F(T;) N O £
and f is a contraction mapping with coefficient u € (0,1). Let the sequences {u,},{yn} and
{z,} be generated by

Uy = Tf;} (zn + &LA*(TTFW? —1)Ax,);
Yn = NoUn + D ioq Aizh; (18)
Tn+1 = 'Yan(-'L‘n) + (I - fYnD)yna n > 1;

where 28 € Tiu,, ™, C (0,00) and the step size &, be chosen in such a way that for

some € > 0,
! AT = 1) Az |2 ’

for all Tfan?n # Az, and &, = £ otherwise (€ being any nonnegative real number)with the
sequences v, and ry, satisfying the following conditions;

(i) imy, o0 v = 0 and Yo7 | Yn = 00;

(ii) v € (0,1), 0 <7 < T and 0 < 7y, < 2415

(#i) iminf,, o r, > 0;

(i) Xo,Ni € (0,1) such that Y .2 X\; = 1. Then the sequence {x,} generated by (3.1)
converges strongly to q € I' which solves the variational inequality

(D—=7f)g,q—p) <0, Vpel.



180 H.A. Abass, F.U. Ogbuisi, O.T. Mewomo

Proof. We first show that {z,} is bounded. For any z,y € C, we need to show that I —~D

is nonexpansive.
Now since 2u > y,, we have

I(I = yuD)z — (I = 1D)yll* = |(x — y) = ya(Dz — Dyl

< ||z — y|I* = 2y (z — y, Dz — Dy) + ~2||Dz — Dy||?
< ||z = y|I* = 2uva|| Dz — Dyl|* + 72| |Dz — Dyl |

= ||z — y||* = v (21 — 7n)|| Dz — Dy|?
<z —y|*.

Thus the mapping I — ~,, D is nonexpansive.
Let p € T', we have Tf:}p =p,Ap = T,i?Ap, then

= pll = 1T (20 + & A (T2 — 1) Azy) — pl|?
< Hmn + gnA*(Trlzz - I)Amn - pH2

< Hxn _pH2 +§721||A*(Tri2 - I)AanQ + 2£n<xn - P, A*(Tff - I)Axn>'

Where
26, (x, —p, A" (TTFW2 —1)Az,)
= 28, (A(xy, — p), (Tf:f —I)Ax,)
=26, (A(zy — p) + (TF> — I) Ay, — (TF> — 1) Ay, (TF? — 1) Axy,)
= 2§n{<TTIZ2Aacn — Ap, (TT‘:2 —D)Az,) — ||(T7fi2 - I)AanQ}
1
< 2§n{§\l(Tﬁz — DAz, || — [(TF2 — 1) Az, |*}
< —€n||(T£f — I)Aanz.
Hence,

[lun = plI* <l = pII? + ENA™(T? = D) Az * = &a[(T? — T) Az ||

= llen = plI* = &lll(T72 = D) Azy||* = &al|A*(T]2 = 1) Awnl?].

Tn Tn

(T2 —1)Awn||?

Since €le, ——"—"—""—— —¢ |, we obtain
&n T NA* (T2 —1) Az |2 ’

llun = plI* < [lzn — plI*.

(19)

(20)

(21)

(22)
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Since T; : C — K(C) is an infinite family of a quasi-nonexpansive multi-valued mapping,
we have that

o0

g — oIl = [Ao(un —p) + 3 Ni(E = )]
=1

< Nollun = pll + D Aillzh — pl]

i=1

< Nollun = pl| + > Nid(2), Tip)

i=1

< Nollun = pl| + D> AiH(Tiw, Tip)

=1
< Nollun = pll+ D Ailfun = p|
=1
= ||un — pl|
< llzn —pll- (24)

Moreover, by Lemma 2.2, we have

l[znt1 = pll = [l f(20) — Dp] + (I = % D)(yn — p)||
< (= wDllyn = pll + Wl f(2n) — Dpl|
<A =D|yn = pll + W7 f(@0) — 7f D) + [|7f(p) — Dpll]
< [1 - (?_ TN)%JH% _pH +'7n|‘7—f(p) - DpH

It follows by induction that
7f(p) — Dp
e =il < s oo — . =22y > (25)

Hence {z,} is bounded and consequently, we deduce that {u,} and {y,} are bounded.
Applying Lemma 2.2 and (22), we have that

|2nt1 = pl* = [lm[7f(2n) = Dp] + (I = %.D) (yn — p)I|?
< (1= 77 ?lyn — 2lI* + 72l |7 f (20) — Dpl|?
+ 29 (1 = % )||7 f(2n) — Dpl| [lyn — pl|
< (1= 7aT)un = plI* +v2lI7f (2n) — Dpl[®
+ 290 (L — v 7)||7f(20) — Dpl| [lyn — pl|
< (1= 37|20 — plI* + ELA(T2 — 1) Azy|?
— &ul|(T12 = 1) Az | P] + 427 f (2n) — Dp|
+ 290 (L — v 7)||7f(20) — Dpl| [lyn — pl|
< (1= 3uT)?an — plI? + Enlénl|[A* (T2 — ) Az, |?
— (T2 — DAz, |]] + Y27 f (a) — Dpl®
+ 290 (1 = v 7)||7f(zn) — Dpl| [|yn — pll- (26)
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1 . ||(T2 1) Awa |2
Tt follows from (26) and the condition &, € <5, A (T _DasaE 6) that

znss — P < (1 37)2lln — plI? — el| A*(TE: — 1) Az |
+ ,y’?LHTf(:L"ﬂ) - Dp”2 + 2’771(1 - ’Yn?>||7-f(xn) - Dp” Hyn _p”' (27)
We now consider two cases.
CASE A: Assume that {||z,—p]||} is a monotonically decreasing sequence. Then {||z,, —p||}
is convergent and clearly,

Al = pll = Jim, llzen =2l

(T2 —1) A ||

Since {zy} is bounded and &, € (5, A1) Aan ]2

- z—:), then we deduce from (27) that

e[| AT — DAz, ||* < (1= 707)?| |20 — plI* = [|Tns1 — plI* + 927 f (zn) — Dpl?
+ 290 (1 = D7 f (2n) — Dpll [lyn — pll-
Hence,

lim [|A*(T}f> — I)Az,|| = 0. (28)

n—roo

Furthermore, from (27), we have
Ell(T72 = DAz, |* < (1 =37 llen — plI* = |24 —plf?
+ &AL = D Azy|* + 72 ll7f (2n) — Dpl[?
+ 29 (1 = )7 f (2n) — Dpl| [lyn — pl|- (29)
Therefore, since lim, o v, = 0, from (28) and the condition

(T2 —1) Az ||?
& € (a, A (172 1) Aun € ), we have that

lim |[(TF> — I)Az,||> = 0. (30)

n—oo

Next, we show that ||u, —z,|| = 0 as n — co. Since p € T, we obtain

llun = plI* = [T (20 + EA™ (T2 = 1) Az — pl|?

Tn

< <un —p,Tn + fA*(TSf - I)A(En _p>

2l — plP? 41l + €A° (T2 — 1) Az, — i
() — [ EA* (T2 — DAz, — ]|}

2 llun =PI + llz — pIP? + E(LE ~ DTS — 1) Az,
— ||un, — xp —fA*(Tff —I)A;vnHz}

1
S §{||un _p”2 + ||xn _p||2 - [”un - xn||2
A (T — 1) A2 — 26t — 20, A*(TF2 — 1) Axy)]}
1
< §{||Un — ol + [lan — pII? = |lun — znl?
+ 26]| Alun — )l (T2 = 1) Az}
Hence, we obtain

lun = plI* < llon = pII* = llun — 2al* + 26]|Alun — )| (T2 — D) Aznl|. (31)
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From (26) and (31), we have
a1 = pl* < (1 =7)?|lun = plI* + 72 ll7f (2n) — Dplf?
+ 290 (1 = v T)||I7f (2n) = Dpl| [lyn = |
< (1 =77 [llzn = pl* = lJun — 2l
+ 26| Au — @) || (T2 — I) Azy]]
+yallmf(@n) = Dpll* + 291 = Y7 f(20) = Dpll yn — 2|
= (1= 29T + (37)?)llen = plI* = (1 = 7aT)?|Jun — zall?
+26(1 = 97| A(un — @) || [|[(T2 = 1) Az
+nllTf (@n) = DpII” + 290 (1 = WT)lI7f (@n) = Dl [lyn — pll
< lzw = pl* + (1T l|zn = plI* = (1 = %7)?[[un — zall®
+26(1 = 7T Aun — @] (T2 = 1) A
+7ll7f (@n) = DpII® + 290 (1 = w17 (2n) = Dpl| llyn - pll,
which gives
(L= 77 llun = @all* < [lon = plI* = llznsr = pl* + (3 7)?[J2n — plI*
+26(1 = 77)?[|Aun — )l [[(T72 — 1) Ay||
+llTf(@n) — Dpl®
+ 29 (1 =77 f (2n) — Dpl| [lyn — pl|- (32)
Since {zn}, {yn} are bounded and from condition (i) of (3.1), (30), we have that
Tim [un — ]| 0. (33)

Since T; is an infinite family of a quasi-nonexpansive multi-valued mapping, then applying
Lemma 2.6, we have

oo
llyn = pII? = Poun + Y izl = pl|?

i=1

< Nollun = plI* + Y Xi(d(z0, Top)* = Aodig([[un — 23 1)
i=1

< Nollun = o2 + 3 MG (T, Top))? = Modig(llun — 1)

=1

< Xolfun = plI* + D Aillun = pI* = AoXig(Jfun — 23,]1)

i=1
= lun = pII> = XoXig(||un — 25 1)?
<lzn = plI> = AoXig(||un — 25 11)%.
This implies that
0 < AoAig([[un — 2 1) < [J&n = p|1*> = [lyn — plI,

hence lim,, o (||t — 25 ||) = 0. By property of g (see Lemma 2.6), we have lim,, o ||u, —
2i|| = 0. Since {z,,} and {y,} are bounded, we have that

. : < T L —
nl;néod(un,Tzun) < nl;rréo\|un zn|| = 0. (34)
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From (3.1), we have that

o0
[yn — unl| = [[Aoun — ZAZZ; — Ul
i=1

= [[Ao(tn — un) + Z Ai(zy, — un)|
i=1
> .
<D Aillzn — uall.
i=1
From (34), we have that
lim ||y, — un|| = 0.
n—oo

Also, we have
lyn = 2nll < [lyn — unll + [fun — znl|.
From (33) and (36), we have that

lim ||y, — x| = 0.
n— o0
From (3.1), we have
|Tnt1 = Zull = [|Tns1 = ynll + l[yn — 2l

||’7an(3371) + (I - ’YnD)yn - yn” + Hyn - xn”
< WllTf(@n) = Dynll + [[yn — 2nll
From condition (i) of (3.1) and (38), we have that

7}1_{20 |lZnt1 — @al| = 0.

Now, we need to show that w(x,) C I', where
w(zy) ={r € Hy : xp, = z,{zn,} C{zn}}

Since {z,} is bounded and H; is reflexive, w(x,) is nonempty. Let ¢* € w(z,) be an
arbitrary element, then there exists a subsequence {z, } of {z,} which converges weakly to
q*. From (33), we have that u,, — ¢* as k — co. By the demiclosedness principle and (34),

we obtain ¢* € N2, F(T;).
Let us show that ¢* € EP(F). Since u, = T} (z,, + EA*(TF2 — I) Az, we have

1
Fi(un,y) + —(y — un,up — Tp — EA*(TTI? — 1) Az,) >0,

Tn
for all y € C, which implies that
1 1
Fi(un,y) + r—(y — U,y Up — T) — Tf<y — Un,ﬁA*(Tff —I)Az,) >0,

n n

for all y € C. From (L2), we have:
1

1 *
<y = Uny, Uny, — x7lk> - ri<y - unkng (Tanlk - I)Al‘nk> > Fl(yaunk)y

T’I’Lk Nk

for all y € C. From liminf,_,. 7, > 0, (30), (33) and (L4), we have that

Fi(y,q¢*) <0,Vg* € C.Forany 0 <t <1landy € C, let y» =ty + (1 — t)g*. Since
y € C,q¢* € C, we get y, € C and hence F(y;, ¢*) < 0. Therefore from (L1) and (L4), we

have that
0= Fi(ye,ys) <tFi(ye,y) + (1 —t)Fi(ye, ¢°) < tF1(ye,y)-
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Hence 0 < Fi(yt,y). Applying (L3), we have that
0 < Fi(q*,y). This implies that ¢* € EP(F}). Since A is a bounded linear operator, Azx,, —
Agq*. From (30), we have that

T2 Awn, — Ag”, (41)

as k — oo. By the definition of Tf:fk Az, , we have

1
F2(Tr122k Awnmy) + 7<y - Tffk Ax’ﬂk - A-Tnk> > 07

Ty

for all y € C. Since F» is upper semi-continuous in the first argument and from (41), it
follows that

Fy(Aq*,y) > 0,Yy € C.

This implies that A¢* € EP(F3) and hence ¢* € O.

We now show that limsup,_, . (D — 7f)q,q¢ — z) < 0, where
q=FPr(I —7f+ D).

Indeed, we can choose a subsequence {z,,} of {z,} such that

limsup((D — 7f)q. 7 — @) = lim (D —7f)q, 2, —q). (42)

n—oo n— oo

We also assume that x,, — ¢*. Therefore

limsup((D —7f)q,xn —q¢) = lim (D —7f)q, xn, — q)

=(Dq—71f(q),q" —q)
(I—-71f+D)g—q,q —q)
(I—-71f+D)g—Pr(I—-7f+D)g,q" — Pr(I—-71f+D)q)

(
(
0

IN

Furthermore, we show the uniqueness of a solution of the variational inequality
(D—=71f)x,z—q) <0, qeT. (43)
Suppose g € I' and ¢* € T', both are solutions of (43), then
(D—=7f)q, ¢—q") <0, (44)
and
(D=7f)q", ¢" —q) <0. (45)
Adding (44) and (45), we have

(D—=71f)q—(D—=71f)q", ¢—q") <0.
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By Lemma 2.5, the strong monotonicity of D—7 f, we have that ¢ = ¢*. Hence the uniqueness
is proved. Lastly, we prove that x, — ¢ as n — co. From (3.1) and (24), we have that

|zni1 —all* = (7 f (@n) + (I = ¥ D)yn — ¢ Tny1 — @)

=Y (7f(2n) = [(0), Znt1 — @) + (T — D) (Yn — @)s Tn+1 — Q)

<t (f(zn) = £(@), Tns1 — @) + 1 (7f(q) — Dg, Tpi1 — @)

+ (1= vD)yn — gl llzns1 — dll

< Wwrillzn — gl |[znt1 — gl + (7 f (@) — Dg, Tni1 — q)

+ (L =Dl — ql| l|znt1 — ql|

=[1— (T —7)vlllzn = allllznsr — all +1(7f(@) — Dg,2ns1 — q)
1= (T —7p)vn

2
< MH

Then, it follows that

< (zn = al” + llzns1 — all?) + (7 f(@) — Dq,Zns1 — q)

1
T — CIHQ + §||xn+1 - Q||2 + 9 (7f(q) — D, Tny1 — q).

2(tf(q) — Dq,zn11 — q)
(7 =71 '

znt1 — ql]? < [1 = (F = 7u)nll|@n — ql|* + 70 (F — 74) (46)

From 0 < 7 < 3 condition (i) of (3.1), then we conclude that lim,,_, ||z, — ¢|| = 0 using
Lemma 2.4.

CASE B: Assume that {||z, — p||} is not a monotonically decreasing sequence. Then, we
define an integer sequence {o(n)} for all n > ng (for some ng large enough) by

o(n) :=max{k € N;k <n:||lxp —p|| <||zxg+1 — p||}

Clearly, o is a nondecreasing sequence such that o(n) — co as n — oo and for all n > nyg.
From (27), we have

ga(n) ||(T5in) - I)Axa(n)HQ
< (1= Yo [1Tom) = pII* = |20 (ms1) — I
+EIIANT2 = D) Az P + 92 () |I7f (20(n)) — Dpl?

+ 270(71)(1 - ’YU(H)?)HTf(xO'(TL)) - Dp“ Hya(n) - p|| (47)

Therefore, since lim,, o Yo(n) = 0, from (28) and the condition
(T2 =D Azo | have that
Son) € | & A (T DAe ¢ ], we have tha

lim [[(T)F2  —I)Az,()||> = 0. (48)

n—00 To(n)

Following the same argument as in CASE A, we conclude that there exist a subsequence
{z,(n)} which converges weakly to p € I". Now for all n > ng, we have

0< ||9Ccr(n+1) - CI||2 - ||9Ccr(n) - QH2
< (1= Yoy Zo(ny = alI* + Vo) 1T (Xo(n)) — Dall?
+ 2% () (1 = Yo)DITf (@o(n)) = Dall |y — all = l|Zom) — 4ll®
= Yo [ Tom) — dl* + V217 f (To(ny) — Dall®
+ 29 () (1 = Yo () THTf (To(n) — DG, To(ni1) — @)
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Thus

2(1 — Yo(n ?)
%(Tf(%(n) —Dq,Tpq1 — q).

70‘ n
[0(n) = all* < 227 f (2o () — Dal* +

Since limy, ;00 7n — 0 as n — oo and lim sup(7 f (24 (n) — Dp, Tn+1—¢q) < 0, then we conclude
that {z,} converges strongly to q. This complete the proof. O

Corollary 3.1. In Theorem 3.1, if we let T; : C — K(C),i = 1,2--- be an infinite
family of multivalued nonexpansive mappings, we obtain a strong convergence theorem for
approximating the common solution of SEP and fized point problem for infinite family of
nonexpansive multi-valued mappings which also solves some variational inequality problem
in real Hilbert spaces.

4. APPLICATIONS AND NUMERICAL EXAMPLE
4.1. Application to Optimization Problem

Let Hy, Hs be two real Hilbert spaces, C' and @ be nonempty, closed and convex subsets of
H, and H, respectively. Let f: C = R, g : Q@ — R be two operators and A : H; — Hs be
a bounded linear operator, then the optimization problem is to find:

x* € C such that f(z*)

< flx), Vzed,
and y* = Az* such that g(y*) <g

(v), Vye. (49)

We denote the set of solutions of (49) by 2 and assume that Q # (). Let Fy(z,y) := f(y)—f(x)
for all x,y € C and Fs(x,y) := g(y) — g(z) for all z,y € Q respectively. Then F(z,y) and
Fy(z,y) satisfy conditions (L1)—(L4) provided f and g are convex and lower semi-continuous
on C and @ respectively, Clearly, © = Q. Thus from Theorem 3.1, we obtain a strong
convergence theorem for approximating the common solution of split minimization problem
and fixed point problem for infinite family of quasi-nonexpansive multi-valued mappings
which also solves some variational inequality problem in real Hilbert spaces.

4.2. Numerical Example

Let Hy = Hy =R and C = Q = R. Let Fy(u,v) = —11u? + uv + 1002, then we derive our
resolvent function Tf* using Lemma 2.1 as follows:

1
Fi(u,v) + = (v —u)(u—2) >0 <= —11ru? + ruv + 10rv* + uwv — ve — u? + ux > 0
r
<~ 10rv? + ruv + wv — ve — 1lru? —w? +uz >0
= 10rv® + (ru+u — z)v — (11ru?® + u? —ux) >0

Let Q(v) = 10rv? + (ru +u — x)v — (117u? + u? — uz). Then Q is a quadratic function of v
with coefficients a = 10r,b = ru+u—x,c = —11ru? —u? +uzx. We compute the discriminant
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of Q(v) as follows:

A =0*—4dac= (ru+u—z)(ru+u — x) — 4(10r) (= 11ru® — u? + uz)
= r2u? 4+ ru® — ruz + ru® + u® — ux — rur — ux
+ 22 + 440r%u? 4 40ru® — 40rux
= 441r%u® + 42ru® — 42ruz — 2ux + u? + 2°
= 2% — 42rux — 2ux + 441r%u% + 42ru® + u?
=22 — 2((21r 4+ D)z + u* + 441r%u? + 42ru>
=22 —2((21r + D)z + (217 + 1)u)?
= (z — (21r + 1)u)® > 0.

Thus, A >0V y € R and it has at most one solution in R, then A <0, Tfil () = ﬁ
Let Fy(u,v) = —15u? + uv + 14v2, Az = 2 and A*x = x. Following the same process used
in deriving TF", we have T)72 () = T

Furthermore, define T; : R — K(R) (i =1,2,3,---) by:

S {[07;1.] z € [0,0),

5 x € (—00,0],

=)

where K (R) is the family of nonempty, closed and bounded subsets of R. Clearly, T; for
each i is a multivalued quasi-nonexpansive mapping. Let f : R — R be given as; f(x) = %x,
then p = % is a contraction constant for f. Take D(x) = 2z with constant 7 = 1. On the
other hand, we take 7 = 2 which satisfies 0 < 7 < E

Furthermore, we take 7, = %t r, = Ao = %7)\1‘ = 21%,2’31 € T;u, and let the step
(152 —1) Awn||?

8n
size £, be chosen in such a way that for some € > 0, &, € <5, A (D aznlF 8) for all
Tf; 2 Ax,, # Ax, and £, be any positive real number otherwise, in iterative scheme (3.1) we
obtain

_n_
n+1?

(A=&n)zy + EnTn
21r,+1 (217 +1)(297r,+1)

Yn = %un + Z;}il QL%Z;IL?
1
Lnt1 = (%)(%) +(1- (n:?; ))yn~

Up =

(TF2 —1) Awn ||

Case 1: zop=1and &, € (5, A~ (T 1) A 2

— e) for all Tri?Axn # Az, and &, = 0.0003

otherwise.

Case2: zog =2and§, € | € M_g for all TF2 Ax £ A, and &, = 0.0000021
T " A (Tr2 —1) Awy||? o A%n n n =0.

otherwise.
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