

APPROXIMATE K -G-DUALS IN HILBERT SPACESJahangir Cheshmavar¹, Maryam Rezaei Sarkhaei²

In this paper we provide some characterizations of K -g-frames in Hilbert spaces and then we give an equivalent condition for the subsequence of a K -g-frame to make it a K -g-frame. Finally, we obtain some new results of approximate K -g-duals in $\mathcal{B}(\mathcal{H}, \mathcal{H}_j)$, the collection of all bounded linear operators from the Hilbert space \mathcal{H} to its closed subspace \mathcal{H}_j .

Keywords: g -frames, K - g -frames, approximate K - g -duals, redundancy.

MSC2020: 42C15.

1. Introduction and Preliminaries

The concept of frames in Hilbert spaces was introduced by Duffin and Schaeffer [8] to study some problems in nonharmonic Fourier series and then reintroduced by Daubechies et al. [7] to study the connection with wavelet and Gabor systems. For special applications, various generalizations of frames were proposed, such as quasi-affine frames by Hernández et. al. [12] to characterize various affine-like and Gabor systems to determine their frame properties, frame of subspace and fusion frames by Casazza et. al. [2, 4] to deal with hierarchical data processing, g -frames by Sun [14] as generalization of frames, K -frames by Găvruta [10] to study the atomic systems with respect to a bounded linear operator K in Hilbert spaces. The concept of K - g -frames, which is more general than that of K -frames, was considered in [1, 15, 16]. After that, some properties of K -frames were extended to K - g -frames by Hua and Huang [13].

One of the main reason for considering frames and any type of generalization of frames, is that they allow each element in the space to be non-uniquely represented as a linear combination of the frame elements, by using their duals; however, it is usually complicated to calculate a dual frame explicitly. For example, in practice, one has to invert the frame operator, in the canonical dual frames, which is difficult when the space is infinite-dimensional. One way to avoid this difficulty is to consider approximate duals. The concepts of approximately dual frames have been studied since the work of Gilbert et al. [11] in the wavelet setting, see for example Feichtinger et al. [9] for Gabor systems and reintroduced in a systematic way by Christensen and Laugesen [6] for dual frame pairs, to obtain important applications of Gabor systems, wavelets and in the general frame theory.

In this paper, the importance of studying K - g -frames is pointed out; with this motivation, we obtain new K - g -frames and approximate K - g -duals and derive some results for the approximate duality of K - g -frames and their redundancy.

In the rest of this section, we will review some notions related to frames, K -frames and K - g -frames. Some properties of K - g -frames, such as the advantage of K - g -frames and

¹Department of Mathematics, Payame Noor University, P.O.Box 19395-3697, Tehran, Iran, E-mail: j_cheshmavar@pnu.ac.ir (Corresponding author)

²Department of Mathematics, Payame Noor University, P.O.Box 19395-3697, Tehran, Iran, E-mail: rezaei.sarkhaei@yahoo.com

the redundancy are found in Section 2. In Section 3 we define approximate duality of K -frames, notice some important properties of approximate K - g -duals, and extend some results of approximate duality of frames to K - g -frames. We also use some ideas of [6] to Propositions 3.1 and 3.2. Section 4 concludes the paper.

Throughout this paper, J is a subset of the integers set \mathbb{Z} ; \mathcal{H} is a separable Hilbert space; $\{\mathcal{H}_j\}_{j \in J}$ is a sequence of closed subspaces of \mathcal{H} ; $\mathcal{B}(\mathcal{H}, \mathcal{H}_j)$ is the collection of all bounded linear operators from \mathcal{H} into \mathcal{H}_j , with $\mathcal{B}(\mathcal{H}, \mathcal{H})$ denoted as $\mathcal{B}(\mathcal{H})$; for $K \in \mathcal{B}(\mathcal{H})$, $\mathcal{R}(K)$ is the range of K , $I_{\mathcal{R}(K)}$ is the identity operator on $\mathcal{R}(K)$, the adjoint of K is K^* , and the number of elements in $I \subset J$ is $|I|$. The space $l^2(\{\mathcal{H}_j\}_{j \in J})$ is defined by

$$l^2(\{\mathcal{H}_j\}_{j \in J}) = \left\{ \{f_j\}_{j \in J} : f_j \in \mathcal{H}_j, \|\{f_j\}_{j \in J}\|^2 = \sum_{j \in J} \|f_j\|^2 < +\infty \right\}, \quad (1)$$

with the inner product given by

$$\langle \{f_j\}_{j \in J}, \{g_j\}_{j \in J} \rangle = \sum_{j \in J} \langle f_j, g_j \rangle. \quad (2)$$

Then $l^2(\{\mathcal{H}_j\}_{j \in J})$ is a Hilbert space with pointwise operations. In the sequel, some terminology related to Bessel and g -Bessel systems, frames, g -frames and K -frames is recalled.

A sequence $\{f_j\}_{j \in J}$ contained in \mathcal{H} is called a Bessel system for \mathcal{H} , if there exists a positive constant B such that, for all $f \in \mathcal{H}$, $\sum_{j \in J} |\langle f, f_j \rangle|^2 \leq B \|f\|^2$; the constant B is called a Bessel bound of the system. If, in addition, for $K \in \mathcal{B}(\mathcal{H})$, there exists a lower bound $A > 0$ such that, for all $f \in \mathcal{H}$, $A \|K^* f\|^2 \leq \sum_{j \in J} |\langle f, f_j \rangle|^2$, the system is called a K -frame for \mathcal{H} . The constants A and B are called K -frame bounds.

Remark 1: If $K = I_{\mathcal{H}}$, the K -frames are called ordinary frames.

Recall that if $\{f_j\}_{j \in J}$ is a frame for \mathcal{H} , the frame operator $S : \mathcal{H} \rightarrow \mathcal{H}$, defined by $Sf = \sum_{j \in J} \langle f, f_j \rangle f_j$, is bounded, invertible and self-adjoint. This provides every element $f \in \mathcal{H}$ with the expansions

$$f = \sum_{j \in J} \langle f, S^{-1} f_j \rangle f_j = \sum_{j \in J} \langle f, f_j \rangle S^{-1} f_j. \quad (3)$$

The frame $\{S^{-1} f_j\}_{j \in J}$ is called the canonical dual frame of $\{f_j\}_{j \in J}$.

A sequence $\{\Lambda_j \in \mathcal{B}(\mathcal{H}, \mathcal{H}_j) : j \in J\}$ is called a g -Bessel system for \mathcal{H} with respect to \mathcal{H}_j if there exists a positive constant B such that, for all $f \in \mathcal{H}$

$$\sum_{j \in J} \|\Lambda_j f\|^2 \leq B \|f\|^2. \quad (4)$$

The constant B is called a g -Bessel bound of the system. If, in addition, there exists a lower bound $A > 0$ such that, for all $f \in \mathcal{H}$, $A \|f\|^2 \leq \sum_{j \in J} \|\Lambda_j f\|^2$, the system is called a g -frame for \mathcal{H} with respect to $\{\mathcal{H}_j\}_{j \in J}$. The constants A and B are called g -frame bounds. If $A = B$, the g -frame is said to be a tight g -frame. For more information on frame theory, basic properties of the K -frames and g -frames, we refer to [5, 10, 14]. Now, we introduce the pseudo-inverse operator and the concept of K - g -frames, which is more general than the concept of g -frames.

Definition 1.1. [5, p. 56] Let \mathcal{H}_1 be a Hilbert space. Suppose that $U : \mathcal{H} \rightarrow \mathcal{H}_1$ is a bounded linear operator with closed range $\mathcal{R}(U)$. Then there exists a bounded linear operator $U^\dagger : \mathcal{H}_1 \rightarrow \mathcal{H}$ for which $UU^\dagger f = f$, $\forall f \in \mathcal{R}(U)$. The operator U^\dagger is called the pseudo-inverse operator of U .

Definition 1.2. [1, Theorem (2.5)] Let $K \in \mathcal{B}(\mathcal{H})$ and $\Lambda_j \in \mathcal{B}(\mathcal{H}, \mathcal{H}_j)$ be given, for any $j \in J$. A sequence $\{\Lambda_j\}_{j \in J}$ is called a K - g -frame for \mathcal{H} with respect to $\{H_j\}_{j \in J}$, if there exist constants $0 < A \leq B < \infty$ such that

$$A\|K^*f\|^2 \leq \sum_{j \in J} \|\Lambda_j f\|^2 \leq B\|f\|^2, \quad \forall f \in \mathcal{H}. \quad (5)$$

The constants A and B are called the lower and upper bounds of the K - g -frame, respectively. A K - g -frame $\{\Lambda_j\}_{j \in J}$ is said to be tight if there exists a constant $A > 0$ such that

$$\sum_{j \in J} \|\Lambda_j f\|^2 = A\|K^*f\|^2, \quad \forall f \in \mathcal{H}. \quad (6)$$

Remark 2: If $K = I_{\mathcal{H}}$, the K - g -frames are just the ordinary g -frames.

Now we introduce some of the main operators associated with a K - g -frame. Suppose that $\{\Lambda_j\}_{j \in J}$ is a K - g -frame for \mathcal{H} with respect to $\{\mathcal{H}_j\}_{j \in J}$. Obviously, it is a g -Bessel sequence, so we can define the bounded linear operator $T_\Lambda : \ell^2(\{\mathcal{H}_j\}_{j \in J}) \rightarrow \mathcal{H}$ as follows:

$$T_\Lambda(\{g_j\}_{j \in J}) = \sum_{j \in J} \Lambda_j^* g_j, \quad \forall \{g_j\}_{j \in J} \in \ell^2(\{\mathcal{H}_j\}_{j \in J}). \quad (7)$$

The operator T_Λ is called the synthesis operator (or pre-frame operator) for the K - g -frame $\{\Lambda_j\}_{j \in J}$. The adjoint operator

$$T_\Lambda^* : \mathcal{H} \rightarrow \ell^2(\{\mathcal{H}_j\}_{j \in J}), \quad T_\Lambda^* f = \{\Lambda_j f\}_{j \in J}, \quad \forall f \in \mathcal{H}, \quad (8)$$

is called the analysis operator for the K - g -frame $\{\Lambda_j\}_{j \in J}$. The frame operator for the K - g -frame $\{\Lambda_j\}_{j \in J}$ is defined as $S_\Lambda = T_\Lambda T_\Lambda^*$, therefore

$$S_\Lambda : \mathcal{H} \rightarrow \mathcal{H}, \quad S_\Lambda f = \sum_{j \in J} \Lambda_j^* \Lambda_j f, \quad \forall f \in \mathcal{H}. \quad (9)$$

2. Some properties of K - g -frames in Hilbert spaces

The importance of studying K - g -frames is that they are more general than g -frames in the sense that the lower frame bound holds only for the elements in the range of K . Also, as we will see in the following examples, we can construct a K - g -frame with the help of a g -Bessel sequence which is not a g -frame.

Example 1: Let $\{e_j\}_{j=1}^\infty$ be an orthonormal basis for \mathcal{H} and $\mathcal{H}_j := \overline{\text{span}}\{e_j, e_{j+1}\}$, $j = 1, 2, 3, \dots$. Define the operator $\Lambda_j : \mathcal{H} \rightarrow \mathcal{H}_j$ as follows:

$$\Lambda_j f = \langle f, e_j + e_{j+1} \rangle (e_j + e_{j+1}), \quad \forall f \in \mathcal{H}.$$

Then,

$$\begin{aligned} \sum_{j=1}^{\infty} \|\Lambda_j f\|^2 &= 2 \sum_{j=1}^{\infty} |\langle f, e_j + e_{j+1} \rangle|^2 \\ &\leq 2 \sum_{j=1}^{\infty} (|\langle f, e_j \rangle| + |\langle f, e_{j+1} \rangle|)^2 \\ &\leq 4 \sum_{j=1}^{\infty} |\langle f, e_j \rangle|^2 + 4 \sum_{j=1}^{\infty} |\langle f, e_{j+1} \rangle|^2 \\ &\leq 8\|f\|^2. \end{aligned}$$

That is, $\{\Lambda_j\}_{j \in J}$ is a g -Bessel sequence. However, $\{\Lambda_j\}_{j \in J}$ does not satisfy the lower g -frame condition, because if we consider the vectors $g_m := \sum_{n=1}^m (-1)^{n+1} e_n$, $m \in \mathbb{N}$, then $\|g_m\|^2 = m$, for all $m \in \mathbb{N}$. Fix $m \in \mathbb{N}$, we see that

$$\langle g_m, e_j + e_{j+1} \rangle = \begin{cases} 0, & j > m \\ (-1)^{m+1}, & j = m \\ 0, & j < m \end{cases}$$

Therefore,

$$\sum_{j=1}^{\infty} \|\Lambda_j g_m\|^2 = 2 \sum_{j=1}^{\infty} |\langle g_m, e_j + e_{j+1} \rangle|^2 = 2 = \frac{2}{m} \|g_m\|^2, \quad \forall m \in \mathbb{N},$$

that is, $\{\Lambda_j\}_{j \in J}$ does not satisfy the lower g -frame condition. Now define

$$K : \mathcal{H} \rightarrow \mathcal{H}, \quad Kf = \sum_{j=1}^{\infty} \langle f, e_j \rangle (e_j + e_{j+1}), \quad \forall f \in \mathcal{H}.$$

Then $\{\Lambda_j\}_{j \in J}$ is a K - g -frame for \mathcal{H} with respect to $\{\mathcal{H}_j\}_{j \in J}$, because

$$\begin{aligned} \|K^* f\|^2 &= \langle f, K K^* f \rangle = \left\langle f, \sum_{j=1}^{\infty} \langle K^* f, e_j \rangle (e_j + e_{j+1}) \right\rangle \\ &= \sum_{j=1}^{\infty} \langle f, e_j + e_{j+1} \rangle \langle K e_j, f \rangle = \sum_{j=1}^{\infty} \langle f, e_j + e_{j+1} \rangle \langle e_j + e_{j+1}, f \rangle \\ &= \sum_{j=1}^{\infty} |\langle f, e_j + e_{j+1} \rangle|^2 \leq \sum_{j=1}^{\infty} \|\Lambda_j f\|^2 \leq 8 \|f\|^2, \end{aligned}$$

as desired.

Example 2: Let $\{e_j\}_{j=1}^{\infty}$ be an orthonormal basis for \mathcal{H} and

$$\mathcal{H}_j := \overline{\text{span}}\{e_{3j-2}, e_{3j-1}, e_{3j}\}, \quad j = 1, 2, 3, \dots$$

Define the operator $\Lambda_j : \mathcal{H} \rightarrow \mathcal{H}_j$ as follows:

$$\Lambda_1 f = \langle f, e_1 \rangle e_1 + \langle f, e_2 \rangle e_2 + \langle f, e_3 \rangle e_3 \text{ and } \Lambda_j f = 0, \text{ for } j \geq 2.$$

By a simple computation $\{\Lambda_j\}_{j \in J}$ is not a g -frame for \mathcal{H} with respect to \mathcal{H}_j , because, if we take $f = e_4$, then

$$\|f\|^2 = 1 \text{ and } \sum_{j=1}^{\infty} \|\Lambda_j f\|^2 = \|\Lambda_1 e_4\|^2 = 0.$$

Define now the operator $K : \mathcal{H} \rightarrow \mathcal{H}$ as follows:

$$K e_1 = e_1, \quad K e_2 = e_2 \text{ and } K e_j = 0, \text{ for } j \geq 3.$$

It is easy to see that, $K^* e_1 = e_1$, $K^* e_2 = e_2$ and $K^* e_j = 0$, for $j \geq 3$. We show that $\{\Lambda_j\}_{j \in J}$ is a K - g -frame for \mathcal{H} with respect to \mathcal{H}_j . In fact, for any $f \in \mathcal{H}$, we have

$$\|K^* f\|^2 = \left\| \sum_{j=1}^{\infty} \langle f, e_j \rangle K^* e_j \right\|^2 = |\langle f, e_1 \rangle|^2 + |\langle f, e_2 \rangle|^2,$$

and

$$\begin{aligned}\sum_{j=1}^{\infty} \|\Lambda_j f\|^2 &= \|\Lambda_1 f\|^2 = \|\langle f, e_1 \rangle e_1 + \langle f, e_2 \rangle e_2 + \langle f, e_3 \rangle e_3\|^2 \\ &= |\langle f, e_1 \rangle|^2 + |\langle f, e_2 \rangle|^2 + |\langle f, e_3 \rangle|^2 \geq \|K^* f\|^2.\end{aligned}$$

Therefore, for any $f \in \mathcal{H}$

$$\|K^* f\|^2 \leq \sum_{j=1}^{\infty} \|\Lambda_j f\|^2 \leq \|f\|^2,$$

as desired. An obvious natural question is whether there exists a class of operators K which can guarantee the existence of g -frames for \mathcal{H} with respect to $\{\mathcal{H}_j\}_{j \in J}$. The following simple proposition answer this query.

Proposition 2.1. *Let $\{\Lambda_j \in \mathcal{B}(\mathcal{H}, \mathcal{H}_j) : j \in J\}$ be a K - g -frame for \mathcal{H} with respect to $\{\mathcal{H}_j\}_{j \in J}$. Then $\{\Lambda_j\}_{j \in J}$ is a g -frame for \mathcal{H} with respect to $\{\mathcal{H}_j\}_{j \in J}$ if K^* is bounded below. Furthermore, if $\{\Lambda_j\}_{j \in J}$ is a tight K - g -frame for \mathcal{H} with respect to $\{\mathcal{H}_j\}_{j \in J}$ with K - g -frame bound A_1 , then $\{\Lambda_j\}_{j \in J}$ is a tight g -frame with g -frame bound A_2 if and only if the right inverse of the operator K is $\frac{A_1}{A_2} K^*$.*

Proof. Since K^* is bounded below, by definition, there exists a constant $C > 0$ such that,

$$\|K^* f\| \geq C\|f\|, \quad \forall f \in \mathcal{H}.$$

Therefore, for all $f \in \mathcal{H}$,

$$AC^2\|f\|^2 \leq A\|K^* f\|^2 \leq \sum_{j \in J} \|\Lambda_j f\|^2 \leq B\|f\|^2,$$

that is, $\{\Lambda_j\}_{j \in J}$ is a g -frame for \mathcal{H} with respect to $\{\mathcal{H}_j\}_{j \in J}$. Now if $\{\Lambda_j\}_{j \in J}$ is a tight g -frame with bound A_2 , then

$$\sum_{j \in J} \|\Lambda_j f\|^2 = A_2\|f\|^2, \quad \forall f \in \mathcal{H}.$$

Since $\{\Lambda_j\}_{j \in J}$ is a tight K - g -frame with bound A_1 , we have $A_1\|K^* f\|^2 = A_2\|f\|^2$, $\forall f \in \mathcal{H}$, that is,

$$\langle KK^* f, f \rangle = \langle \frac{A_2}{A_1} f, f \rangle, \quad \forall f \in \mathcal{H}.$$

Therefore, $KK^* = \frac{A_2}{A_1} I_{\mathcal{H}}$, i.e., the right inverse of K is $\frac{A_1}{A_2} K^*$. The converse is straightforward. \square

One of the important property of the frame theory is the possibility of redundancy. For example, in [3, Theorem (3.2)] the authors have provided sufficient conditions on the weights in a fusion frames to remain a fusion frames, when some elements are removed. The following proposition is a generalization of [5, Proposition (1.5.6)].

Proposition 2.2. *Let $K \in \mathcal{B}(\mathcal{H})$, such that K^* is bounded below with a constant $C > 0$ and let $\{\Lambda_j \in \mathcal{B}(\mathcal{H}, \mathcal{H}_j) : j \in J\}$ be a normalized K - g -frame with lower bound $A > \frac{1}{C}$, i.e., $\|\Lambda_j\| = 1, \forall j \in J$. Then for each subset $I \subset J$ with $|I| < AC^2$, the family $\{\Lambda_j\}_{j \in J \setminus I}$ is a K - g -frame for \mathcal{H} with respect to $\{\mathcal{H}_j\}_{j \in J}$ with lower K - g -frame bound $AC^2 - |I|$.*

Proof. Given $f \in \mathcal{H}$,

$$\sum_{j \in I} \|\Lambda_j f\|^2 \leq \sum_{j \in I} \|\Lambda_j\|^2 \|f\|^2 = |I| \|f\|^2.$$

Thus

$$\begin{aligned} \sum_{j \in J \setminus I} \|\Lambda_j f\|^2 &\geq A \|K^* f\|^2 - |I| \|f\|^2 \\ &\geq AC^2 \|f\|^2 - |I| \|f\|^2 \\ &= (AC^2 - |I|) \|f\|^2. \end{aligned}$$

□

Note that, because of the generality of K -g-frames, the frame operator of a K -g-frame is not invertible on \mathcal{H} in general, but it is invertible on a subspace $\mathcal{R}(K) \subset \mathcal{H}$. In the following Theorem, we provide an equivalent condition for the subsequence of a K-g-frame to make it a K-g-frame.

Theorem 2.1. *Let $I \subset J$ be given. Suppose that $\{\Lambda_j \in \mathcal{B}(\mathcal{H}, \mathcal{H}_j) : j \in J\}$ is a K -g-frame with bounds A, B and K -g-frame operator $S_{\Lambda, J}$. Then the following statements are equivalent:*

- (i) $I_{\mathcal{R}(K)} - S_{\Lambda, J}^{-1} S_{\Lambda, I}$ is boundedly invertible on $\mathcal{R}(K)$,
- (ii) The sequence $\{\Lambda_j\}_{j \in J \setminus I}$ is a K -g-frame for \mathcal{H} with respect to $\{\mathcal{H}_j\}_{j \in J}$ with lower K -g-frame bound $\frac{B^{-1}}{\|S_{\Lambda, J}^{-1}\|^2 \|K^*(I_{\mathcal{R}(K)} - S_{\Lambda, J}^{-1} S_{\Lambda, I})^{-1}\|^2}$.

Proof. Denote the frame operator of the K -g-frame $\{\Lambda_j\}_{j \in J \setminus I}$ by $S_{\Lambda, J \setminus I}$. Since

$$S_{\Lambda, J \setminus I} = S_{\Lambda, J} - S_{\Lambda, I} = S_{\Lambda, J}(I_{\mathcal{R}(K)} - S_{\Lambda, J}^{-1} S_{\Lambda, I}),$$

we have that, $\{\Lambda_j\}_{j \in J \setminus I}$ is a K -g-frame if and only if $S_{\Lambda, J \setminus I}$ is boundedly invertible and hence if and only if $I_{\mathcal{R}(K)} - S_{\Lambda, J}^{-1} S_{\Lambda, I}$ is boundedly invertible.

Now, assume that $I_{\mathcal{R}(K)} - S_{\Lambda, J}^{-1} S_{\Lambda, I}$ is invertible. Since $\{\Lambda_j\}_{j \in J}$ is a K -g-frame for \mathcal{H} with respect to $\{\mathcal{H}_j\}_{j \in J}$ with bounds A and B , for any $f \in \mathcal{H}$,

$$\begin{aligned} f &= S_{\Lambda, J}^{-1} S_{\Lambda, J} f \\ &= S_{\Lambda, J}^{-1} \left(\sum_{j \in I} \Lambda_j^* \Lambda_j f + \sum_{j \in J \setminus I} \Lambda_j^* \Lambda_j f \right) \\ &= S_{\Lambda, J}^{-1} S_{\Lambda, I} f + \sum_{j \in J \setminus I} S_{\Lambda, J}^{-1} \Lambda_j^* \Lambda_j f. \end{aligned}$$

Hence we have, $(I_{\mathcal{R}(K)} - S_{\Lambda, J}^{-1} S_{\Lambda, I})f = \sum_{j \in J \setminus I} S_{\Lambda, J}^{-1} \Lambda_j^* \Lambda_j f$.

Therefore we obtain

$$\begin{aligned}
\|(I_{\mathcal{R}(K)} - S_{\Lambda, J}^{-1} S_{\Lambda, I})f\| &= \left\| \sum_{j \in J \setminus I} S_{\Lambda, J}^{-1} \Lambda_j^* \Lambda_j f \right\| \\
&= \sup_{g \in \mathcal{H}, \|g\|=1} \left| \left\langle \sum_{j \in J \setminus I} S_{\Lambda, J}^{-1} \Lambda_j^* \Lambda_j f, g \right\rangle \right| \\
&= \sup_{g \in \mathcal{H}, \|g\|=1} \left| \sum_{j \in J \setminus I} \langle \Lambda_j f, \Lambda_j S_{\Lambda, J}^{-1} g \rangle \right| \\
&\leq \sup_{g \in \mathcal{H}, \|g\|=1} \sum_{j \in J \setminus I} \|\Lambda_j f\| \|\Lambda_j S_{\Lambda, J}^{-1} g\| \\
&\leq \sup_{g \in \mathcal{H}, \|g\|=1} \left(\sum_{j \in J \setminus I} \|\Lambda_j f\|^2 \right)^{\frac{1}{2}} \left(\sum_{j \in J \setminus I} \|\Lambda_j S_{\Lambda, J}^{-1} g\|^2 \right)^{\frac{1}{2}} \\
&\leq \sqrt{B} \|S_{\Lambda, J}^{-1}\| \left(\sum_{j \in J \setminus I} \|\Lambda_j f\|^2 \right)^{\frac{1}{2}},
\end{aligned}$$

where the last inequality is deduced by (5). Therefore,

$$\|(I_{\mathcal{R}(K)} - S_{\Lambda, J}^{-1} S_{\Lambda, I})f\| \leq B^{1/2} \|S_{\Lambda, J}^{-1}\| \left(\sum_{j \in J \setminus I} \|\Lambda_j f\|^2 \right)^{\frac{1}{2}}. \quad (10)$$

It follows that $I_{\mathcal{R}(K)} - S_{\Lambda, J}^{-1} S_{\Lambda, I}$ is well defined in \mathcal{H} . If $I_{\mathcal{R}(K)} - S_{\Lambda, J}^{-1} S_{\Lambda, I}$ is invertible on \mathcal{H} , then for any $f \in \mathcal{H}$ we have

$$\|K^* f\| \leq \|K^*(I_{\mathcal{R}(K)} - S_{\Lambda, J}^{-1} S_{\Lambda, I})^{-1}\| \cdot \|(I_{\mathcal{R}(K)} - S_{\Lambda, J}^{-1} S_{\Lambda, I})f\|. \quad (11)$$

From (10) and (11) it follows that

$$\frac{B^{-1}}{\|S_{\Lambda, J}^{-1}\|^2 \|K^*(I_{\mathcal{R}(K)} - S_{\Lambda, J}^{-1} S_{\Lambda, I})^{-1}\|^2} \|K^* f\|^2 \leq \sum_{j \in J \setminus I} \|\Lambda_j f\|^2, \quad \forall f \in \mathcal{H},$$

which completes the proof. \square

One of the main problem in the K - g -frame theory is that the interchangeability of two g -Bessel sequence with respect to a K - g -frame is different from a g -frame. The following characterization of K - g -frames is given [1, Theorem (2.5)].

Proposition 2.3. *Let $K \in \mathcal{B}(\mathcal{H})$. Then the following are equivalent:*

- (i) $\{\Lambda_j\}_{j \in J}$ is a K - g -frame for \mathcal{H} with respect to $\{\mathcal{H}_j\}_{j \in J}$;
- (ii) $\{\Lambda_j\}_{j \in J}$ is a g -Bessel sequence for \mathcal{H} with respect to $\{\mathcal{H}_j\}_{j \in J}$ and there exists a g -Bessel sequence $\{\Gamma_j\}_{j \in J}$ for \mathcal{H} with respect to $\{\mathcal{H}_j\}_{j \in J}$ such that

$$Kf = \sum_{j \in J} \Lambda_j^* \Gamma_j f, \quad \forall f \in \mathcal{H}. \quad (12)$$

The positions of the two g -Bessel sequence $\{\Lambda_j\}_{j \in J}$ and $\{\Gamma_j\}_{j \in J}$ in (12) are not interchangeable in general. However, there exists another type of dual such that $\{\Lambda_j\}_{j \in J}$ and a sequence derived by $\{\Gamma_j\}_{j \in J}$ are interchangeable in the subspace $\mathcal{R}(K)$ of \mathcal{H} . For $K \in \mathcal{B}(\mathcal{H})$, if $\mathcal{R}(K)$ is closed, then the pseudo-inverse K^\dagger of K exists.

Theorem 2.2. [13, Theorem (3.3)] Suppose that $\{\Lambda_j\}_{j \in J}$ and $\{\Gamma_j\}_{j \in J}$ are g -Bessel sequences as in (12). Then there exists a sequence $\{\Theta_j\}_{j \in J} = \{\Gamma_j(K^\dagger|_{\mathcal{R}(K)})\}_{j \in J}$ derived by $\{\Gamma_j\}_{j \in J}$ such that

$$f = \sum_{j \in J} \Lambda_j^* \Theta_j f, \quad \forall f \in \mathcal{R}(K). \quad (13)$$

Moreover, $\{\Lambda_j\}_{j \in J}$ and $\{\Theta_j\}_{j \in J}$ are interchangeable for any $f \in \mathcal{R}(K)$.

3. Approximate K -g-duals

Motivated by the concept of approximate dual of frames in [6], we define approximate dual of K -g-frames for \mathcal{H} with respect to $\{\mathcal{H}_j\}_{j \in J}$.

By Theorem 2.2, since $K^\dagger|_{\mathcal{R}(K)} : \mathcal{R}(K) \rightarrow \mathcal{H}$, we obtain $\Theta_j : \mathcal{R}(K) \rightarrow \mathcal{H}_j$. For any $f \in \mathcal{R}(K)$, we have

$$\sum_{j \in J} \|\Theta_j f\|^2 = \sum_{j \in J} \|\Gamma_j K^\dagger f\|^2 \leq B \|K^\dagger f\|^2 \leq B \|K^\dagger\|^2 \|f\|^2. \quad (14)$$

That is, $\{\Theta_j\}_{j \in J}$ is a g -Bessel sequence for $\mathcal{R}(K)$ with respect to $\{\mathcal{H}_j\}_{j \in J}$. Let T_Θ be the synthesis operator of $\{\Theta_j\}_{j \in J}$. Consider two mixed operators $T_\Lambda T_\Theta^*$ and $T_\Theta T_\Lambda^*$ as follows:

$$T_\Lambda T_\Theta^* : \mathcal{R}(K) \rightarrow \mathcal{H}, \quad T_\Lambda T_\Theta^* f = \sum \Lambda_j^* \Theta_j f, \quad \forall f \in \mathcal{R}(K),$$

$$T_\Theta T_\Lambda^* : \mathcal{H} \rightarrow \mathcal{R}(K), \quad T_\Theta T_\Lambda^* f = \sum_j \Theta_j^* \Lambda_j f, \quad \forall f \in \mathcal{H}.$$

Based on Theorem 2.2 and on the definition of dual and approximate duality of frames stated in [6], we introduce the following notions:

Definition 3.1. Consider two g -Bessel sequences $\{\Lambda_j \in \mathcal{B}(\mathcal{H}, \mathcal{H}_j) : j \in J\}$ and $\{\Theta_j \in \mathcal{B}(\mathcal{H}, \mathcal{H}_j) : j \in J\}$.

- (i) The sequences $\{\Lambda_j\}_{j \in J}$ and $\{\Theta_j\}_{j \in J}$ are said to be K -g-dual frames if $T_\Lambda T_\Theta^* = I_{\mathcal{R}(K)}$ or $T_\Theta T_\Lambda^*|_{\mathcal{R}(K)} = I_{\mathcal{R}(K)}$. In this case, we say that $\{\Theta_j\}_{j \in J}$ is a K -g-dual of $\{\Lambda_j\}_{j \in J}$,
- (ii) The sequences $\{\Lambda_j\}_{j \in J}$ and $\{\Theta_j\}_{j \in J}$ are said to be approximately K -g-dual frames if $\|I_{\mathcal{R}(K)} - T_\Lambda T_\Theta^*\| < 1$ or $\|I_{\mathcal{R}(K)} - T_\Theta T_\Lambda^*\| < 1$. In this case, we say that $\{\Theta_j\}_{j \in J}$ is an approximate K -g-dual of $\{\Lambda_j\}_{j \in J}$.

A well-known algorithm to find the inverse of an operator is the Neumann series algorithm. Since $\|I_{\mathcal{R}(K)} - T_\Lambda T_\Theta^*\| < 1$, $T_\Lambda T_\Theta^*$ is invertible with

$$(T_\Lambda T_\Theta^*)^{-1} = (I_{\mathcal{R}(K)} - (I_{\mathcal{R}(K)} - T_\Lambda T_\Theta^*))^{-1} = \sum_{n=0}^{\infty} (I_{\mathcal{R}(K)} - T_\Lambda T_\Theta^*)^n.$$

Therefore, every $f \in \mathcal{R}(K)$ can be reconstruct as

$$f = \sum_{n=0}^{\infty} (I_{\mathcal{R}(K)} - T_\Lambda T_\Theta^*)^n T_\Lambda T_\Theta^* f. \quad (15)$$

The following Propositions is the analogon of Prop. 3.4 and Prop. 4.1 in [6] to obtain new natural and approximate K -g-duals.

Proposition 3.1. If $\{\Theta_j\}_{j \in J}$ is an approximate K -g-dual of $\{\Lambda_j\}_{j \in J}$, then $\{\Theta_j(T_\Lambda T_\Theta^*)^{-1}\}$ is a K -g-dual of $\{\Lambda_j\}_{j \in J}$.

Proof. It is easy to see that $\{\Theta_j(T_\Lambda T_\Theta^*)^{-1}\}_{j \in J}$ is a g -Bessel sequence and

$$\begin{aligned} f = (T_\Lambda T_\Theta^*)(T_\Lambda T_\Theta^*)^{-1}f &= \sum_{j=0}^{\infty} \Lambda_j^* \Theta_j (T_\Lambda T_\Theta^*)^{-1} f \\ &= \sum_{j=0}^{\infty} \Lambda_j^* (\Theta_j \sum_{n=0}^{\infty} (I_{\mathcal{R}(K)} - T_\Lambda T_\Theta^*)^n f). \end{aligned}$$

Therefore, $\{\Theta_j(T_\Lambda T_\Theta^*)^{-1}\} = \{\Theta_j \sum_{n=0}^{\infty} (I_{\mathcal{R}(K)} - T_\Lambda T_\Theta^*)^n\}_{j \in J}$ is a K - g -dual of $\{\Lambda_j\}_{j \in J}$. \square

Now, for each $N \in \mathbb{N}$, define $\gamma_j^{(N)} = \sum_{n=0}^N \Theta_j (I_{\mathcal{R}(K)} - T_\Lambda T_\Theta^*)^n$ and $T_N : \mathcal{H} \rightarrow \mathcal{H}$ by $T_N = \sum_{n=0}^N (I_{\mathcal{R}(K)} - T_\Lambda T_\Theta^*)^n$. Then $\gamma_j^{(N)} = \Theta_j T_N$, $\forall j \in J$. The sequence $\{\gamma_j^{(N)}\}_{j \in J}$ is obtained from the g -Bessel sequence $\{\Theta_j\}_{j \in J}$ by means of a bounded operator, therefore, it is a g -Bessel sequence. For each $f \in \mathcal{R}(K)$,

$$T_\Lambda T_\Theta^* T_N f = \sum_{j=0}^{\infty} \Lambda_j^* \Theta_j T_N f = \sum_{j=0}^{\infty} \Lambda_j^* \gamma_j^{(N)} f = T_\Lambda T_\Gamma^* f,$$

where T_Γ is the synthesis operator of $\{\gamma_j^{(N)}\}_{j \in J}$. Thus,

$$\begin{aligned} T_\Lambda T_\Gamma^* f &= T_\Lambda T_\Theta^* T_N f \\ &= [I_{\mathcal{R}(K)} - (I_{\mathcal{R}(K)} - T_\Lambda T_\Theta^*)] \sum_{n=0}^N (I_{\mathcal{R}(K)} - T_\Lambda T_\Theta^*)^n f \\ &= [I_{\mathcal{R}(K)} - (I_{\mathcal{R}(K)} - T_\Lambda T_\Theta^*)^{N+1}] f, \end{aligned}$$

by telescoping. Therefore,

$$\|I_{\mathcal{R}(K)} - T_\Lambda T_\Gamma^*\| = \|(I_{\mathcal{R}(K)} - T_\Lambda T_\Theta^*)^{N+1}\| \quad (16)$$

$$\leq \|I_{\mathcal{R}(K)} - T_\Lambda T_\Theta^*\|^{N+1}. \quad (17)$$

If $\{\Theta_j\}_{j \in J}$ is an approximate K - g -dual of $\{\Lambda_j\}_{j \in J}$, then

$$\|I_{\mathcal{R}(K)} - T_\Lambda T_\Theta^*\| < 1. \quad (18)$$

By (16) and (18), we obtain $\|I_{\mathcal{R}(K)} - T_\Lambda T_\Gamma^*\| < 1$, that is, $\{\gamma_j^{(N)}\}_{j \in J}$ is an approximate K - g -dual of $\{\Lambda_j\}_{j \in J}$.

We summarize what we have proved:

Proposition 3.2. *Let $\{\Theta_j\}_{j \in J}$ be an approximate K - g -dual of $\{\Lambda_j\}_{j \in J}$. Then*

$$\left\{ \sum_{n=0}^N \Theta_j (I_{\mathcal{R}(K)} - T_\Lambda T_\Theta^*)^n \right\}_{j \in J}$$

is an approximate K - g -dual of $\{\Lambda_j\}_{j \in J}$.

Next we state and prove the following theorem.

Theorem 3.1. *Let $\{\Lambda_j \in \mathcal{B}(\mathcal{H}, \mathcal{H}_j) : j \in J\}$ be a K - g -frame and $\{\Theta_j \in \mathcal{B}(\mathcal{H}, \mathcal{H}_j) : j \in J\}$ be a g -Bessel sequence. Let also $\{f_{i,j}\}_{i \in I_j}$ be a frame for \mathcal{H}_j with bounds A_j and B_j for every $j \in J$ such that, $0 < A = \inf_{j \in J} A_j \leq \sup_{j \in J} B_j = B < \infty$. Then $\{\Theta_j\}_{j \in J}$ is an approximate K - g -dual of $\{\Lambda_j\}_{j \in J}$ if and only if $E = \{\Theta_j^* f_{i,j}\}_{i \in I_j, j \in J}$ is an approximate dual of $F = \{\Lambda_j^* \tilde{f}_{i,j}\}_{i \in I_j, j \in J}$, where $\{\tilde{f}_{i,j}\}_{i \in I_j}$ is the canonical dual of $\{f_{i,j}\}_{i \in I_j}$.*

Proof. For each $f \in \mathcal{H}$ we have

$$\sum_{j \in J} \sum_{i \in I_j} |\langle f, \Theta_j^* f_{i,j} \rangle|^2 = \sum_{j \in J} \sum_{i \in I_j} |\langle \Theta_j f, f_{i,j} \rangle|^2 \leq \sum_{j \in J} B_j \|\Theta_j f\|^2 \leq B \sum_{j \in J} \|\Theta_j f\|^2.$$

This implies that E is a Bessel sequence for \mathcal{H} . Similarly, F is also Bessel sequence for \mathcal{H} . Moreover, for each $f \in \mathcal{H}$ we have

$$\begin{aligned} T_\Theta T_\Lambda^* f &= \sum_{j \in J} \Theta_j^* \Lambda_j f = \sum_{j \in J} \Theta_j^* \sum_{i \in I_j} \langle \Lambda_j f, \tilde{f}_{i,j} \rangle f_{i,j} \\ &= \sum_{j \in J, i \in I_j} \langle f, \Lambda_j^* \tilde{f}_{i,j} \rangle \Theta_j^* f_{i,j} = T_E T_F^* f. \end{aligned}$$

So, $\|I - T_\Theta T_\Lambda^*\| < 1$ if and only if $\|I - T_E T_F^*\| < 1$. This concludes the proof. \square

4. Conclusions

We characterized K -*g*-frames in Hilbert spaces (as some type of frame generalization) and provided two examples. We have given a condition that turns a subsequence of K -*g*-frame into a K -*g*-frame. A method to obtain new natural and approximate K -*g*-duals of a K -*g*-frame is pointed out. The relation between an approximate K -*g*-dual of a K -*g*-frame and an approximate dual of a frame is also discussed. Our future goal is to look into those properties of K -*g*-orthonormal bases that help us to study the behavior of K -*g*-frames.

Acknowledgment The authors would like to thank the reviewers for their useful comments and suggestions that improved the quality of the paper.

REFERENCES

- [1] M. S. Asgari and H. Rahimi, Generalized frames for operators in Hilbert spaces. *Infin. Dimens. Anal. Quantum Probab. Relat. Top.*, **2**, 2014, 1450013, 20 pp.
- [2] P. G. Casazza and G. Kutyniok, Frames of subspaces, Wavelets, frames and operator theory, *Contemp. Math.*, Vol. 345, Amer. Math. Soc., Providence, R. I., 2004, pp. 87-113.
- [3] P. G. Casazza and G. Kutyniok, Robustness of fusion frames under erasures of subspaces and of local frame vectors, *Contemp. Math.*, **464**, 2008, pp. 149-160.
- [4] P. G. Casazza, G. Kutyniok and S. Li, Fusion frames and distributed processing, *Appl. Comput. Harmon. Anal.*, **25**, 2008, pp. 114-132.
- [5] O. Christensen, An introduction to frames and Riesz Bases, Second Ed., Birkhäuser, Boston, 2016.
- [6] O. Christensen and R. S. Laugesen, Approximate dual frames in Hilbert spaces and applications to Gabor frames. *Sampl. Theory Signal Image Process.*, **9**, 2011, pp. 77-90.
- [7] I. Daubechies, A. Grossmann and Y. Meyer, Painless nonorthogonal expansions. *J. Math. Phys.*, **27**, 1986, pp. 1271-1283.
- [8] R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series. *Trans. Amer. Math. Soc.*, **72**, 1952, pp. 341-366.
- [9] H. G. Feichtinger and N. Kaiblinger, Varying the time-frequency lattice of Gabor frames. *Trans. Amer. Math. Soc.*, **356**, 2004, pp. 2001-2023.
- [10] L. Gavruta, Frames for operators. *Appl. Comput. Harmon. Anal.*, **32**, 2012, pp. 139-144.
- [11] J. Gilbert, Y. Han, J. Hogan, J. D. Lakey, D. Weiland and G. Weiss, Smooth molecular decompositions of functions and singular integral operators. *Mem. Amer. Math. Soc.*, **156**, 2002, 742, 74 pages.
- [12] E. Hernández, D. Labate, G. Weiss and E. Wilson, Oversampling, quasi-affine frames, and wave packets. *Appl. Comput. Harmon. Anal.*, **16**, 2004, pp. 111-147.
- [13] D. Hua and Y. Huang, K -*g*-frames and stability of K -*g*-frames in Hilbert spaces. *Korean J. Math.*, **53**, 2016, pp. 1331-1345.
- [14] W. Sun, G -frames and g -Riesz bases. *J. Math. Anal. Appl.*, **322**, 2006, no. 1, pp. 437-452.
- [15] Y. Zhou and Y. Zhu, K -*g*-frames and dual g -frames for closed subspaces. *Acta Math. Sinica (Chin. Ser.)*, **56**, 2013, pp. 799-806.
- [16] Y. Zhou and Y. Zhu, Characterizations of K -*g*-frames in Hilbert spaces. *Acta Math. Sinica (Chin. Ser.)*, **57**, 2014, pp. 1031-1040.