
U.P.B. Sci. Bull., Series D, Vol. 84, Iss. 1, 2022                                                     ISSN 1454-2358 

MINIMIZATION OF HIGH-FREQUENCY OSCILLATIONS 
OF TROLLEY MOVEMENT MECHANISM DURING STEADY 

TOWER CRANE SLEWING 

Viatcheslav LOVEIKIN1, Yuriy ROMASEVYCH2, Andriy LOVEIKIN3, 
Anastasia LYASHKO4, Mikola KOROBKO5 

This article describes the optimizing of the trolley movement mechanism 
during steady tower crane slewing. It provides minimization of high-frequency 
oscillations of the links of the mechanism. The optimization was carried out on the 
basis of a dynamic model of the trolley movement mechanism, which is represented 
by a system of three second-order differential equations. This system is reduced to 
one differential equation of the sixth order, which describes the change of the 
driving torque as an expression of load position and its higher time derivatives. 

The variational problem of optimal control of the trolley movement 
mechanism, where the root mean square value of the rate of the driving torque 
change (the optimization criterion) was stated and solved. In the optimization, high-
frequency oscillations of the elements of the mechanism were eliminated during the 
start-up process. Low-frequency oscillations that are caused by the oscillation of the 
load on the flexible suspension, were eliminated at the beginning of the steady 
motion. It was achieved due to the selection of the proper boundary conditions. 

The condition of the minimum of the integral functional, which is represented 
by a linear differential equation of the fourteenth order, was solved by the analytical 
method in the process of the variational problem solving. 

Keywords: tower crane, trolley movement mechanism, rate of driving torque 
change, variational problem, optimization criterion. 

1. Introduction 

In order to increase the capacity of the tower cranes, their operators often 
combine several operations (slewing and hoisting, slewing and the trolley 
movement, etc.). However, this increases the dynamic loads of oscillatory nature 
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in the elements of the crane mechanisms. For instance, low-frequency oscillations 
that are caused by deviations from the vertical of the flexible suspension with a 
load and high-frequency oscillations that depend on the nature of the change in 
the driving torque of the drive mechanisms are observed.  

The low- and high-frequency oscillations of the elements and the metal 
structure of the crane lead to increasing the loads and, as a result, may cause 
damages. In addition, the non-optimal manner of the mechanisms movement 
control increases the energy losses.  

Therefore, the development of optimal control (the driving torque law) of 
the trolley movement mechanism, which leads to the reduction of high-frequency 
oscillations, is an important goal to achieve. 

2. Analysis of recent studies 

A significant number of scientific works have been dedicated to the study 
of dynamic loads during the operation of the cranes’ mechanisms. Among them, 
we can outline the following ones [1-14].  

General issues of hoisting machines dynamics are described in the 
following fundamental studies [1-3]. Dynamic processes during the operation of 
the mechanisms of the trolley movement and hoisting considering different types 
of cranes were investigated and the factors, which influence the load oscillations, 
were established in studies [4-7]. Investigations [8, 9] include the research of joint 
movement of mechanisms of the trolley movement and slewing of the crane. Here 
control of the trolley movement mechanisms was found, it provides the reduction 
of the pendulum load oscillations. 

In the study [10] the dynamic processes of the joint motion of the 
mechanisms of the trolley movement and tower crane slewing were investigated. 
The driving torques were changed in both of the mechanisms. The work revealed 
the tendencies in kinematic, dynamic, and power characteristics of the 
mechanisms. The loads that act on the elements of these mechanisms were 
established as well as pendulum oscillations of the load. 

Several optimization problems were solved [11-14] in order to reduce the 
oscillations of the load on the flexible suspension during the operation of crane 
mechanisms. The problem of reduction of the pendulum load oscillations during 
the slewing of the tower crane was solved in [11]. Here, a complex dynamic 
criterion was used in the calculations. The acceleration of the crane movement 
mechanism was optimized in the study [12]. It was grounded on the controlled 
drive. The obtained in the work result provides the minimum duration of the 
mechanism acceleration with the elimination of the load oscillations. 

The solution of the time-optimal problem for the dynamical system „crane-
load” has the form of the „on-off” function [13, 14]. This leads to the appearance 
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of high-frequency oscillations and, as a consequence, additional loads on the 
elements of the drive mechanisms and the metal structure of the crane. 

Therefore, the problem of eliminating high-frequency oscillations in the 
elements of crane mechanisms during their joint operation is relevant and requires 
further study. 

The purpose of the current study is to reduce the high-frequency 
component of the oscillations of the trolley movement mechanism during the 
steady slewing of the tower crane. 

2. Statement of the optimal control problem 

A dynamic model of the trolley movement mechanism during tower crane 
steady slewing (fig. 1) was developed in order to conduct this research. In this 
model, the crane boom system is presented as a holonomic mechanical system. It 
consists of absolutely rigid bodies, except for the traction rope, which has stiffness 
properties with a stiffness coefficient C or C′ depending on the direction of the 
trolley movement as well as a flexible suspension of the load, which oscillates in 
the plane of the trolley movement (along the boom). 

 
Fig. 1. The dynamic model of the trolley movement mechanism in case of the steady slewing of 

the crane 
 
 

In the accepted dynamic model, the linear coordinates of the centers of 
mass of the trolley z and the load x, as well as the angular coordinate of the 
rotation of the drive pulley β are used as the generalized coordinates. In addition, 
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the crane boom system slews around the crane axis of rotation with a constant 
angular velocity ω. The length of the suspension of the load H in the studied case 
is a constant, i.e. H=const. 

The following differential equations describe the motion of the dynamical 
system: 
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where m1 and m are the reduced masses of the trolley and the load, respectively; 
I and M ‒ the moment of inertia and the driving torque of the trolley movement 
mechanism, respectively (they are reduced to the axis of the pulley rotation); 
r – pulley radius; 
g – acceleration of gravity; 
W – force of resistance to the trolley movement; 
c – coefficient of stiffness (its numerical value depends of the direction of the 
trolley movement: c=C – the case when the trolley moves towards the tower, 
c=C′ – the case when the trolley moves away the tower). 

From the last equation of system (1) the coordinate of the center of mass of 
the trolley and its time derivatives may be calculated: 
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From the second equation of the system (1) taking into account expressions (2)-
(4) we might express the angular coordinate of the pulley: 

( ) ( ) .211
11

2
1

222
1













++







++−+








−








−−= Wx

g
Hmxmm

g
Hmcxm

g
Hmc

cr

IV
ωωωωβ (5) 

Then the angular velocity and acceleration of the pulley may be obtained: 
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Substitution the expressions (2)-(7) in the first equation of the system (1) brings 
the formula for driving torque calculation: 
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Taking into account the expression (8) we may write down the time derivative of 
the driving torque: 
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Since the high-frequency oscillations of the links of the trolley movement 
mechanism depend on the rate of the driving torque change, we set the root mean 
square value of the Ṁ as a criterion to minimize: 

min1
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where t – time; 
t1 – duration of the start (acceleration) of the mechanism. 

Criterion (11) should be minimized. Indeed, it reflects the undesirable 
property of the trolley movement mechanism. Therefore, we consider a variational 
problem in which it is necessary to minimize the functional (11), where the 
desired solution of the problem x=x(t), 0≤t≤t1, must satisfy the boundary 
conditions: 
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where х0 ‒ the initial position of the trolley and load; 
v ‒ the steady velocity of the trolley and the load. 

 

3. Solving of the optimal control problem 

Variation problem (11) can be rewritten in equivalent form as follows: 
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1
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The Euler-Poisson equation is the condition of the minimum of the 
functional (13), which for the case (13) may be presented is as follows: 
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The use the rule of a complex function differentiation and substitution an 
explicit expression for Ṁ gives the following: 

 

( ) ( ) ( ) ( )

.0

0

02222

2

7

7

45

5

33

3

21

7

7

45

5

33

3

21

47

7

35

5

23

3

1

=







+++

⇔=+++⇔

⇔=+++

x
dt
da

dt
da

dt
da

dt
da

dt
Mda

dt
Mda

dt
Mda

dt
Mda

aM
dt
daM

dt
daM

dt
daM

dt
d





 

(14) 

The obtained equation (14) is, in fact, a linear, homogeneous differential 
equation of the 14-th order with respect to the unknown function x. In order to 
solve it, we have to calculate the roots of a characteristic polynomial, which may 
be expressed as follows: 
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The polynomial Q(λ) is a square of a polynomial of the 7-th order. That’s 
why it has 7 roots of the 2-nd order. One of them, obviously, is a zero λ0=0. The 
following equation has to be solved in order to calculate other roots: 
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In order to reduce the degree of the previous equation, we use the designation 
λ2=μ. As a result, we obtain an algebraic equation of the 3-rd order 
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the roots of which can be calculated analytically by the Cardano method or in an 
approximately manner with one of the numerical methods. 

In the frame of the current research the following numerical values were 
used: m=5000 kg, I=30 kgm2, H=10 m, ω=0.075 rad/s, r=0.15 m, c=1.65∙105 N/m, 
V=0.85 m/s, x0=7 m, t1=5 s, W=5500 N. Then the approximate solutions of 
equation (15) are as follows: μ1≈-687.17, μ2≈-3.9041, μ3≈-0.0044954. 

Using the equality λ2=μ, we may find the roots of the characteristic 
polynomial Q(λ): 

,067048.0

,91759.1,214.26

336,5

224,3112,1

αµλ

αµλαµλ

±=±≈±=

⋅±=⋅±≈±=⋅±=⋅±≈±= iiii
 

where i is the imaginary unit. 
Let’s remind that all the roots λ1,2,3,4,5,6 of characteristic polynomial Q(λ) 

are the roots of the second order. Then the general solution of the linear and 
homogeneous differential equation (14) can be written as follows: 
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where C1,…,14=const. 
In order to calculate the coefficients C1,…,14 we shall substitute the image 

(16) in the boundary conditions (12) of the original problem. As a result, we will 
receive a system of linear algebraic equations of the 14-th order with respect to 
C1,…,14. The approximate solution of this will look as follows: C1=0, C2=0, C3=0, 
C4=0, C5≈0.0026020, C6≈-0.0031223, C7≈0.027422, C8≈-0.0014111, C9≈-2279.6, 
C10≈34.549, C11≈6406.3, C12≈172.48, C13≈-4119.7, C14≈375.28. 

Substitution of the values C1,…,14 in (16) brings the final solution of the 
variational problem (13), which, in fact, coincides with the original problem (11). 

4. Brief results analysis 

As a result of solving the variational problem the plots of kinematic (fig. 2-
4), power (fig. 5, fig. 6), and energy (fig. 7) characteristics were built (in fig. 2-4. 
broken curves refer to the trolley, the continuous curves – to the load). 
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Fig. 2. Plots of the trolley and the load positions 

 
Fig. 3. Plots of the trolley and the load velocities 

 

 
Fig. 4. Plots of the trolley and the load acceleration 
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Fig. 5. Plot of the trolley driving force 

 
Fig. 6. Plot of the driving torque of the trolley movement mechanism 

 

 
Fig. 7. Plot of the power of the trolley movement mechanism 
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These plots indicate that low-frequency oscillations of the trolley and the 

load. They are eliminated at the beginning of the steady mechanism movement. 
Indeed, at this moment the coordinates and velocities of the trolley and the load 
coincide. 

There are slight high-frequency oscillations of the acceleration of the 
trolley, which attenuate during the steady movement. As an example, we show 
low- and high-frequency oscillations of the trolley and the load accelerations 
during the optimal mode of movement (fig. 8). In the shown case the criterion is a 
root mean square value of the driving torque. It might be obtained by substituting 
in expression (16) following coefficients C1,…,14: C1≈-1.354∙10-6, C2≈1.0536∙10-7, 
C3≈2.0921∙10-8, C4≈1.8714∙10-7, C5≈3.6064∙10-2, C6≈1.4894∙10-2, C7≈2.0835∙10-2, 
C8≈-3.1770∙10-3, C9≈-7.8196∙101, C10≈2.9682∙100, C11≈-9.9386∙101, C12≈-
4.4152∙100, C13=0, C14=0. They correspond to the same boundary conditions (12). 

From the given plots it is possible to see that high-frequency oscillations of 
accelerations of the load are absent, and the trolley has a considerable amplitude 
0.60 m/s2. In the case of optimization by criterion (13) the similar value is 0.33 
m/s2. Optimization by the criterion of the root mean square value of the driving 
torque leads to the following results: the maximum value of the load acceleration 
is 0.25 m/s2, and the trolley acceleration is 1.3 m/s2. 

Plots of the force in the traction body (rope) of the trolley and the driving 
torque of the trolley movement mechanism are shown in fig. 5 and fig. 6. These 
plots indicate that there are virtually no low- or high-frequency oscillations. The 
maximum value of force is 6900 N, the maximum value of the torque is 1040 Nm. 
Optimization by the criterion of the root mean square of the driving torque value, 
both low- and high-frequency oscillations of traction force (fig. 9) are observed. 
Their maximum value is 6650 N. Curve of driving torque includes an insignificant 
high-frequency component (fig. 10) at a maximum value 1027 Nm. 

 
Fig. 8. Plots of the trolley and the load acceleration (case of optimization by the root mean square 

criterion of the driving torque) 
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The power of the drive mechanism (fig. 7) includes an insignificant low-

frequency component. The high-frequency oscillations are absent. The maximum 
value of the power is 4800 W. Optimization by the criterion of the root mean 
square of the driving torque value leads to the power with increased low-
frequency component of oscillations and a rather small high-frequency component 
at a maximum value of 5800 W the (fig. 11). 

The analysis of the obtained results indicates that in case of optimization 
of the trolley movement mechanism by the criterion of root mean square value of 
the driving torque the maximum values of traction force and the driving torque are 
bigger than similar values corresponding to the criterion (13). In addition, during 
this mode of movement significant low- and high-frequency oscillations of links 
of the mechanism may be observed. 

 
Fig. 9. Plot of the trolley traction force (case of optimization by the root mean square criterion of 

the driving torque) 

 
Fig. 10. Plot of the driving torque of the trolley movement mechanism (case of optimization by the 

root mean square criterion of the driving torque) 
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Optimization by the criterion (13) brings a slightly increase in the 
maximum values of traction force (by 3.7%), driving torque (by 1.3%), and load 
acceleration (by 32%). However, it significantly reduces the maximum values of 
the drive power (by 21%), the acceleration of the trolley (by 394%), and, most 
importantly, virtually eliminates low- and high-frequency oscillations of the 
trolley movement mechanism elements. 

 
Fig. 11. Plot of the power of the trolley movement mechanism (case of optimization by the root 

mean square criterion of the driving torque) 
 
In order to support the statement about high-frequency oscillations of drive 

torque minimization we have carried out calculations of numerical values of 
criterion (11) for both cases: considered in the article and the referred (case of 
optimization by the root mean square criterion of the driving torque). For the first 
case Ṁск=70.27 Nm/s, for the second one Ṁск=127.87 Nm/s. Such deviation might 
be explained by the exploitation of criterion (11). Also we have shown additional 

indicator 
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x  . For the first case скx =0.20 m/s2, for the second one 

скx =0.28 m/s2. These values support our previous conclusion about minimization 
of high-frequency oscillations. 

5. Conclusions 

In the article, the variational problem was stated and solved. It involves the 
criterion (the root mean square value of the rate of change of the driving torque of 
the trolley movement mechanism drive), the developed mathematical model of 
dynamics of the mechanism during steady tower crane slewing. 
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The initial variational problem was reduced to a homogeneous linear 
differential equation of the 14-th order with constant coefficients relative to the 
coordinate of the load. It was solved with the analytical method under given 
boundary conditions of the load movement. 

The obtained result gives the practical effect: it eliminates low-frequency 
(pendulum) oscillations of the load and high-frequency oscillations of the 
mechanism links during controlled movement. It, in turn, improves the crane 
capacity, durability and increases the energy consumption of the trolley 
movement mechanism. 

Perspectives of further investigation in this direction are connected with 
involving other (complex ones) criteria to minimize, constraints, improving 
mathematical models of the tower crane mechanisms, etc. 
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