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HIGH PRECISION EXPRESSIONS FOR DETERMINING THE
MAXIMUM POWER POINT COORDINATES OF THE SOLAR
CELLS (IDEAL MODEL)

Mircea TACIUC?

In this work are presented four sets of high precision expressions for
estimation of the maximum power point coordinates of the solar cells. The proposed
expressions are in explicit-algebraic form and have the advantage that allows the
direct calculation of the maximum power point coordinates and the fill factor. The
presented relations are the most accurate algebraic-form expressions presented in
the literature that can be used to calculate the maximum power point coordinates
for the ideal solar cell model.

Keywords: maximum power point, solar cells, single diode model, fill factor,
Lambert W-function

1. Introduction

The precise identification of the maximum power point is one of the most
important aspects of the practical use of the solar cells. In practice, the
determination of the maximum power point is done by implementing at the solar
inverters level of the maximum power point tracking algorithms (MPPT
algorithms). For common commercial inverters the most used MPPT algorithms
are Perturb & Observe (P&O) and Incremental Conductance (IC). The research in
recent years has identified many new MPPT algorithms such as Fuzzy Logic
Control (FLC) [1], Particle Swarm Optimization (PSO) [2], Artificial Neural
Network (ANN) [3].

To understand how the properties of the materials and the technological
processes involved in the manufacturing and operating of the real solar cells will
affect the electrical behavior of the solar cells, it is necessary to extend and to
complete the physical model. A mandatory step in the developing process of a
complete reference model is to identify the most accurate expressions that can
derive from the physical model.

Identifying of high precision relations (in algebraic form) for the
maximum power point coordinates determination is a real challenge and a subject
for many works in literature. The difficulty of this issue is due the implicit-
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transcendental equations involved in this process, equations that are without
closed-form solutions. Due to the special form of basic equations, the
determination of high precision algebraic expressions is even more difficult.

For the case of the ideal single diode model, the most familiar algebraic
expression is that presented by M. A. Green in [4]. The proposed expression
ensures estimation of the fill factor (FF) with an accuracy of up to 4 decimals:

FE _ Imax “Vimax _ Voc — IN(Vge +0.72) (1)

Ise -Voc Voc +1

The expression (1) only refers to fill factor (which is a product between
coordinates of the maximum power point) and does not give any clue regarding to
the real values of Imax and Vmax.

In [5] is proposed a set of relations for the maximum power point
coordinates determination. Unlike the Green expression, the advantage of these
relations is given by the fact that allows the calculation of the maximum power
point coordinates and implicit the calculation of the fill factor. Although the study
presented in [6] indicates that proposed relations are close to the precision of the
Green relation (1) but the precision is net in favor of the Green's relationship.

Due to the relatively good precision of the Green relation, after the
publication of M.A. Green's relationship, the research on identifying an algebraic
relationship for ideal model has diminished. Most recent works are focusing on
fill factor (FF) determination for the single-diode model with parasitic resistances.

2. Mathematical model of the solar cells

The simplest equivalent electric circuit that models the PV cells is the
single diode model (Fig.1).

The equation that results from the single diode model is based on the
Shockley diode equation [4], [7]:

|:|L—|0-[e[‘\’/TJ—1] (2)

Where: I — the photo-generated current, lo— the junction saturation current,
m — the junction ideality factor, k — Boltzmann constant, g — Elementary charge,
T —the cell temperature in Kelvin.
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Fig. 1. PV cell electrical equivalent circuit and I-V, P-V characteristics

The equation (2) is known as the three-parameter model of PV cells. The
three parameters are: I, lo and m, the cell temperature (T) is assumed to be
known.

On the characteristic curves (Fig.1) can be identified three important
points: open-circuit point (V=Voc, 1=0), short-circuit point (V=0, I=Isc) and
maximum power point (V=Vmax,,1=Imax).

2.1 Normalized forms of the characteristic equations

In this paper it is proposed the using of the characteristic equations in
normalized forms. For this purpose the following normalizations of the main
variables will be made:

- v- 2l (3)

ISC VOC
Using of the equations in normalized forms presents some advantages:
- Simpler forms of the equations;
- The new variables (V and I ) will by characterized by subunit values.

Another advantage of the normalized forms is that the maximum power
(written in normalized form) it is, in the fact, the fill factor (FF):
D _T V2 _ Imax  Vimax _ (4)
IDrnax = Irnax 'Vmax = ’ =FF
ISC VOC

Considering that the junction saturation current is very small relative to the
photo-generated current the following approximations can be made:

||_+|OE||_; ISCZIL_IOEIL (5)



216 Mircea Taciuc

Using the approximations above (5) and the adopted notations (3), the I-V
and V-1 characteristic equations can be written in normalized forms as below:

=1 eYec(-1) (6)
V =1+ '”8_ ) )
oC

Where the v, notation is known as the normalized open voltage [4]:

V, m-k-T
Voc=VL_I_C ) Vr o= q

(8)

Where Vr is known as the thermal voltage
3. The maximum power point determination

For the practical applications, the most important point is Pmax. The
importance of this point derives from the fact that the operation of the solar cell at
this point will ensure the maximum efficiency of the photovoltaic conversion.

The maximum power point coordinates can be obtained by solving the
equations resulted by zeroes of the power function (P=V-I) derivatives.

Based on normalized forms (6) and (7), the derivatives of the power
function can be written as bellow:

S_VF: = |_+\7-(;j—vl_:1—(voc .\7+1).evoc‘(\7_1)

2 ! ] _ o)
dap :\7+|—‘d_\{:1+ln(1—l)_ I

dl (i) dl Voc Voc'(1—|)

So, the maximum power point coordinates can be obtained by solving the
next equations:

f _ AV2 — Voc'(l_\?)
™ (\7) 0 © vge'V+1l=e (10)
dP -0 (VOC+1)-I_—VOC=(1—I_)~In(1—l_) (11)

drl
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It can be seen that the both equations (10) and (11) have implicit-
transcendental form. The exact solutions of these equations cannot be expressed in
algebraic forms. The solutions of these equations can be determined using
numerical methods, by approximations, empirical or by combined methods.

4. Solving methods of the equations (10) and (11)

In this chapter methods for approximate solving of the (10) and (11) are
presented. The proposed solving methods will result in four sets of algebraic
equations useful for high precision determination of the maximum power point
coordinates.

4.1 Solving method based on graphical method

The graphical representation of the (11) is presented on Fig.2. From this
graphical representation it can be observed that the solution of (11) is the M point.

The M point is the intersection point between the line: y =(vye +1)- I -V, and
the curve: y=(1—T)-In(t—T).
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Fig. 2. Graphical representation of the equation (11)

For commercial silicon-based PV cells, the open circuit voltage at 25°C is
around 0.6-0.7 V. Thus, for a level of solar radiation intensity: (100-1000) W/m?
and for operating temperatures: (-20,+80)°C, the normalized voltage (voc) values
can be considered to be in the range: v,y €(8—28). For this voc interval, based on
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(11), it can be determined that the values interval for the x-coordinate of the
intersection point (M) is:

x=1 e~[0.86—0.96] (12)

4.1.1 Linear approximation

For the mentioned range (12) of the I, the following linear approximation
of the right term of the (11) is proposed:
(L-T)-Int-T)=1.44-T-152 (13)
Substituting (13) in (11), the 1,
resulting first-degree equation:
(Voc —0.44)- T — (Vo —1.52)=0 (14)

will be expressed by solving the

X

The V__ will be expressed using (7). Thus, are obtained the first set of
algebraic expressions for the maximum power point coordinates determination:

- _ VOC _1.52

(15)
— 1 1.08
Vipax =1+—-1In

4.1.2 Quadratic approximation

For the mentioned range (12) of thel, the following quadratic
approximation of the right term of the (11) is proposed:

(L—T)-In@-7)=583-12-9.17-1+33 (16)

Substituting (16) in (11), the I__
the resulting second-degree equation:

expression can be obtained by solving

X

5.83-12 — (Vo +10.17)- T +3.3+ vy, =0 (17)

The V_,, expression will be determinate using (7). Finally, are obtained

the second set of algebraic expressions for the maximum power point coordinates
determination:
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- £10.17)~/(vog —1.49)? +24.253
rex-— 11.66

In[(1.49 Ve ) (Voe ~1.49)% + 24.253} ~In(11.66)

(18)

Voc

4.2 Solving method based on Lambert W-function

The Lambert W-function is, by definition, the inverse function of the
relation f (x) = x-e*:

W(x) = f 2(x-e¥) (19)

The W-function is defined for complex number space and is not an
injective function. On the real domain are defining two main branches of the
W-function: one for positive range (injective branch) and one for negative range.

The definition of the Lambert W-function makes it useful in solving
various types of exponential/logarithmic equations.

The Lambert W-function is a multi-valued function and cannot be
expressed in an algebraic form. For estimation of the W-function, often are used
numerical algorithms of successive approximations such as Newton-Raphson
method or the Halley method [8].

The Lambert W-function values calculation can be done using some
specialized mathematical software that has implemented functions for this kind of
evaluation (e.g. Maple, MatLab).

Some of the main proprieties of the W-function are [8]:

x=W{x-eX}; x-e* = A x=W{A} (20)
_ WX Wixp _ X
x=W{x}-e = Wi (21)

The equation (10) can be written as follows:

(Voo -V +1)- elver V) _ Vs (22)
Multiplying both terms with e will be obtained:

(Vo -V +1)- elVoe V+1) _ glVoc+1) (23)

According to the property of the W-function (20), the solution for (23) is:
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Voc Vimax +1=W {e(voc +1)} (24)
From (24) the V ¢ expression can be written as bellow:

— Wp-1

Viax = (25)
max Voc
Where: W, :W{e(V°°+l)} (26)
Substituting (25) in (6) is obtained:
_ eWO
Imax =1~ ot (27)
Using propriety (21) in (27), I,ax €Xpression becomes:
- 1
I =1-— 28
max Wo (28)

Expressions similar with (25) and (28) are presented in [9], with the
difference that the Imax expression is multiplied by a factor (fo) that compensates
the approximations (4) used in this work. Even the author mentions that usually
this coefficient can be considered equal to the unit.

Based on (25) and (28), an important observation can be made: for
determining of the maximum power or for determination of the fill factor (FF) it
is sufficient to know only one of the coordinates of the maximum power point.

4.2.1 Wy parameter approximation

Expressions (25) and (28) are the exact explicit forms solutions of the (10)
and (11). Because of the Wo parameter, these equations cannot be considered as
algebraic forms. As previously mentioned, the W-function is a not an algebraic
function. Fortunately, for well defined ranges, W-function values can be
approximated, with very good accuracy, using some algebraic expresios.

In this paper is proposed the next precise approximation of the Wo:

W, =W{e(\’°C +l)}= (Voo +1)— v::il In(vye +1) (29)

The (29) expression was obtained based on the inequality (2.5) presented
in [10]. This approximation assures a relative error, for Wop estimation, less than
0.035% for vocvalues greater than 8.
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The simulations performed with (25) and (28) using the Wo approximation
(29), indicated that the obtained coordinates define a point which is not exactly on
the I-V curve (Fig. 3).
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Coordinates calculated
with relations: (25),(28)

Coordinates calculated with |
relations: (25),(28)
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Fig. 3. Deviation from the I-V curve of the point determined by relations (25) and (28) using the
W, approximation (29)

This mismatch occurs because (29) is an approximation of W and is not
the exact value of this parameter. Due this mismatch, two equations will be
deduced for the maximum power point coordinates:

3 (Voc +1)_ In (Voc +1)
max =voc.(v +1)2 —vye - In (Ve +1)

oC ocC ocC (30)
_ In [(voc +1)2 —vg - In (Vg +1)]— In (Vo +1)
Vinax =1~

Voc

— In(vye +1
Vmax :1_ ( 0C )

Voo +1

[ Ve, J (31)

- 1 V. +1
Tax =1- oc

5. The accuracy estimation of the proposed expressions

The accuracy of the proposed equations: (15), (18), (30) and (31) was
evaluated based a numerical simulation using a script developed in MatLab.
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The evaluation for each proposed relation was done for 2201 points for
voc range: [8,30] using a 0.01 discretization step.

As an accuracy indicator was used the relative deviation from the
maximum power reference values:

Alsmax _ ‘Imax '\Tmax - I_ma_x ref 'Vmax ref ‘ (32)

I max ref 'Vmax ref

Similarly, where estimated the Al and AV, indicators.

As mentioned above, the exact solutions of (10) and (11) are given by
relations (25) and (28). Consequently, relations (25) and (28) were used for

¢ and oy ref - TO compute the Wo

calculating of the references values:V,,y e

parameter as accurately as possible was used the default function implemented in
MatLab: “lambertw”.

To have an additional reference, the simulations were performed also for
the M.A.Green relation (1). For the global evaluation of the accuracy, were made
estimation of the mean values and the standard deviation values.

The obtained values for the accuracy indicators are centralized in the
Table 1 and Table 2.

Table 1
Values of the APy, accuracy indicator

Mean Std. dev. Max Range

Proposed relations (15) 1.130E-06 9.225E-07 5.013E-06 5.013E-06

Proposed relations (18) 1.962E-08 2.575E-08 1.078E-07 1.067E-07

Proposed relations (30) 2.404E-09 2.331E-09 7.229E-09 7.061E-09

Proposed relations (31) 4.050E-07 2.080E-07 7.374E-07 7.164E-07

Relation (1) [4] 1.2083E-04  9.992E-05 6.0312E-04 6.016E-04

Table 2

Values of the Al ,, and A\Tmax accuracy indicators

max

Al rax (Mean) AV rax (Mean)
Proposed relations (15) 3.291E-04 3.291E-04
Proposed relations (18) 3.472E-05 3.471E-05
Proposed relations (30) 1.623E-05 1.623E-05
Proposed relations (31) 2.174E-04 2.177E-04

Relation (1) [4] - -
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The simulations results, for all four sets of the proposed expressions and
for (1), are presented in graphically form in the Figs. 4-8.
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Fig. 4. AP,y Variations for the relations (15)
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Fig. 5. AISmaX variations for the relations (18)
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Fig. 7. Aﬁmax variations for the relations (31)
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" APmax - Relation (1) (M.A. Green)
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Fig. 8. Aﬁmax variations for the relation (1)

According to the simulation results, it can be noticed that all proposed
relations have an exceptional precision; the proposed relationships have a much
better accuracy than well-known relation (1).

The proposed relationships have the advantage that allowing the
calculation of the fill factor and also of the maximum power point coordinates

(Virax and 1 pay ). According to the simulation results the maximum power point
coordinates determination is also very precise.

6. Conclusions

In this paper are presented four sets of expressions in explicit-algebraic
form which are useful for the precise calculation of the maximum power point
coordinates for the solar cells (ideal single diode model).

The proposed expressions provide extremely precise calculation of the
maximum power point coordinates Vmax and Imax. The relations (30) ensures the
determination of fill factor (FF) with an accuracy better of 8 decimal places and
the relations (18) with a precision better of 7 decimal places, which makes these
relations to be the most accurate relations (in algebraic form) presented in
literature.

The approach presented in this paper provides the basis for future research
to identify similar expressions for the determination of the maximum power point
coordinates for the case of the solar cell model that includes the series parasite
resistance.
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