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ON INJECTIVITY OF ACTS

Gh. Moghaddasi1, M. Haddadi2, S. Delavari3

In this paper we investigate the actions of a monoid of the form
S = G∪̇I, where G is a group and I is an ideal of S, on sets. So, naturally,
every S-act can be considered as an I1-act. The central question here is
that what is the relation between injective and weakly injective I1-acts and
injective and weakly injective S-acts?

We are going to respond this question and show that weakly (principally
or finitely generated) injectivivity of an S-act A is extendable from I1-acts
to S-acts. But for injectivity we need some more hypothesis.
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1. Introduction

One of the very useful notions in many branches of mathematics, as well
as in computer science, is the notion of actions of a semigroup or a monoid
on a set. The notion of injectivity is one of the important concepts in every
category, specially in the category of acts. Injective and weakly injective acts
were first studied by Bertheaume in [1], and later studied by many authors,
see [7, 8]. In [4], V. Gould introduced an infinite sequence of different injectiv-
ities between principally weakly injectivity and weakly injectivity. Principally
weakly injective acts were first considered by J. Luedeman, F. McMorris and
S.K.Sim [6].

A. Golchin and J. Renshaw in [2, 3] have studied actions of a monoid
of the form S = G∪̇I, in which G is a group and I is an ideal of S. They
show that, for these kind of actions, flatness is extendable from I1-acts to S-
acts. That is, an S-act A is flat if it is flat as an I1-act. Thus, it is a natural
question to ask that: what is the relation between (weakly) injective I1-acts
and (weakly) injective S-acts?

1Department of Mathematics, Hakim Sabzevary University, Sabzevar, Iran, e-mail:
r.moghadasi@hsu.ac.ir

2Department of Mathematics, Statistics and Computer Science, Semnan University, Sem-
nan, Iran

3Department of Mathematics, Hakim Sabzevary University, Sabzevar, Iran

189



190 Gh. Moghaddasi, M. Haddadi, S. Delavari

Here we answer this question and we show that weakly injective property
is extendable from I1-acts to S-acts in general while injectivity needs some
more hypothesis.

First, we briefly recall some notions about S-acts. Given a monoid S, a
(right) S-act is a set A together with a function A×S → A, mapping each (a, s)
to as, such that (i) (as)t = a(st) and (ii) a1 = a, for every a ∈ A, s, t ∈ S. A
subset B of an S-act A is called an S-subact of A, denoted by B ≤ A, whenever
bs ∈ B, for every b ∈ B and s ∈ S. Specially, considering, naturally, S as an
S-act, the S-subacts of S are exactly the right ideals of S. A map f : A→ B
between two S-acts A and B is called an S-map or an S-homomorphism if, for
each a ∈ A, s ∈ S, f(as) = f(a)s. The usual definitions for monomorphisms,
epimorphisms and ismorphisms hold. We denote the category of all S-acts
and S-homomorphisms between them by Act-S.

An S-act A is said to be finitely generated if A =
⋃n
i=1 aiS, for some

n ∈ N and ai ∈ A. So a right ideal I of a monoid S is called a finitely
generated ideal if it is finitely generated as an S-subact of S. Also A is called
a cyclic S-act if A = aS, for some a ∈ A. A right ideal I of S is said to be
principal if it is a cyclic S-subact of S.

An element θ in an S-act A with θs = θ, for all s ∈ S, is called a zero or
a fixed element of A.

An element s ∈ S is called a regular element if sxs = s, for some x ∈ S.
One calls S a regular monoid if all its elements are regular.

An element e ∈ S is called idempotent if e2 = e. The set of all idempotent
elements of S is denoted by E(S). An element s ∈ S is called left cancellable
if sr = st, for r, s ∈ S, implies r = t. An element a ∈ A is called divisible by
s ∈ S if there exists b ∈ A such that bs = a.

An S-act A is called injective if for every S-monomorphism i : B � C
and every S-homomorphism f : B → A, there exists an S-homomorphism
f̄ : C → A with f̄ i = f . A monoid S is called self-injective if it is injective
as an S-act. Also an S-act A is called (principally, finitely generated) weakly
injective if for every (principal, finitely generated) ideal K of S and any S-
homomorphism f : K → A, there exists an S-homomorphism f̄ :S → A which
extends f , that is, f̄ |K = f .

An S-subact A of an S-act B is called large in B if any S-homomorphism
f : B → C whose restriction f |A to A is a monomorphism, is itself a monomor-
phism. An extension B of A with the embedding f : A � B is said to be an
essential extension if Imf is large in B.

If the monoid S has a zero element 0, then each S-act has a zero element,
too. From now on, for a monoid S with a zero element 0, we consider S-
acts with unique zero θ, that is A0 = {θ}, together with zero preserving
S-homomorphisms between them. The category so obtained is denoted by
Act0-S.
Throughout this paper, we take S to be a monoid of the form S = G∪̇I, where
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G is a group and I is an ideal of S and I1 = I∪̇{1}. It is worth noting that,
since I is a subsemigroup of S, every S-act can be considered as an I1-act .

Now, we mention the following theorems ( Theorems III.3.2 and III.4.2
from [5]) used repeatedly through out the paper. But, first see the following
definition:

Definition 1.1. [5] Let A be an S-act and a ∈ A. Then, by λa we denote the
S-homomorphism from S into A defined by λa(s) = as, for every s ∈ S, and
by λs the S-homomorphism from S into S with λs(t) = st for every t ∈ S.
The kernel of λa is called the kernel equivalence (that is s(kerλa)s

′ if and only
if λa(s) = λa(s

′) for s, s′ ∈ S).

Theorem 1.1. [5] The following statements are equivalent for any S-act A
over a monoid S:
(1) The S-act A is principally weakly injective;
(2) For every s ∈ S and every S-homomorphism f : sS → A, there exists

z ∈ A such that f(x) = zx for every x ∈ sS;
(3) For every s ∈ S, a ∈ A with kerλs ≤ kerλa, one has that a is divisible by

s in A, that is, a = zs for some z ∈ A.

Theorem 1.2. [5] An S-act A is (finitely generated) weakly injective if and
only if for every S-homomorphism f: K → A, where K ⊆ S is a (finitely
generated) right ideal, there exists an element z ∈ A such that f(k) = zk for
each k ∈ K.

2. weakly injective S-acts

In this section, we show that if S = G∪̇I is a monoid, then an S-act A is
(principally, finitely generated) weakly injectivity if it is (principally, finitely
generated) weakly injectivity as an I1-act. We then give a criterion to recognize
(principally, finitely generated) weakly injective S-acts.

Lemma 2.1. Let S be a group. Then every S-act is principally weakly injec-
tive.

Proof. Let A be an S-act and a ∈ A. Then (t, t′) ∈ kerλa if (t, t′) ∈ kerλs,
for every s ∈ S. Indeed, if (t, t′) ∈ kerλs, then λs(t) = λs(t

′) (st = st′), and
so s−1st = s−1st′. Therefore, at = at′, meaning that (t, t′) ∈ kerλa. Hence
kerλs ≤ kerλa, for every s ∈ S, a ∈ A. Thus, for every s ∈ S, a ∈ A, we
have a = a(s−1s) = (as−1)s, meaning that every element of A is divisible by
every element of S. Consequently, by Theorem 1.1, A is principally weakly
injective. �

Theorem 2.1. Let S = G∪̇I be a monoid and A be an S-act. Then A is prin-
cipally weakly injective as an S-act whenever it is principally weakly injective
as an I1-act.
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Proof. Since A is principally weakly injective as an I1-act, by Theorem 1.1,
there exist b ∈ A such that a = bi, for some i ∈ I1 and a ∈ A with kerλi ≤
kerλa. Also, Lemma 2.1 ensures that A is principally weakly injective as a
G-act. So, for each g ∈ G and a ∈ A with kerλs ≤ kerλa, there exists c ∈ A
such that a = cg. Hence, for s ∈ S and a ∈ A with kerλs ≤ kerλa, there exists
b ∈ B such that a = bs. That is, A is principally weakly injective. �

Corollary 2.1. (1) Let S = G∪̇I be a monoid. Then, principally weakly
injectivity of all I1-acts implies that all S-acts are principally weakly injective.

(2) For all monoids of the form S = G∪̇{0}, if an S-act A is principally
weakly injective as a {0, 1}-act then it is principally weakly injective as an
S-act.

Theorem 2.2. Let S = G∪̇I be a monoid and A be an S-act. Then, A is
(finitely generated) weakly injective as an S-act whenever it is (finitely gener-
ated) weakly injective as an I1-act.

Proof. Let J be a (finitely generated) right ideal of S and f : J → A be
an S-homomorphism. We consider f as an I1-homomorphism. So, A being
(finitely generated) weakly injective as an I1-act, by Theorem 1.2, implies
that there exists a ∈ A such that f(j) = aj for every j ∈ J . Also, for an
S-homomorphism f : S → A we have f(s) = f(1.s) = f(1)s. Hence, for every
S-homomorphism f : K → A, where K ⊆ S is a (finitely generated) right
ideal, there exists an element z ∈ A such that f(k) = zk, for every k ∈ K.
Therefore, the result follows from Theorem 1.2. �

By the above theorem, we get a useful criterion to check (finitely gener-
ated) weakly injectivity of S-acts. See the following examples.

Example 2.1. (1) Let S = G∪̇I be a monoid. Then, (finitely generated)
weakly injectivity of all I1-acts implies that of all S-acts.

(2 )Let S = G∪̇{0}. Then, an S-act is (finitely generated) weakly injec-
tive, if it is (finitely generated) weakly injective as an {0, 1}-act

(3) Let S = (Q, .) be the monoid of all rational numbers with the usual
multiplication. Consider S = (Q − {0})∪̇{0}, where G = Q − {0} is a group
and I = {0} is an ideal of S. The monoid I1 = {0, 1} has only one proper
ideal, that is K = {0}. For an I1-act A with a unique fixed element θ, there
exists only one I1-homomorphism from K into A, f : K → A, with f(0) = θ.
Now we define I1-homomorphism f̄ : I1 → A to be f̄(0) = f̄(1) = θ. Then we
have the following commutative diagram.

K
i //

f
��

I1

f̄~~
A

That is A is (principally, finitely generated) weakly injective. Hence all
I1-acts with a unique fixed element θ are (principally, finitely generated) weakly
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injective. So, by Theorems 2.1 and 2.2, all Q-acts with a unique fixed element
θ are (principally, finitely generated) weakly injective.

(4) Analogously, one can see that all R-acts with a unique fixed element θ
are (principally, finitely generated) weakly injective, in which R is the monoid
of all real numbers with usual multiplication.

We know that, every group is a regular monoid. Now, if I1 is a regular
monoid then S = G∪̇I is a regular monoid, too. Therefore, by Theorem 4.1.6
of [5], we have the following corollary.

Corollary 2.2. Let S = G∪̇I be a monoid. Then, all S-acts are principally
weakly injective whenever I1 is a regular monoid.

Definition 2.1. A monoid S is called weakly left zero if for every s ∈ S there
exist t ∈ S such that st = s.

Definition 2.2. A monoid S is called a kernel monoid if it is weakly left zero
and for every s ∈ S there exists t ∈ S such that kerλs ≤ kerλt.

Theorem 2.3. Let S = G∪̇I be a monoid. Then every S-act is principally
weakly injective whenever I1 is a kernel monoid and principally weakly self
injective.

Proof. Since I1 is a kernel monoid, for every i ∈ I1, there exists j ∈ I1 such
that kerλi ≤ kerλj and ij = i. Also, I1 is principally weakly self injective,
so, by Theorem 1.2, j is divisible by i. That is, there exists x ∈ I1 such that
j = xi. Now, we have i = ixi, meaning that i is a regular element. Therefore,
I1 is a regular monoid. Consequently, S is regular and, by Theorem 4.1.6 of
[5], every S-act is principally weakly injective. �

Corollary 2.3. Let S = G∪̇I be a monoid and I1 be a principally weakly self
injective monoid. If I1 is a left cancelable and weakly left zero monoid then
every S-acts is principally weakly injective.

Proof. By Theorem 2.3, it is enough to show that kerλi ≤ kerλj for every
i, j ∈ I1. But it easily follows from the left cancelablity of I1. �

3. injective S-acts

In this section, we first show that injectivity is extendable from I1-acts
to S-acts in the category of S-acts with a unique zero and zero preserving S-
homomorphisms between them, denoted by Act0-S, and we give some exam-
ples. We then provide some properties under which injectivity can be extended
from I1-acts to S-acts in general. We also show that if there exists a nontrivial
semigroup homomorphism h : S → I1 with h(1) = 1, then the injective S-acts
are precisely the injective I1-acts. First we mention the following theorems (
Theorems 3.10 and III.1.20 and 4.4 from [4, 5, 10]).
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Theorem 3.1. [4] The following conditions are equivalent for an S-act A:
(i) A is injective,
(ii) any consistent system of equations with constants from A has a so-

lution in A.

Theorem 3.2. [5] An act is injective if and only if it has no proper essential
extension.

Theorem 3.3. [10] For a semigroup S, each S-act A is weakly injective if and
only if every right ideal I of S has an idernpotent generator.

Remark 3.1. Given a cyclic S-act xS in which S = G∪̇I, one can easily check
that xI is an S-subact of xS while xG is not. Suppose that m ∈ xI∩xG. Then
m = xg, g ∈ G and m ∈ xI. Since xI is subact of xS, (xg)g−1 = x(gg−1) =
x ∈ xI. Thus, xS ⊆ xI. Obviously, xI ⊆ xS, and hence xI = xS. So if
xI ∩ xG 6= ∅ then xI = xS.

Theorem 3.4. Let S = G∪̇I be a monoid with zero element 0, and GI = {0}.
Then, each S-act A ∈ Act0-S is an injective S-act whenever it is injective as
an I1-act.

Proof. Suppose A is an injective I1-act. Since A contains a zero θ, by Theorem
1 of [9], it is enough to show that A is injective with respect to the inclusions
into cyclic right acts. So, we prove that every S-homomorphism f : B → A,
in the following diagram, is extended to f̄ .

BS
i //

f

��

(xS)S

f̄||
AS

(1)

But, the following possible cases can occur.
case1. If xI ∩ xG 6= ∅ then, by the above remark, we have xI =

xS. Now, considering xS,A and B as I1-acts and i, f as I1-homomorphisms,
we get the following commutative diagram which is completed by an I1-
homomorphism f̄ : xS → A, since A is an injective I1-act.

BI1
i //

f

��

(xS)I1

f̄{{
AI1

Now, we show that f̄ : xS → A is in fact an S-homomorphism and commutes
Diagram 1 of S-acts. Because, for every s ∈ S and xt ∈ xS = xI, we have:
(1) if s ∈ I then f̄((xt)s) = f̄(xt)s
(2) if s ∈ G then f̄((xt)s) = f̄(x(ts)) = f̄(x)ts = f̄(xt)s.
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case2. If xI ∩ xG = ∅ then injectivity of A as an I1-act implies the
following commutative diagram of I1-acts and I1-homomorphisms.

BI1
i //

f

��

(xS)I1

g{{
AI1

Now, we define the map f̄ : xS → A to be:

f̄(xs) =

{
g(xs) , xs ∈ xI
θ , xs ∈ xG.

Clearly, f̄ is well-defined. Also for every xs ∈ xS and t ∈ S we have:
(1) If t ∈ I, xs ∈ xI then f̄((xs)t) = f̄(x(st)) = g(x(st)) = g((xs)t) =

g(xs)t = f̄(xs)t.
(2) If t ∈ I, xs ∈ xG then f̄((xs)t) = f̄(x(st)) = f̄(x.0) = g(x.0) = g(θxS) =

θAS
= θAS

t = f̄(xs)t.
(3) If t ∈ G, xs ∈ xG then f̄((xs)t) = f̄(x(st)) = θAS

= θAS
t = f̄(xs)t.

(4) If t ∈ G, xs ∈ xI then f̄((xs)t) = f̄(x(st)) = g(x(st)) = g(x)(st) =
(g(x)s)t = g(xs)t = f̄(xs)t.
These mean that f̄ is an S-homomorphism.

�

The above theorem gives a useful criterion to find the injective S-acts,
where S = G∪̇I. Specially, if S = G∪̇{0}, then clearly G{0} = {0}. Now, the
above theorem ensures that an S-act is injective if it is injective as {0, 1}-act.
See the following corollary.

Corollary 3.1. (1) Let S = G∪̇{0}. Then, injectivity of each A ∈ Act0-S as
a {0, 1}-act implies the injectivity of it as an S-act.

(2)If all I1-acts in the category Act0-S are injective then all S-acts are
injective.

Example 3.1. (1) All the Q-acts are injective, in which Q is the rational
numbers with the usual multiplication. Indeed, one can consider Q = (Q −
{0})∪̇{0}, where G = Q− {0} is a group, I = {0} is an ideal of S, and I1 =
{0, 1}. Now, by Corollary 3.1, it is enough to show that every Q-act B is an
injective I1-act. But, since B contains the zero element θ, by Theorem 1 of [9],
it is enough to show that B is injective with respect to the inclusions into cyclic
acts. It worths noting that there are only two non-isomorphic cyclic I1-acts.
One is the trivial I1-act Θ = {θ} and the other is A = {a, b | a0 = b0 = b}. So,
there exists only one proper inclusion map {b} ↪→ {a, b}. Now, for every I1-
homomorphism f : {b} → B, (f(b) = θB), there exists an I1-homomorphism
f̄ : {a, b} → B defined by f̄(a) = f(b) = θB, which commutes the following
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diagram.

{b} i //

f
��

{a, b}

f̄{{
B

Clearly, B is injective relative to i1 : {θ} → {θ} and i2 : {a, b} → {a, b}. That
is, B is injective, and hence all I1-acts are injective.

(2) Analogously, one can see that all the R-acts are injective, in which R
is the monoid of the real numbers with usual multiplication.

Theorem 3.5. Let S = G∪̇I be a monoid whose idempotents are central.
Then, every S-act with a unique zero is injective whenever every I1-act is so.

Proof. Let every I1-act be injective. Then, Proposition 4.4 of [10], ensures
that every ideal of I1 is generated by an idempotent. Hence, every ideal of S
is generated by an idempotent. So, weakly injectivity of every S-acts follows
from Proposition 4.4 of [10]. Now, we show that every diagram

B // i //

f
��

C

f̄~~
A

of S-acts is completed by f̄ . To do so, consider

ρ = {(XS, h)|BS ⊆ XS ⊆ CS, h : XS → AS, h|BS
= f}

and define the relation ≤ on ρ to be:

(X1, h1) ≤ (X2, h2)⇔ X1 ⊆ X2, h2|X1 = h1.

It is easy to check that ≤ is a partial order on ρ and every chain such as
(Xα, hα)α∈I has the upper bound (∪Xα, h̄), where h̄(xα) = hα(xα) for xα ∈ Xα.
Suppose (X ′S, h

′) is the maximal element of ρ ensured by Zorn’s Lemma. We
shall show that X ′S = CS. Assume X ′S 6= CS. So, there exists x ∈ CS�X ′S.
Define J to be {s ∈ S ∈ X ′S}. Obviously, two possible cases can occur: J is
an ideal of S or it is empty.

case1. If J is an ideal then there exists an idempotent e 6= 1 of S such
that J = eS. Since A is weakly injective, there exists an S-homomorphism
k̄ : S → A such that k̄|J = k, for every S-homomorphism k : J → A with
k(j) = h′(xj), for every j ∈ J . So we have:

k(j) = k̄(j) = k̄(1)j = h′(xj). (2)

Now we define the map l : X ′ ∪ xS → A to be:

l(y) =

{
h′(y) , y ∈ X ′
k̄(es) , y ∈ xS.
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The defined l is well-defined. Indeed, if y1 = y2 ∈ X ′ ∪ xS, then we have:
(1) if y1 = y2 ∈ X ′, then h′(y1) = h′(y2). And so, l(y1) = l(y2).
(2) if y1 = y2 ∈ xS, then y1 = xs1, y2 = xs2, for some s1, s2 ∈ S.

Also since e is a central idempotent, xes1 = xes2. That is, l(y1) = l(xs1) =
k̄(1)es1 = h′(xes1) = h′(xes2) = k̄(1)es2 = l(xs2) = l(y2).

(3) if y1 = y2 = y ∈ X ′ ∩ xS, then y ∈ xS implies that y = xt for some
t ∈ S. So, y = xt ∈ X ′, and hence t ∈ J follows from the definition of J .
Now, (2) implies that l(y) = l(xt) = h′(xt) = k̄(1)t, and if y ∈ xS we have
l(y) = l(xt) = k̄(1)et = k̄(1)t. Also, for every y ∈ X ′ ∪ xS and s ∈ S we have:

(1) if y ∈ X ′ then l(ys) = h′(ys) = h′(y)s = l(y)s.
(2) if y ∈ xS then l(ys) = l((xt)s) = l(x(ts)) = k̄(1)ets = (k̄(1)et)s =

l(xt)s = l(y)s.
Hence l is an S-homomorphism.

case2. If J is empty, then we define l : X ′ ∪ xS → A as follows:

l(y) =

{
h′(y) , y ∈ X ′
θ , y ∈ xS.

Clearly l is a well-defined and an S-homomorphism. In both cases, l has been
extended to h′, which is a contradiction. So X ′S = CS and A is injective. �

Suppose that S = G∪̇I, and h : S → I1 is a nontrivial semigroup
homomorphism with h(1) = 1. It is easy to check that every I1-act A turns to
an S-act by the following action:

a.s = ah(s), a ∈ A, s ∈ S.

Theorem 3.6. Let S = G∪̇I, and h : S → I1 be a nontrivial semigroup
homomorphism with h(1) = 1. Then, A is an injective I1-act if and only if it
is an injective S-act.

Proof. Necessity. Consider the diagram

B // //

f

��

C

A

of S-acts. To complete the diagram, we first consider A,B and C as the I1-
acts and f as an I1-homomorphism. The existence of an I1-homomorphism
f̄ : C → A which completes the diagram follows from the hypothesis.

BI1
i //

f
��

CI1

f̄}}
AI1

Now, for every c ∈ C and s ∈ S we have:
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f̄(c.s) = f̄(c.h(s)) = f̄(c)h(s) = f̄(c)s.

This means that f̄ is an S-homomorphism and so A is injective as an
S-act.

sufficiency. Suppose A is not injective as an I1-act. Then, by Proposition
3.1.20 of [5], A has a proper essential extension such as the I1-act B, meaning
that A is a large I1-subact of B. Now, since every S-homomorphism f : B → C
whose restriction f |A to A is a monomorphism can be considered as an I1-
homomorphism and A is a large I1-subact of B, f is a monomorphism. Namely,
A is a large S-subact of B or equivalently B is a proper essential extension of
A. This contradicts with the injectivity of A as an S-act. �
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