

ON INJECTIVITY OF ACTS

Gh. Moghaddasi¹, M. Haddadi², S. Delavari³

In this paper we investigate the actions of a monoid of the form $S = G \dot{\cup} I$, where G is a group and I is an ideal of S , on sets. So, naturally, every S -act can be considered as an I^1 -act. The central question here is that what is the relation between injective and weakly injective I^1 -acts and injective and weakly injective S -acts?

We are going to respond this question and show that weakly (principally or finitely generated) injectivity of an S -act A is extendable from I^1 -acts to S -acts. But for injectivity we need some more hypothesis.

Keywords: S -act, injectivity, weakly (principally, finitely generated) injectivity

2000 Mathematics Subject Classification:08B30, 08C05, 20M30

1. Introduction

One of the very useful notions in many branches of mathematics, as well as in computer science, is the notion of actions of a semigroup or a monoid on a set. The notion of injectivity is one of the important concepts in every category, specially in the category of acts. Injective and weakly injective acts were first studied by Bertheaume in [1], and later studied by many authors, see [7, 8]. In [4], V. Gould introduced an infinite sequence of different injectivities between principally weakly injectivity and weakly injectivity. Principally weakly injective acts were first considered by J. Luedeman, F. McMorris and S.K.Sim [6].

A. Golchin and J. Renshaw in [2, 3] have studied actions of a monoid of the form $S = G \dot{\cup} I$, in which G is a group and I is an ideal of S . They show that, for these kind of actions, flatness is extendable from I^1 -acts to S -acts. That is, an S -act A is flat if it is flat as an I^1 -act. Thus, it is a natural question to ask that: what is the relation between (weakly) injective I^1 -acts and (weakly) injective S -acts?

¹Department of Mathematics, Hakim Sabzevar University, Sabzevar, Iran, e-mail: r.moghaddasi@hsu.ac.ir

²Department of Mathematics, Statistics and Computer Science, Semnan University, Semnan, Iran

³Department of Mathematics, Hakim Sabzevar University, Sabzevar, Iran

Here we answer this question and we show that weakly injective property is extendable from I^1 -acts to S -acts in general while injectivity needs some more hypothesis.

First, we briefly recall some notions about S -acts. Given a monoid S , a (right) S -act is a set A together with a function $A \times S \rightarrow A$, mapping each (a, s) to as , such that (i) $(as)t = a(st)$ and (ii) $a1 = a$, for every $a \in A$, $s, t \in S$. A subset B of an S -act A is called an S -subact of A , denoted by $B \leq A$, whenever $bs \in B$, for every $b \in B$ and $s \in S$. Specially, considering, naturally, S as an S -act, the S -subacts of S are exactly the right ideals of S . A map $f : A \rightarrow B$ between two S -acts A and B is called an S -map or an S -homomorphism if, for each $a \in A$, $s \in S$, $f(as) = f(a)s$. The usual definitions for *monomorphisms*, *epimorphisms* and *isomorphisms* hold. We denote the *category* of all S -acts and S -homomorphisms between them by **Act-S**.

An S -act A is said to be *finitely generated* if $A = \bigcup_{i=1}^n a_i S$, for some $n \in \mathbb{N}$ and $a_i \in A$. So a right ideal I of a monoid S is called a *finitely generated ideal* if it is finitely generated as an S -subact of S . Also A is called a *cyclic* S -act if $A = aS$, for some $a \in A$. A right ideal I of S is said to be *principal* if it is a cyclic S -subact of S .

An element θ in an S -act A with $\theta s = \theta$, for all $s \in S$, is called a *zero* or a *fixed element* of A .

An element $s \in S$ is called a *regular element* if $sxs = s$, for some $x \in S$. One calls S a *regular monoid* if all its elements are regular.

An element $e \in S$ is called *idempotent* if $e^2 = e$. The set of all idempotent elements of S is denoted by $E(S)$. An element $s \in S$ is called *left cancellable* if $sr = st$, for $r, s \in S$, implies $r = t$. An element $a \in A$ is called *divisible by* $s \in S$ if there exists $b \in A$ such that $bs = a$.

An S -act A is called *injective* if for every S -monomorphism $i : B \rightarrow C$ and every S -homomorphism $f : B \rightarrow A$, there exists an S -homomorphism $\bar{f} : C \rightarrow A$ with $\bar{f}i = f$. A monoid S is called *self-injective* if it is injective as an S -act. Also an S -act A is called (*principally, finitely generated*) *weakly injective* if for every (principal, finitely generated) ideal K of S and any S -homomorphism $f : K \rightarrow A$, there exists an S -homomorphism $\bar{f} : S \rightarrow A$ which extends f , that is, $\bar{f}|_K = f$.

An S -subact A of an S -act B is called *large* in B if any S -homomorphism $f : B \rightarrow C$ whose restriction $f|_A$ to A is a monomorphism, is itself a monomorphism. An extension B of A with the embedding $f : A \rightarrow B$ is said to be an *essential extension* if $Im f$ is large in B .

If the monoid S has a zero element 0 , then each S -act has a zero element, too. From now on, for a monoid S with a zero element 0 , we consider S -acts with unique zero θ , that is $A0 = \{\theta\}$, together with zero preserving S -homomorphisms between them. The category so obtained is denoted by **Act₀-S**.

Throughout this paper, we take S to be a monoid of the form $S = G \dot{\cup} I$, where

G is a group and I is an ideal of S and $I^1 = I \dot{\cup} \{1\}$. It is worth noting that, since I is a subsemigroup of S , every S -act can be considered as an I^1 -act.

Now, we mention the following theorems (Theorems III.3.2 and III.4.2 from [5]) used repeatedly through out the paper. But, first see the following definition:

Definition 1.1. [5] Let A be an S -act and $a \in A$. Then, by λ_a we denote the S -homomorphism from S into A defined by $\lambda_a(s) = as$, for every $s \in S$, and by λ_s the S -homomorphism from S into S with $\lambda_s(t) = st$ for every $t \in S$. The kernel of λ_a is called the kernel equivalence (that is $s(\ker \lambda_a)s'$ if and only if $\lambda_a(s) = \lambda_a(s')$ for $s, s' \in S$).

Theorem 1.1. [5] The following statements are equivalent for any S -act A over a monoid S :

- (1) The S -act A is principally weakly injective;
- (2) For every $s \in S$ and every S -homomorphism $f : sS \rightarrow A$, there exists $z \in A$ such that $f(x) = zx$ for every $x \in sS$;
- (3) For every $s \in S$, $a \in A$ with $\ker \lambda_s \leq \ker \lambda_a$, one has that a is divisible by s in A , that is, $a = zs$ for some $z \in A$.

Theorem 1.2. [5] An S -act A is (finitely generated) weakly injective if and only if for every S -homomorphism $f : K \rightarrow A$, where $K \subseteq S$ is a (finitely generated) right ideal, there exists an element $z \in A$ such that $f(k) = zk$ for each $k \in K$.

2. weakly injective S -acts

In this section, we show that if $S = G \dot{\cup} I$ is a monoid, then an S -act A is (principally, finitely generated) weakly injectivity if it is (principally, finitely generated) weakly injectivity as an I^1 -act. We then give a criterion to recognize (principally, finitely generated) weakly injective S -acts.

Lemma 2.1. Let S be a group. Then every S -act is principally weakly injective.

Proof. Let A be an S -act and $a \in A$. Then $(t, t') \in \ker \lambda_a$ if $(t, t') \in \ker \lambda_s$, for every $s \in S$. Indeed, if $(t, t') \in \ker \lambda_s$, then $\lambda_s(t) = \lambda_s(t')$ ($st = st'$), and so $s^{-1}st = s^{-1}st'$. Therefore, $at = at'$, meaning that $(t, t') \in \ker \lambda_a$. Hence $\ker \lambda_s \leq \ker \lambda_a$, for every $s \in S, a \in A$. Thus, for every $s \in S, a \in A$, we have $a = a(s^{-1}s) = (as^{-1})s$, meaning that every element of A is divisible by every element of S . Consequently, by Theorem 1.1, A is principally weakly injective. \square

Theorem 2.1. Let $S = G \dot{\cup} I$ be a monoid and A be an S -act. Then A is principally weakly injective as an S -act whenever it is principally weakly injective as an I^1 -act.

Proof. Since A is principally weakly injective as an I^1 -act, by Theorem 1.1, there exist $b \in A$ such that $a = bi$, for some $i \in I^1$ and $a \in A$ with $\ker\lambda_i \leq \ker\lambda_a$. Also, Lemma 2.1 ensures that A is principally weakly injective as a G -act. So, for each $g \in G$ and $a \in A$ with $\ker\lambda_s \leq \ker\lambda_a$, there exists $c \in A$ such that $a = cg$. Hence, for $s \in S$ and $a \in A$ with $\ker\lambda_s \leq \ker\lambda_a$, there exists $b \in B$ such that $a = bs$. That is, A is principally weakly injective. \square

Corollary 2.1. (1) *Let $S = G \dot{\cup} I$ be a monoid. Then, principally weakly injectivity of all I^1 -acts implies that all S -acts are principally weakly injective.*

(2) *For all monoids of the form $S = G \dot{\cup} \{0\}$, if an S -act A is principally weakly injective as a $\{0, 1\}$ -act then it is principally weakly injective as an S -act.*

Theorem 2.2. *Let $S = G \dot{\cup} I$ be a monoid and A be an S -act. Then, A is (finitely generated) weakly injective as an S -act whenever it is (finitely generated) weakly injective as an I^1 -act.*

Proof. Let J be a (finitely generated) right ideal of S and $f : J \rightarrow A$ be an S -homomorphism. We consider f as an I^1 -homomorphism. So, A being (finitely generated) weakly injective as an I^1 -act, by Theorem 1.2, implies that there exists $a \in A$ such that $f(j) = aj$ for every $j \in J$. Also, for an S -homomorphism $f : S \rightarrow A$ we have $f(s) = f(1.s) = f(1)s$. Hence, for every S -homomorphism $f : K \rightarrow A$, where $K \subseteq S$ is a (finitely generated) right ideal, there exists an element $z \in A$ such that $f(k) = zk$, for every $k \in K$. Therefore, the result follows from Theorem 1.2. \square

By the above theorem, we get a useful criterion to check (finitely generated) weakly injectivity of S -acts. See the following examples.

Example 2.1. (1) *Let $S = G \dot{\cup} I$ be a monoid. Then, (finitely generated) weakly injectivity of all I^1 -acts implies that of all S -acts.*

(2) *Let $S = G \dot{\cup} \{0\}$. Then, an S -act is (finitely generated) weakly injective, if it is (finitely generated) weakly injective as an $\{0, 1\}$ -act*

(3) *Let $S = (\mathbb{Q}, \cdot)$ be the monoid of all rational numbers with the usual multiplication. Consider $S = (\mathbb{Q} - \{0\}) \dot{\cup} \{0\}$, where $G = \mathbb{Q} - \{0\}$ is a group and $I = \{0\}$ is an ideal of S . The monoid $I^1 = \{0, 1\}$ has only one proper ideal, that is $K = \{0\}$. For an I^1 -act A with a unique fixed element θ , there exists only one I^1 -homomorphism from K into A , $f : K \rightarrow A$, with $f(0) = \theta$. Now we define I^1 -homomorphism $\bar{f} : I^1 \rightarrow A$ to be $\bar{f}(0) = \bar{f}(1) = \theta$. Then we have the following commutative diagram.*

$$\begin{array}{ccc} K & \xrightarrow{i} & I^1 \\ f \downarrow & \swarrow \bar{f} & \\ A & & \end{array}$$

That is A is (principally, finitely generated) weakly injective. Hence all I^1 -acts with a unique fixed element θ are (principally, finitely generated) weakly

injective. So, by Theorems 2.1 and 2.2, all \mathbb{Q} -acts with a unique fixed element θ are (principally, finitely generated) weakly injective.

(4) Analogously, one can see that all \mathbb{R} -acts with a unique fixed element θ are (principally, finitely generated) weakly injective, in which \mathbb{R} is the monoid of all real numbers with usual multiplication.

We know that, every group is a regular monoid. Now, if I^1 is a regular monoid then $S = G \dot{\cup} I$ is a regular monoid, too. Therefore, by Theorem 4.1.6 of [5], we have the following corollary.

Corollary 2.2. *Let $S = G \dot{\cup} I$ be a monoid. Then, all S -acts are principally weakly injective whenever I^1 is a regular monoid.*

Definition 2.1. *A monoid S is called weakly left zero if for every $s \in S$ there exist $t \in S$ such that $st = s$.*

Definition 2.2. *A monoid S is called a kernel monoid if it is weakly left zero and for every $s \in S$ there exists $t \in S$ such that $\ker \lambda_s \leq \ker \lambda_t$.*

Theorem 2.3. *Let $S = G \dot{\cup} I$ be a monoid. Then every S -act is principally weakly injective whenever I^1 is a kernel monoid and principally weakly self injective.*

Proof. Since I^1 is a kernel monoid, for every $i \in I^1$, there exists $j \in I^1$ such that $\ker \lambda_i \leq \ker \lambda_j$ and $ij = i$. Also, I^1 is principally weakly self injective, so, by Theorem 1.2, j is divisible by i . That is, there exists $x \in I^1$ such that $j = xi$. Now, we have $i = ixi$, meaning that i is a regular element. Therefore, I^1 is a regular monoid. Consequently, S is regular and, by Theorem 4.1.6 of [5], every S -act is principally weakly injective. \square

Corollary 2.3. *Let $S = G \dot{\cup} I$ be a monoid and I^1 be a principally weakly self injective monoid. If I^1 is a left cancelable and weakly left zero monoid then every S -acts is principally weakly injective.*

Proof. By Theorem 2.3, it is enough to show that $\ker \lambda_i \leq \ker \lambda_j$ for every $i, j \in I^1$. But it easily follows from the left cancelability of I^1 . \square

3. injective S -acts

In this section, we first show that injectivity is extendable from I^1 -acts to S -acts in the category of S -acts with a unique zero and zero preserving S -homomorphisms between them, denoted by $\mathbf{Act}_0\mathbf{-S}$, and we give some examples. We then provide some properties under which injectivity can be extended from I^1 -acts to S -acts in general. We also show that if there exists a nontrivial semigroup homomorphism $h : S \rightarrow I^1$ with $h(1) = 1$, then the injective S -acts are precisely the injective I^1 -acts. First we mention the following theorems (Theorems 3.10 and III.1.20 and 4.4 from [4, 5, 10]).

Theorem 3.1. [4] *The following conditions are equivalent for an S -act A :*

- (i) *A is injective,*
- (ii) *any consistent system of equations with constants from A has a solution in A .*

Theorem 3.2. [5] *An act is injective if and only if it has no proper essential extension.*

Theorem 3.3. [10] *For a semigroup S , each S -act A is weakly injective if and only if every right ideal I of S has an idempotent generator.*

Remark 3.1. *Given a cyclic S -act xS in which $S = G \dot{\cup} I$, one can easily check that xI is an S -subact of xS while xG is not. Suppose that $m \in xI \cap xG$. Then $m = xg, g \in G$ and $m \in xI$. Since xI is subact of xS , $(xg)g^{-1} = x(gg^{-1}) = x \in xI$. Thus, $xS \subseteq xI$. Obviously, $xI \subseteq xS$, and hence $xI = xS$. So if $xI \cap xG \neq \emptyset$ then $xI = xS$.*

Theorem 3.4. *Let $S = G \dot{\cup} I$ be a monoid with zero element 0, and $GI = \{0\}$. Then, each S -act $A \in \mathbf{Act}_0\mathbf{-S}$ is an injective S -act whenever it is injective as an I^1 -act.*

Proof. Suppose A is an injective I^1 -act. Since A contains a zero θ , by Theorem 1 of [9], it is enough to show that A is injective with respect to the inclusions into cyclic right acts. So, we prove that every S -homomorphism $f : B \rightarrow A$, in the following diagram, is extended to \bar{f} .

$$\begin{array}{ccc} B_S & \xrightarrow{i} & (xS)_S \\ f \downarrow & \swarrow \bar{f} & \\ A_S & & \end{array} \quad (1)$$

But, the following possible cases can occur.

case1. If $xI \cap xG \neq \emptyset$ then, by the above remark, we have $xI = xS$. Now, considering xS, A and B as I^1 -acts and i, f as I^1 -homomorphisms, we get the following commutative diagram which is completed by an I^1 -homomorphism $\bar{f} : xS \rightarrow A$, since A is an injective I^1 -act.

$$\begin{array}{ccc} B_{I^1} & \xrightarrow{i} & (xS)_{I^1} \\ f \downarrow & \swarrow \bar{f} & \\ A_{I^1} & & \end{array}$$

Now, we show that $\bar{f} : xS \rightarrow A$ is in fact an S -homomorphism and commutes Diagram 1 of S -acts. Because, for every $s \in S$ and $xt \in xS = xI$, we have:

- (1) if $s \in I$ then $\bar{f}((xt)s) = \bar{f}(xt)s$
- (2) if $s \in G$ then $\bar{f}((xt)s) = \bar{f}(x(ts)) = \bar{f}(x)ts = \bar{f}(xt)s$.

case2. If $xI \cap xG = \emptyset$ then injectivity of A as an I^1 -act implies the following commutative diagram of I^1 -acts and I^1 -homomorphisms.

$$\begin{array}{ccc} B_{I^1} & \xrightarrow{i} & (xS)_{I^1} \\ f \downarrow & \swarrow g & \\ A_{I^1} & & \end{array}$$

Now, we define the map $\bar{f} : xS \rightarrow A$ to be:

$$\bar{f}(xs) = \begin{cases} g(xs) & , xs \in xI \\ \theta & , xs \in xG. \end{cases}$$

Clearly, \bar{f} is well-defined. Also for every $xs \in xS$ and $t \in S$ we have:

- (1) If $t \in I, xs \in xI$ then $\bar{f}((xs)t) = \bar{f}(x(st)) = g(x(st)) = g((xs)t) = g(xs)t = \bar{f}(xs)t$.
- (2) If $t \in I, xs \in xG$ then $\bar{f}((xs)t) = \bar{f}(x(st)) = \bar{f}(x.0) = g(x.0) = g(\theta_{xs}) = \theta_{As} = \theta_{As}t = \bar{f}(xs)t$.
- (3) If $t \in G, xs \in xG$ then $\bar{f}((xs)t) = \bar{f}(x(st)) = \theta_{As} = \theta_{As}t = \bar{f}(xs)t$.
- (4) If $t \in G, xs \in xI$ then $\bar{f}((xs)t) = \bar{f}(x(st)) = g(x(st)) = g(x)(st) = (g(x)s)t = g(xs)t = \bar{f}(xs)t$.

These mean that \bar{f} is an S -homomorphism. □

The above theorem gives a useful criterion to find the injective S -acts, where $S = G \dot{\cup} I$. Specially, if $S = G \dot{\cup} \{0\}$, then clearly $G\{0\} = \{0\}$. Now, the above theorem ensures that an S -act is injective if it is injective as $\{0, 1\}$ -act. See the following corollary.

Corollary 3.1. (1) Let $S = G \dot{\cup} \{0\}$. Then, injectivity of each $A \in \mathbf{Act}_0\mathbf{-S}$ as a $\{0, 1\}$ -act implies the injectivity of it as an S -act.

(2) If all I^1 -acts in the category $\mathbf{Act}_0\mathbf{-S}$ are injective then all S -acts are injective.

Example 3.1. (1) All the \mathbb{Q} -acts are injective, in which \mathbb{Q} is the rational numbers with the usual multiplication. Indeed, one can consider $\mathbb{Q} = (\mathbb{Q} - \{0\}) \dot{\cup} \{0\}$, where $G = \mathbb{Q} - \{0\}$ is a group, $I = \{0\}$ is an ideal of S , and $I^1 = \{0, 1\}$. Now, by Corollary 3.1, it is enough to show that every \mathbb{Q} -act B is an injective I^1 -act. But, since B contains the zero element θ , by Theorem 1 of [9], it is enough to show that B is injective with respect to the inclusions into cyclic acts. It worths noting that there are only two non-isomorphic cyclic I^1 -acts. One is the trivial I^1 -act $\Theta = \{\theta\}$ and the other is $A = \{a, b \mid a0 = b0 = b\}$. So, there exists only one proper inclusion map $\{b\} \hookrightarrow \{a, b\}$. Now, for every I^1 -homomorphism $f : \{b\} \rightarrow B, (f(b) = \theta_B)$, there exists an I^1 -homomorphism $\bar{f} : \{a, b\} \rightarrow B$ defined by $\bar{f}(a) = f(b) = \theta_B$, which commutes the following

diagram.

$$\begin{array}{ccc} \{b\} & \xrightarrow{i} & \{a, b\} \\ f \downarrow & \swarrow \bar{f} & \\ B & & \end{array}$$

Clearly, B is injective relative to $i_1 : \{\theta\} \rightarrow \{\theta\}$ and $i_2 : \{a, b\} \rightarrow \{a, b\}$. That is, B is injective, and hence all I^1 -acts are injective.

(2) Analogously, one can see that all the \mathbb{R} -acts are injective, in which \mathbb{R} is the monoid of the real numbers with usual multiplication.

Theorem 3.5. *Let $S = G \cup I$ be a monoid whose idempotents are central. Then, every S -act with a unique zero is injective whenever every I^1 -act is so.*

Proof. Let every I^1 -act be injective. Then, Proposition 4.4 of [10], ensures that every ideal of I^1 is generated by an idempotent. Hence, every ideal of S is generated by an idempotent. So, weakly injectivity of every S -acts follows from Proposition 4.4 of [10]. Now, we show that every diagram

$$\begin{array}{ccc} B & \xrightarrow{i} & C \\ f \downarrow & \swarrow \bar{f} & \\ A & & \end{array}$$

of S -acts is completed by \bar{f} . To do so, consider

$$\rho = \{(X_S, h) | B_S \subseteq X_S \subseteq C_S, h : X_S \rightarrow A_S, h|_{B_S} = f\}$$

and define the relation \leq on ρ to be:

$$(X_1, h_1) \leq (X_2, h_2) \Leftrightarrow X_1 \subseteq X_2, h_2|_{X_1} = h_1.$$

It is easy to check that \leq is a partial order on ρ and every chain such as $(X_\alpha, h_\alpha)_{\alpha \in I}$ has the upper bound $(\cup X_\alpha, \bar{h})$, where $\bar{h}(x_\alpha) = h_\alpha(x_\alpha)$ for $x_\alpha \in X_\alpha$. Suppose (X'_S, h') is the maximal element of ρ ensured by Zorn's Lemma. We shall show that $X'_S = C_S$. Assume $X'_S \neq C_S$. So, there exists $x \in C_S \setminus X'_S$. Define J to be $\{s \in S \in X'_S\}$. Obviously, two possible cases can occur: J is an ideal of S or it is empty.

case1. If J is an ideal then there exists an idempotent $e \neq 1$ of S such that $J = eS$. Since A is weakly injective, there exists an S -homomorphism $\bar{k} : S \rightarrow A$ such that $\bar{k}|_J = k$, for every S -homomorphism $k : J \rightarrow A$ with $k(j) = h'(xj)$, for every $j \in J$. So we have:

$$k(j) = \bar{k}(j) = \bar{k}(1)j = h'(xj). \quad (2)$$

Now we define the map $l : X' \cup xS \rightarrow A$ to be:

$$l(y) = \begin{cases} h'(y) & , y \in X' \\ \bar{k}(es) & , y \in xS. \end{cases}$$

The defined l is well-defined. Indeed, if $y_1 = y_2 \in X' \cup xS$, then we have:

(1) if $y_1 = y_2 \in X'$, then $h'(y_1) = h'(y_2)$. And so, $l(y_1) = l(y_2)$.

(2) if $y_1 = y_2 \in xS$, then $y_1 = xs_1, y_2 = xs_2$, for some $s_1, s_2 \in S$.

Also since e is a central idempotent, $xes_1 = xes_2$. That is, $l(y_1) = l(xs_1) = \bar{k}(1)es_1 = h'(xes_1) = h'(xes_2) = \bar{k}(1)es_2 = l(xs_2) = l(y_2)$.

(3) if $y_1 = y_2 = y \in X' \cap xS$, then $y \in xS$ implies that $y = xt$ for some $t \in S$. So, $y = xt \in X'$, and hence $t \in J$ follows from the definition of J . Now, (2) implies that $l(y) = l(xt) = h'(xt) = \bar{k}(1)t$, and if $y \in xS$ we have $l(y) = l(xt) = \bar{k}(1)et = \bar{k}(1)t$. Also, for every $y \in X' \cup xS$ and $s \in S$ we have:

(1) if $y \in X'$ then $l(ys) = h'(ys) = h'(y)s = l(y)s$.

(2) if $y \in xS$ then $l(ys) = l((xt)s) = l(x(ts)) = \bar{k}(1)ets = (\bar{k}(1)et)s = l(xt)s = l(y)s$.

Hence l is an S -homomorphism.

case2. If J is empty, then we define $l : X' \cup xS \rightarrow A$ as follows:

$$l(y) = \begin{cases} h'(y) & , y \in X' \\ \theta & , y \in xS. \end{cases}$$

Clearly l is a well-defined and an S -homomorphism. In both cases, l has been extended to h' , which is a contradiction. So $X'_S = C_S$ and A is injective. \square

Suppose that $S = G \dot{\cup} I$, and $h : S \rightarrow I^1$ is a nontrivial semigroup homomorphism with $h(1) = 1$. It is easy to check that every I^1 -act A turns to an S -act by the following action:

$$a.s = ah(s), a \in A, s \in S.$$

Theorem 3.6. *Let $S = G \dot{\cup} I$, and $h : S \rightarrow I^1$ be a nontrivial semigroup homomorphism with $h(1) = 1$. Then, A is an injective I^1 -act if and only if it is an injective S -act.*

Proof. Necessity. Consider the diagram

$$\begin{array}{ccc} B & \longrightarrow & C \\ f \downarrow & & \\ A & & \end{array}$$

of S -acts. To complete the diagram, we first consider A, B and C as the I^1 -acts and f as an I^1 -homomorphism. The existence of an I^1 -homomorphism $\bar{f} : C \rightarrow A$ which completes the diagram follows from the hypothesis.

$$\begin{array}{ccc} B_{I^1} & \xrightarrow{i} & C_{I^1} \\ f \downarrow & \swarrow \bar{f} & \\ A_{I^1} & & \end{array}$$

Now, for every $c \in C$ and $s \in S$ we have:

$$\bar{f}(c.s) = \bar{f}(c.h(s)) = \bar{f}(c)h(s) = \bar{f}(c)s.$$

This means that \bar{f} is an S -homomorphism and so A is injective as an S -act.

sufficiency. Suppose A is not injective as an I^1 -act. Then, by Proposition 3.1.20 of [5], A has a proper essential extension such as the I^1 -act B , meaning that A is a large I^1 -subact of B . Now, since every S -homomorphism $f : B \rightarrow C$ whose restriction $f|_A$ to A is a monomorphism can be considered as an I^1 -homomorphism and A is a large I^1 -subact of B , f is a monomorphism. Namely, A is a large S -subact of B or equivalently B is a proper essential extension of A . This contradicts with the injectivity of A as an S -act. \square

REFERENCES

- [1] Berthiaume, P.: *The injective envelope of S -sets*. Canad. Math. Bull., 10:261-273, (1967).
- [2] Golchin, A., Renshaw, J.: *Periodic monoids over which all flat cyclic right acts satisfy condition (P)*. Semigroup Forum 54(2): 261-263, (1997).
- [3] Golchin, A.: *On flatness of acts*. Semigroup Forum 67:262-270, (2003).
- [4] Gould, V.A.R.: *The characterization of monoids by properties of their S -systems*. Semigroup Forum 32:251-265, (1985).
- [5] Kilp, M., Knauer, U., Mikhalev, A.: *Monoids, Acts and Categories*. Walter de Gruyter, Berlin, New York, (2000).
- [6] Luedeman, J., McMorris, F., Sim, S.K.: *Semigroups for which every totally irreducible S -system is injective*. Comment. Math. Univ. Carolinae, 19:27-35, (1978).
- [7] Shoji, K.: *Injective hulls of certain right reductive semigroups as right S -systems*. Mem. Fac. Sei., Shimane Univ., 14:25-34, (1980).
- [8] Shoji, K.: *Completions and injective hulls of E -reflexive inverse semigroups*. Semigroup Forum, 36:55-68, (1987).
- [9] Skornjakov, L.A.: *On homological classification of monoids*. Sib. Math. J., 10:1139-1143, 1969 (in Russian), correction ibid. 12(1971) 689.
- [10] Weinert, H.J.: *S -sets and semigroups of quotients* Semigroup Forum, 19, 1-78, (1980).