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ON INJECTIVITY OF ACTS

Gh. Moghaddasi', M. Haddadi?, S. Delavari®

In this paper we investigate the actions of a monoid of the form
S = GUI, where G is a group and I is an ideal of S, on sets. So, naturally,
every S-act can be considered as an I'-act. The central question here is
that what is the relation between injective and weakly injective I'-acts and
injective and weakly injective S-acts?
We are going to respond this question and show that weakly (principally
or finitely generated) injectivivity of an S-act A is extendable from I*-acts
to S-acts. But for injectivity we need some more hypothesis.
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1. Introduction

One of the very useful notions in many branches of mathematics, as well
as in computer science, is the notion of actions of a semigroup or a monoid
on a set. The notion of injectivity is one of the important concepts in every
category, specially in the category of acts. Injective and weakly injective acts
were first studied by Bertheaume in [1], and later studied by many authors,
see [7, 8]. In [4], V. Gould introduced an infinite sequence of different injectiv-
ities between principally weakly injectivity and weakly injectivity. Principally
weakly injective acts were first considered by J. Luedeman, F. McMorris and
S.K.Sim [6].

A. Golchin and J. Renshaw in [2, 3] have studied actions of a monoid
of the form S = GUI, in which G is a group and [ is an ideal of S. They
show that, for these kind of actions, flatness is extendable from I'-acts to S-
acts. That is, an S-act A is flat if it is flat as an ['-act. Thus, it is a natural
question to ask that: what is the relation between (weakly) injective I'-acts
and (weakly) injective S-acts?
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Here we answer this question and we show that weakly injective property
is extendable from I'-acts to S-acts in general while injectivity needs some
more hypothesis.

First, we briefly recall some notions about S-acts. Given a monoid S, a
(right) S-act is a set A together with a function Ax S — A, mapping each (a, s)
to as, such that (i) (as)t = a(st) and (ii) al = a, for every a € A, s,t € S. A
subset B of an S-act A is called an S-subact of A, denoted by B < A, whenever
bs € B, for every b € B and s € S. Specially, considering, naturally, S as an
S-act, the S-subacts of S are exactly the right ideals of S. Amap f: A — B
between two S-acts A and B is called an S-map or an S-homomorphism if, for
each a € A, s € S, f(as) = f(a)s. The usual definitions for monomorphisms,
eptmorphisms and ismorphisms hold. We denote the category of all S-acts
and S-homomorphisms between them by Act-S.

An S-act A is said to be finitely generated if A = |J;_, a;S, for some
n € N and a; € A. So a right ideal I of a monoid S is called a finitely
generated ideal if it is finitely generated as an S-subact of S. Also A is called
a cyclic S-act if A = a8, for some a € A. A right ideal I of S is said to be
principal if it is a cyclic S-subact of S.

An element 6 in an S-act A with s = 0, for all s € S, is called a zero or
a fized element of A.

An element s € S is called a regular element if sxs = s, for some x € S.
One calls S a regular monoid if all its elements are regular.

An element e € S is called idempotent if €2 = e. The set of all idempotent
elements of S is denoted by E(S). An element s € S is called left cancellable
if sr = st, for r,s € S, implies r = t. An element a € A is called divisible by
s € S if there exists b € A such that bs = a.

An S-act A is called injective if for every S-monomorphism i : B — C'
and every S-homomorphism f : B — A, there exists an S-homomorphism
f:C — Awith fi = f. A monoid S is called self-injective if it is injective
as an S-act. Also an S-act A is called (principally, finitely generated) weakly
injective if for every (principal, finitely generated) ideal K of S and any S-
homomorphism f : K — A, there exists an S-homomorphism f:S — A which
extends f, that is, f|x = f.

An S-subact A of an S-act B is called large in B if any S-homomorphism
f: B — C whose restriction f|4 to A is a monomorphism, is itself a monomor-
phism. An extension B of A with the embedding f : A — B is said to be an
essential extension if Imf is large in B.

If the monoid S has a zero element 0, then each S-act has a zero element,
too. From now on, for a monoid S with a zero element 0, we consider S-
acts with unique zero 6, that is A0 = {0}, together with zero preserving
S-homomorphisms between them. The category so obtained is denoted by
ACto—S.

Throughout this paper, we take S to be a monoid of the form S = GUI, where
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G is a group and I is an ideal of S and I' = TU{1}. It is worth noting that,
since I is a subsemigroup of S, every S-act can be considered as an I'-act .

Now, we mention the following theorems ( Theorems II1.3.2 and II1.4.2
from [5]) used repeatedly through out the paper. But, first see the following
definition:

Definition 1.1. [5] Let A be an S-act and a € A. Then, by A\, we denote the
S-homomorphism from S into A defined by A\.(s) = as, for every s € S, and
by As the S-homomorphism from S into S with \s(t) = st for every t € S.
The kernel of A, is called the kernel equivalence (that is s(ker),)s’ if and only

if Aa(8) = Ao(8) for s, s €S).

Theorem 1.1. [5] The following statements are equivalent for any S-act A

over a monoid S':

(1) The S-act A is principally weakly injective,

(2) For every s € S and every S-homomorphism f : sS — A, there exists
z € A such that f(x) = zx for every x € sS;

(3) For every s € S, a € A with kerAs < ker\,, one has that a is divisible by
s in A, that is, a = zs for some z € A.

Theorem 1.2. [5] An S-act A is (finitely generated) weakly injective if and
only if for every S-homomorphism f: K — A, where K C S is a (finitely
generated) right ideal, there exists an element z € A such that f(k) = zk for
each k € K.

2. weakly injective S-acts

In this section, we show that if S = GUI is a monoid, then an S-act A is
(principally, finitely generated) weakly injectivity if it is (principally, finitely
generated) weakly injectivity as an I'-act. We then give a criterion to recognize
(principally, finitely generated) weakly injective S-acts.

Lemma 2.1. Let S be a group. Then every S-act is principally weakly injec-
tive.

Proof. Let A be an S-act and a € A. Then (¢,t') € ker), if (¢t,t') € ker),,
for every s € S. Indeed, if (t,t') € ker)s, then As(t) = A\s(') (st = st’), and
so s 'st = s7'st’. Therefore, at = at’, meaning that (¢,¢') € ker),. Hence
kerAs < ker),, for every s € S,a € A. Thus, for every s € S,a € A, we
have a = a(s™'s) = (as™')s, meaning that every element of A is divisible by
every element of S. Consequently, by Theorem 1.1, A is principally weakly
injective. 0

Theorem 2.1. Let S = GUI be a monoid and A be an S-act. Then A is prin-
cipally weakly injective as an S-act whenever it is principally weakly injective
as an I*-act.
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Proof. Since A is principally weakly injective as an I'-act, by Theorem 1.1,
there exist b € A such that a = bi, for some i € I' and a € A with ker); <
kerA,. Also, Lemma 2.1 ensures that A is principally weakly injective as a
G-act. So, for each g € G and a € A with ker); < ker),, there exists ¢ € A
such that a = cg. Hence, for s € S and a € A with ker\, < ker),, there exists
b € B such that a = bs. That is, A is principally weakly injective. 0

Corollary 2.1. (1) Let S = GUI be a monoid. Then, principally weakly
injectivity of all I'-acts implies that all S-acts are principally weakly injective.

(2) For all monoids of the form S = GU{0}, if an S-act A is principally
weakly injective as a {0,1}-act then it is principally weakly injective as an
S-act.

Theorem 2.2. Let S = GUI be a monoid and A be an S-act. Then, A is
(finitely generated) weakly injective as an S-act whenever it is (finitely gener-
ated) weakly injective as an I'-act.

Proof. Let J be a (finitely generated) right ideal of S and f : J — A be
an S-homomorphism. We consider f as an I'-homomorphism. So, A being
(finitely generated) weakly injective as an I'-act, by Theorem 1.2, implies
that there exists a € A such that f(j) = aj for every j € J. Also, for an
S-homomorphism f : S — A we have f(s) = f(1.s) = f(1)s. Hence, for every
S-homomorphism f : K — A, where K C S is a (finitely generated) right
ideal, there exists an element z € A such that f(k) = zk, for every k € K.
Therefore, the result follows from Theorem 1.2. O

By the above theorem, we get a useful criterion to check (finitely gener-
ated) weakly injectivity of S-acts. See the following examples.

Example 2.1. (1) Let S = GUI be a monoid. Then, (finitely generated)
weakly injectivity of all I'-acts implies that of all S-acts.

(2 )Let S = GU{0}. Then, an S-act is (finitely generated) weakly injec-
tive, if it is (finitely generated) weakly injective as an {0, 1}-act

(3) Let S = (Q,.) be the monoid of all rational numbers with the usual
multiplication. Consider S = (Q — {0})U{0}, where G = Q — {0} is a group
and I = {0} is an ideal of S. The monoid I' = {0,1} has only one proper
ideal, that is K = {0}. For an I'-act A with a unique fived element 0, there
exists only one I'-homomorphism from K into A, f: K — A, with f(0) = 6.
Now we define I'-homomorphism f: I' — A to be f(0) = f(1) = 6. Then we
have the following commutative diagram.

K1
s f
A

That is A is (principally, finitely generated) weakly injective. Hence all
I'-acts with a unique fized element 0 are (principally, finitely generated) weakly
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injective. So, by Theorems 2.1 and 2.2, all Q-acts with a unique fixed element
0 are (principally, finitely generated) weakly injective.

(4) Analogously, one can see that all R-acts with a unique fized element 0
are (principally, finitely generated) weakly injective, in which R is the monoid
of all real numbers with usual multiplication.

We know that, every group is a regular monoid. Now, if I! is a regular
monoid then S = GUI is a regular monoid, too. Therefore, by Theorem 4.1.6
of [5], we have the following corollary.

Corollary 2.2. Let S = GUI be a monoid. Then, all S-acts are principally
weakly injective whenever I' is a reqular monoid.

Definition 2.1. A monoid S is called weakly left zero if for every s € S there
exist t € S such that st = s.

Definition 2.2. A monoid S is called a kernel monoid if it is weakly left zero
and for every s € S there exists t € S such that ker\s < ker;.

Theorem 2.3. Let S = GUI be a monoid. Then every S-act is principally
weakly injective whenever I' is a kernel monoid and principally weakly self
mjective.

Proof. Since I' is a kernel monoid, for every i € I', there exists j € I' such
that ker\; < ker); and ij = . Also, I' is principally weakly self injective,
so, by Theorem 1.2, j is divisible by 7. That is, there exists z € I' such that
j = xi. Now, we have ¢ = 1xt, meaning that ¢ is a regular element. Therefore,
I' is a regular monoid. Consequently, S is regular and, by Theorem 4.1.6 of
[5], every S-act is principally weakly injective. O

Corollary 2.3. Let S = GUI be a monoid and I' be a principally weakly self
injective monoid. If I' is a left cancelable and weakly left zero monoid then
every S-acts is principally weakly injective.

Proof. By Theorem 2.3, it is enough to show that ker); < ker); for every
i,7 € I'. But it easily follows from the left cancelablity of I'. O

3. injective S-acts

In this section, we first show that injectivity is extendable from I'-acts
to S-acts in the category of S-acts with a unique zero and zero preserving .S-
homomorphisms between them, denoted by Acto-S, and we give some exam-
ples. We then provide some properties under which injectivity can be extended
from I'-acts to S-acts in general. We also show that if there exists a nontrivial
semigroup homomorphism h : S — I'' with i(1) = 1, then the injective S-acts
are precisely the injective I'-acts. First we mention the following theorems (
Theorems 3.10 and I11.1.20 and 4.4 from [4, 5, 10]).
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Theorem 3.1. [4] The following conditions are equivalent for an S-act A:
(i) A is injective,
(i1) any consistent system of equations with constants from A has a so-
lution in A.

Theorem 3.2. [5] An act is injective if and only if it has no proper essential
extension.

Theorem 3.3. [10] For a semigroup S, each S-act A is weakly injective if and
only if every right ideal I of S has an idernpotent generator.

Remark 3.1. Given a cyclic S-act xS in which S = GUI, one can easily check
that x1 is an S-subact of xS while xG is not. Suppose that m € xINzG. Then
m=uxg,9 € G and m € xI. Since xI is subact of xS, (xg)g~! = (g9~ ") =
x € xl. Thus, xS C xI. Obuviously, xI C xS, and hence xI = xS. So if
xINxG # @ then xl = xS.

Theorem 3.4. Let S = GUI be a monoid with zero element 0, and GI = {0}.
Then, each S-act A € Acto-S is an injective S-act whenever it is injective as
an I'-act.

Proof. Suppose A is an injective I'-act. Since A contains a zero #, by Theorem
1 of [9], it is enough to show that A is injective with respect to the inclusions
into cyclic right acts. So, we prove that every S-homomorphism f: B — A,
in the following diagram, is extended to f.

By —> (25)s
fL 7 (1)
As

But, the following possible cases can occur.

casel. If xI N xG # @ then, by the above remark, we have xI =
xS. Now, considering 25, A and B as I'-acts and i, f as I'-homomorphisms,
we get the following commutative diagram which is completed by an I'-
homomorphism f : .5 — A, since A is an injective I'-act.

B[l ; ([ES)[l

s

Ap

Now, we show that f : S — A is in fact an S-homomorphism and commutes
Diagram 1 of S-acts. Because, for every s € S and zt € xS = xI, we have:

(1) if s € I then f((xt)s) = f(xt)
(2) if s € G then f((xt)s) = f(a(

ts)) = f(x)ts = f(wt)s.
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case2. If 2] N xG = @ then injectivity of A as an I'-act implies the
following commutative diagram of I'-acts and I*-homomorphisms.

B[l ; (ZES)[l

/’ g

Ap

Now, we define the map f : S — A to be:

= J g(zs) ,xsexl
f(xs)—{ 0 ,xs € zG.

Clearly, f is well-defined. Also for every zs € xS and t € S we have:

(1) If t € I,zs € xf then f((ws)t) = f(xz(st)) = g(z(st)) = g((ws)t) =
g(xs)t = f(xs)t. B B B

(2) If t € I, s € xG then f((ws)t) = f(x(st)) = f(2.0) = g(2.0) = g(0.5) =
QAS = QAst = f($8)t. 3 B

(3) If t € G,ws € xG then f((zs)t) = f(z(st)) = Oy = Oast = fas)t.

(4) I t € Gus € af then f((zs)t) = flal(st) = gla(st) = gla)(st) =
(g(x)s)t = glws)t = F(zs)t
These mean that f is an S-homomorphism.

0

The above theorem gives a useful criterion to find the injective S-acts,
where S = GUI. Specially, if S = GU{0}, then clearly G{0} = {0}. Now, the
above theorem ensures that an S-act is injective if it is injective as {0, 1}-act.
See the following corollary.

Corollary 3.1. (1) Let S = GU{0}. Then, injectivity of each A € Acto-S as
a {0, 1}-act implies the injectivity of it as an S-act.

(2)If all I'-acts in the category Acto-S are injective then all S-acts are
mjective.

Example 3.1. (1) All the Q-acts are injective, in which Q is the rational
numbers with the usual multiplication. Indeed, one can consider Q = (Q —
{0} U{0}, where G = Q — {0} is a group, I = {0} is an ideal of S, and I' =
{0,1}. Now, by Corollary 3.1, it is enough to show that every Q-act B is an
injective I'-act. But, since B contains the zero element 0, by Theorem 1 of [9],
it 1s enough to show that B is injective with respect to the inclusions into cyclic
acts. It worths noting that there are only two non-isomorphic cyclic I'-acts.
One is the trivial ['-act © = {0} and the otheris A = {a,b| a0 = b0 = b}. So,
there exists only one proper inclusion map {b} — {a,b}. Now, for every I'-
homomorphism f : {b} — B,(f(b) = 0p), there exists an I'-homomorphism
f : {a,b} — B defined by f(a) = f(b) = g, which commutes the following
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diagram.
(b} —= {a,b)
PR
B

Clearly, B is injective relative to i, : {0} — {0} and iy : {a,b} — {a,b}. That
is, B is injective, and hence all I'-acts are injective.

(2) Analogously, one can see that all the R-acts are injective, in which R
is the monoid of the real numbers with usual multiplication.

Theorem 3.5. Let S = GUI be a monoid whose idempotents are central.
Then, every S-act with a unique zero is injective whenever every I'-act is so.

Proof. Let every I'-act be injective. Then, Proposition 4.4 of [10], ensures
that every ideal of I' is generated by an idempotent. Hence, every ideal of S
is generated by an idempotent. So, weakly injectivity of every S-acts follows
from Proposition 4.4 of [10]. Now, we show that every diagram

Bt

s f

A
of S-acts is completed by f. To do so, consider

p={(Xs,h)|Bs € Xg CCs,h: Xg— Ag,h|lp, = f}
and define the relation < on p to be:

(X1, h1) < (X, he) & X1 C Xy, holx, = 1.

It is easy to check that < is a partial order on p and every chain such as
(X4, ha)aer has the upper bound (UX,, ), where h(z,) = ha(24) for 24 € Xq.
Suppose (X, h') is the maximal element of p ensured by Zorn’s Lemma. We
shall show that Xg = Cs. Assume Xg # Cs. So, there exists z € Cs\ X.
Define J to be {s € S € X;}. Obviously, two possible cases can occur: J is
an ideal of S or it is empty.

casel. If J is an ideal then there exists an idempotent e # 1 of S such
that J = eS. Since A is weakly injective, there exists an S-homomorphism
k : S — A such that k|; = k, for every S-homomorphism k : J — A with
k(j) = h'(zj), for every j € J. So we have:

k(j) = k(j) = k(1)j = ' (7). (2)
Now we define the map [ : X' U xS — A to be:
n ye X/
I(y) = { (y) vy

k(es) ,y € xS.



On injectivity of acts 197

The defined [ is well-defined. Indeed, if y; = o € X' U xS, then we have:

(1) if y1 = yo € X', then ' (y1) = h'(y2). And so, I(y1) = l(y2).

(2) if y1 = yo € xS, then y; = x$1,y2 = xsq, for some s1,s9 € S.
Also since e is a central idempotent, xes; = wesy. That is, ((y1) = l(zs1) =
k(1)es; = h'(wesy) = b (wesy) = k(1)esy = l(xsy) = I(ya).

(3)ify1 =yo =y € X' NS, then y € xS implies that y = xt for some
teS. So,y=uaxt € X', and hence t € J follows from the definition of J.
Now, (2) implies that I(y) = l(xt) = h/(xt) = k(1)t, and if y € S we have
I(y) = l(xt) = k(1)et = k(1)t. Also, for every y € X’ UxS and s € S we have:

(1) if y € X’ then l(ys) = h'(ys) = W (y)s = l(y)s.

(2) if y € xS then I(ys) = I((xt)s) = l(z(ts)) = k(1)ets = (k(1)et)s =
[(zt)s = U(y)s.

Hence [ is an S-homomorphism.
case2. If J is empty, then we define [ : X' UxzS — A as follows:

_ W) yeX
l(y>_{9 Y € xS.

Clearly [ is a well-defined and an S-homomorphism. In both cases, [ has been
extended to h’, which is a contradiction. So Xg = Cg and A is injective. [

Suppose that S = GUI, and h : S — I' is a nontrivial semigroup
homomorphism with h(1) = 1. It is easy to check that every I'-act A turns to
an S-act by the following action:

a.s =ah(s),a € A;s € S.

Theorem 3.6. Let S = GUI, and h : S — I' be a nontrivial semigroup
homomorphism with h(1) = 1. Then, A is an injective I'*-act if and only if it
is an injective S-act.

Proof. Necessity. Consider the diagram
B——C
/|
A

of S-acts. To complete the diagram, we first consider A, B and C as the I'-
acts and f as an I'-homomorphism. The existence of an I'-homomorphism
f : C — A which completes the diagram follows from the hypothesis.

B]l ;- CII

s f

Now, for every ¢ € C' and s € S we have:
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fle.s) = fleh(s)) = f(e)h(s) = f(c)s.
This means that f is an S-homomorphism and so A is injective as an
S-act.

sufficiency. Suppose A is not injective as an I'-act. Then, by Proposition

3.1.20 of [5], A has a proper essential extension such as the I'-act B, meaning
that A is a large I'-subact of B. Now, since every S-homomorphism f : B — C
whose restriction f|4 to A is a monomorphism can be considered as an I'-
homomorphism and A is a large I'-subact of B, f is a monomorphism. Namely,
A is a large S-subact of B or equivalently B is a proper essential extension of

A. This contradicts with the injectivity of A as an S-act. OJ
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