
U.P.B. Sci. Bull., Series C, Vol. 84, Iss. 3, 2022 ISSN 2286-3540

AUTOMATIC GENERATION ALGORITHM OF UNITY

GAME OBJECT BOUNDING BOX BASED ON MORTON

CODE

Huawei MEI1, Chenyao FAN2, Ronghua ZHANG3*

Aiming at the problem that bounding boxes need to be defined manually in

Unity real-time interactive program, an automatic generation algorithm of

hierarchical bounding boxes is proposed. Firstly, the advantages and feasibility of

hierarchical bounding box automatic generation algorithm in static model in

interactive application emphasizing real-time are analyzed theoretically; Then,

sphere bounding box and AABB bounding box are selected, and the hierarchical

bounding box tree is constructed in parallel through GPU through the top-down

construction strategy and the maximum difference bit division method based on

Morton code; Finally, the leaf node is determined and the AABB bounding box is

filled into the hierarchical bounding box tree through post order traversal. This

method is implemented as a Unity plug-in. The experimental results show that

compared with the collider manually defined by Unity, this method reduces the

tedious work of manually defining the bounding box during modeling and realizes

the real-time automatic generation of the bounding box; Compared with the existing

automatic bounding box generation algorithm, this method can more accurately

describe the shape features of 3D model and has higher dynamic performance.

Keywords: hierarchical bounding box; Morton code; GPU parallel processing;

maximum difference bit division; automatic generation algorithm

1. Introduction

As a key step in the preprocessing stage of the collision process, the

automatic bounding box generation algorithm is widely used in 3D games, cloth

simulation, virtual fitting, and other scenes to quickly build the collider and

enhance the fidelity and immersive experience of the scene. Hierarchical

bounding box technology can improve the robustness of the collision effect from

the perspective of strategy and algorithm. With the development of virtual reality

technology, higher requirements are put forward for the real-time and fidelity of

collision effect. In Unity, to achieve fast and effective collision, first manually

define a set of sphere or capsule colliders around a complex static model. A

1 Prof., School of Control and Computer Engineering, North China Electric Power University,

China, e-mail: fn123@ncepu.edu.cn
2 M.S., School of Control and Computer Engineering, North China Electric Power University,

China, e-mail: fancy_chenyao@163.com
3 Eng., School of Control and Computer Engineering, North China Electric Power University,

China, e-mail: zronghua88@aliyun.com

mailto:zronghua88@aliyun.com

16 Huawei Mei, Chenyao Fan, Ronghua Zhang

collider cannot accurately describe the state of static model collision. For finer

processing, multiple colliders can be manually placed on a 3D model. However,

placing multiple colliders on a complex 3D model is a typically time-consuming

and cumbersome task. The definition of colliders by manual has some problems,

such as low efficiency and being prone to errors.

To solve the above problems, this paper designs an automatic generation

algorithm of hierarchical bounding box based on Morton code. This method uses

the top-down method based on Morton code to construct the BVH tree and then

processes each non-leaf node in parallel to further improve the performance of the

algorithm. It can generate a set of hierarchical bounding boxes in real-time, and

can realistically describe the shape of the model.

At present, the recognized bounding box generation algorithms use

hierarchical bounding box technology [1] to encapsulate and store object

information. Hierarchical bounding box technology (BVH) is used to combine

bounding boxes into a tree structure, and the time complexity is reduced from
2()O n to (log)O n [2]. Hierarchical bounding box technology is convenient to

improve the efficiency of collision elimination and improve the performance of

the algorithm. Commonly used bounding boxes include sphere, AABB (axis-

aligned bounding box), OBB (oriented bounding box), and k-DOPs (discrete

orientation polymers) [3]. There are three construction strategies of hierarchical

bounding box [4]: top-down construction strategy, bottom-up construction

strategy, and incremental construction strategy. Compared with the other two

construction strategies, the top-down method adopted in this paper has higher

execution efficiency. The top-down method is the earliest construction method

used. Lauterbach et al. [5] proposed a hierarchical bounding box construction

method (LBVH) based on Morton code, which changed the hierarchical bounding

box construction problem into a sorting problem and realized high-quality

bounding boxes at a very low cost. Pantaleoni et al. [6] extended this algorithm

and improved it by using the spatial correlation of hierarchical grid decomposition

(HLBVH), reducing the computational overhead and memory usage. These

algorithms improve the construction and traversal efficiency of BVH to a certain

extent. This paper draws lessons from the core idea of the Morton code

construction method. The bottom-up method mainly highlights the global optimal

segmentation plane. This method starts from the leaf node and combines the

elements in pairs according to different combination methods to form the internal

nodes of the hierarchical bounding box until the final root node is completed. Hu

et al. [7] proposed a method using local density clustering, which constructs a

hierarchical bounding box on the GPU by analyzing the distribution of entity

density. Many scholars have studied the generation algorithm of a single bounding

box [8-11], but in a complex environment, the model shapes are different, and the

single bounding box algorithm cannot meet the requirements. Therefore, many

Automatic generation algorithm of unity game object bounding box based on Morton code 17

scholars have studied the hybrid bounding box [12-14] algorithm. Liu Xiaoping et

al. [15] proposed a sphere OBB hybrid hierarchical bounding box structure. This

method can shorten the update time of the bounding box and improve the

detection efficiency, but it is not suitable for complex structure models. Sun et al.

[16] proposed a sphere-k-dops hybrid hierarchical bounding box structure, which

has strong real-time performance. Guo et al. [17] proposed a sphere-k-dops hybrid

hierarchical bounding box structure based on it, but these two methods affect the

automatic generation efficiency of hybrid hierarchical bounding boxes due to the

slow update of k-DOPs. The bottom-up method can often construct high-quality

hierarchical bounding boxes, but it is not as fast as the top-down method. To

obtain higher quality bounding box, an incremental method is proposed based on

the first two. Its main research direction also focuses on the optimization strategy.

Meister and Bitner [18] completed the incremental construction method of GPU

on this basis and improved the construction speed. For dynamically changing

scenes, the incremental method will be better, but the cost is lower execution

speed, so it is difficult to achieve real-time. In 2019, Kim et al. [19] designed and

implemented the automatic generation algorithm of the static model using Unity

plug-in but did not realize GPU parallel processing in the automatic generation

process, and the automatic generation efficiency of the collider is not ideal.

Fig. 1 The effect of a bounding box defined manually by Unity

This paper presents a fast and efficient algorithm for the automatic

generation of hierarchical bounding boxes. A set of BVH structure colliders are

automatically generated for three-dimensional objects through the algorithm, and

the BVH tree is generated based on Morton Code. For non-leaf nodes, the AABB

bounding box is used to quickly eliminate the area without collision and improve

the elimination efficiency; The leaf node adopts a sphere bounding box. And

develop it as a plug-in of Unity, which is widely used in real-time game

development. Fig. 1 shows the model effect of manually defining 27 sphere

bounding boxes for a simple static model in 4 hours. There is still a situation that

the accuracy of the bounding box cannot accurately describe the shape of the

18 Huawei Mei, Chenyao Fan, Ronghua Zhang

model. This paper gives the performance improvement of this method by

comparing it with the method of manually defining bounding boxes by Unity and

literature [19].

2. Material and Methods

Compared with most methods of constructing bounding boxes for each

triangular surface of the model, this paper proposes a method to simplify the

model by constructing a group of BVH structural bounding boxes. Firstly, an

AABB bounding box is defined for the whole model as the root node of the BVH

tree, and then the whole is divided into multiple voxels according to the defined

grid structure, and a sphere bounding box is defined for each voxel. The sphere

bounding box is used as the leaf node of the BVH tree, and each non-leaf node is

filled with an AABB bounding box through the upward index of the tree structure

for collision elimination.

2.1 Selection of bounding box

Table 1 shows the functional comparison of common bounding boxes. The

sphere bounding box has a simple structure, but its tightness is poor. It is suitable

for scenes with a large amount of rotation. OBB is much stronger in compact than

AABB and sphere, but complex construction methods will reduce the real-time

performance. K-DOPs are very important for the selection of K values. It needs

many tests to select the best K value, which is more troublesome. Although the

tightness of AABB is not as good as OBB, the construction method is simple and

can better meet the real-time requirements in interactive programs. Therefore, this

paper chooses to use AABB and sphere bounding box to construct BVH. Build

AABB bounding box for non-leaf nodes and sphere bounding box for leaf nodes,

as shown in Fig. 2.

The Root Node

Fig. 2 AABB-Sphere Hierarchical bounding box

Table 1

Comparison of common bounding box performance

Type of bounding box Difficulty of construction Tightness Efficiency of renewal

Sphere easy medium no need to update

Automatic generation algorithm of unity game object bounding box based on Morton code 19

AABB easy medium fast

OBB complex closely slow

k-DOPs medium closely slow

2.2 Constructing bounding box based on Morton code

a. Degree of tree

The common choices of hierarchical bounding box trees include binary

tree, trigeminal tree, quadtree, and octree. With the increase of the degree of the

tree, the depth of the tree becomes smaller, and the overall iteration times of

constructing the hierarchical bounding box tree will also become smaller, which

can reduce the construction time overhead of the hierarchical bounding box tree to

a certain extent [20]. However, the degree of hierarchical bounding box tree

becomes larger, which often leads to more intersections between bounding boxes.

As shown in Fig. 3, A and B represent two AABB hierarchical bounding box trees

of objects m and N respectively. Region D of M and region a of N intersect. The

intersection test process of the binary tree only needs 9 intersection tests, but

quadtree needs 17 intersection tests. It is not that the greater the degree of the tree,

the better. The existing algorithms generally use binary tree structure and dynamic

multi-tree structure. In this paper, the binary tree structure is adopted. The

expression of the tree structure is simple, which is convenient for the intersection

test in the process of collision. When the top-down construction method is

adopted, only one segmentation surface is needed to realize the division of parent

nodes.

a b

c d

a b

c d

A

a b c d

c da b

B

c da b

M

N

Fig. 3 The effect of degree of tree on efficiency

20 Huawei Mei, Chenyao Fan, Ronghua Zhang

b. Top-down construction strategy

The top-down method is the most widely used hierarchical bounding box

construction method. This method is simple and easy to implement. The steps are

as follows: first, construct the bounding box for the whole static model as the root

node, subdivide the static model into small geometry according to certain rules,

and construct the bounding box for the geometry, which can also be subdivided

into smaller geometry. The construction method of subdividing in this order is

similar to the tree structure, and the leaf nodes constitute the smallest geometric

element of the deformable body. The key to this method is how to correctly divide

a given set into two subsets. In this paper, the maximum difference bit division

method based on Morton code is used to construct a binary tree. The pseudo-code

tree node of the top-down construction strategy is shown in Algorithm 1. The

Morton codes are quickly sorted, and then the elements are placed in a spatially

coherent manner. Then the BVH is constructed by recursively dividing the range

of the current root node.

Algorithm 1: TreeNode

Input: Sphere[], AABB

Output: root

Begin

Map all spherical coordinates to a cube of length 1 with the smallest point at the origin

Converts spherical coordinates in space to Morton codes

Quick sort of Morton code

The position of each leaf node was determined according to the maximum difference bit

division of Morton code

Get a hierarchical bounding box tree with only leaf nodes

The AABB bounding box was filled by post-order traversal

return root

End

c. Maximum difference bit division based on Morton code

For the Morton code at a given point, its position is defined as

0 0 0 1 1X Y Z X Y in the unit cube. Where the X coordinate of the point is

0 1 20.X X X , the Y coordinate is 0 1 20.Y YY and the Z coordinate is 0 1 20.Z Z Z .

The generation method of Morton code is shown in Fig. 4. According to the above

method, first, calculate the Morton code according to the center point of each

entity. The generation algorithm of Morton code is shown in Algorithm 2.

Morton3D method first converts the x, y, and z components of the coordinates to

be processed into integers, then expands the 10-bit integers to 30 bits by

ExpandBits method, and finally performs an operation to obtain the required

Morton code. Specifically, for the current root node of the coverage range [i, j],

the maximum difference between Morton codes in the range [i, j] is found, which

is recorded as γ.

Automatic generation algorithm of unity game object bounding box based on Morton code 21

Fig. 4 Schematic diagram of Morton code generation method

Then the left child node of the current node is overwritten [i, γ], Right

child node overlay [γ+1, j]. This step needs to be performed recursively until the

current node contains only one element, and then the construction process of BVH

is completed. The schematic diagram of this construction method is shown in Fig.

5.

0

0

0

0

1

0 1 2 3 4 5 6 7

0

0

0

1

0

0

0

1

0

0

0

0

1

0

1

1

0

0

1

1

1

1

0

0

0

1

1

0

0

1

1

1

1

1

0

0

0

0

0

1

0 1 2 3 4 5 6 7

0

0

0

1

0

0

0

1

0

0

0

0

1

0

1

1

0

0

1

1

1

1

0

0

0

1

1

0

0

1

1

1

1

1

0

0

0

0

0

1

0 1 2 3 4 5 6 7

0

0

0

1

0

0

0

1

0

0

0

0

1

0

1

1

0

0

1

1

1

1

0

0

0

1

1

0

0

1

1

1

1

1

0

0

0

0

0

1

0 1 2 3 4 5 6 7

0

0

0

1

0

0

0

1

0

0

0

0

1

0

1

1

0

0

1

1

1

1

0

0

0

1

1

0

0

1

1

1

1

1

0

0

0

0

0

1

0 1 2 3 4 5 6 7

0

0

0

1

0

0

0

1

0

0

0

0

1

0

1

1

0

0

1

1

1

1

0

0

0

1

1

0

0

1

1

1

1

1

0
Fig. 5 The diagram is divided according to the maximum difference bits between Morton codes

Algorithm 2: Morton3D

Input: px, py, pz(A 10-bit unsigned integer)

Output: MortonCode(30 bit unsigned integer)

Begin

x = Mathf.Min(Mathf.Max(x * 1024.0f, 0.0f), 1023.0f);

y = Mathf.Min(Mathf.Max(y * 1024.0f, 0.0f), 1023.0f);

z = Mathf.Min(Mathf.Max(z * 1024.0f, 0.0f), 1023.0f);

uint xx = ExpandBits((uint)x);

22 Huawei Mei, Chenyao Fan, Ronghua Zhang

uint yy = ExpandBits((uint)y);

uint zz = ExpandBits((uint)z);

return xx * 4 + yy * 2 + zz;

End

The code for calculating the maximum difference is shown in Algorithm 3.

First, take the minimum and the maximum number of Morton code groups to be

segmented, perform XOR operation on them, and then find the longest common

bit. Then conduct a binary search to find the element whose first bit is different

from the previous element.

Algorithm 3: FindSplit

Input: sortedMortonCodes, first, last

Output: split(Point of division)

Begin

uint firstCode = sortedMortonCodes[first];

uint lastCode = sortedMortonCodes[last];

if (firstCode == lastCode)

 return (first + last) >> 1;

int commonPrefix = LeadingZeros(firstCode ^ lastCode);

int split = first;

int step = last - first;

do{

 step = (step + 1) >> 1; // exponential decrease

 int newSplit = split + step; // proposed new position

 if (newSplit < last) {

 uint splitCode = sortedMortonCodes[newSplit];

 int splitPrefix = LeadingZeros(firstCode ^ splitCode);

 if (splitPrefix > commonPrefix)

 split = newSplit; // accept proposal

 }}

while (step > 1);

return split;

End

d. GPU parallel processing

The basic idea of using GPU parallel processing [21] has been described in

Fig. 4. The parallel construction of BVH includes four parts: assigning a Morton

code to each entity; Sort Morton codes; Establishing a binary base tree and

assigning an AABB bounding box to each non-leaf node. The BVH constructed in

this paper is a full binary tree structure, that is, if there are n leaf nodes, there will

be n-1 non-leaf nodes. For each non-leaf node, parallel processing is performed on

the GPU. First, determine the child nodes of each non-leaf node. When dividing

according to the maximum difference of Morton code, because the same ancestor

has the same prefix, different ancestors have different prefixes. With this idea, the

direction of leaf nodes can be determined quickly. After finding the direction of

leaf nodes, the prefix property of descendant nodes can still be used to further

Automatic generation algorithm of unity game object bounding box based on Morton code 23

determine the range of non-leaf nodes, and then leaf nodes can be determined.

Then, according to the determined leaf node, find the prefix of the leaf node, and

use the binary search to find the position where the last bit changes for the first

time as the segmentation point. Finally, the whole parallel construction process is

completed.

3. Results

3.1 Experimental environment

The automatic generation algorithm of the hierarchical bounding box

proposed in this paper is implemented as a Unity plug-in, and the automatic

generation test of the bounding box for various 3D objects is carried out. The

experiment was carried out in the computing environment shown in Table 2. The

method of literature [19] is implemented in the current experimental environment

to ensure that the practice environment is consistent. The experimental model

used in this paper is shown in

Table 3.
Table 2

Table of experimental environment parameters

Components Instructions

OS Windows 10 Family Chinese version

Unity Unity 2019 2.3 f1

CPU Intel Core i5 10400F

RAM 16GB

GPU NVIDIA GeForce GTX1650

VRAM 8GB

Table 3

The experimental model

Model names Stanford bunny model Dragon model

Model figure

The number of vertices 35295 104872

The number of faces 70580 209227

3.2 Effect demonstration

Fig. 6 shows the automatic generation effect of the bounding box of the

experimental model with an accuracy of 1 * 1 * 1, 3 * 3 * 3, and 5 * 5 * 5. Fig. 7

shows the effect diagram of a group of bounding boxes automatically generated

after customizing the voxel accuracy for other static models with different

structures. The original static model is on the far left, the complete effect of the

24 Huawei Mei, Chenyao Fan, Ronghua Zhang

AABB sphere bounding box is in the middle, and the sphere bounding box effect

used to realize collision and describe the characteristics of the model is on the

right.

Fig. 6 The experimental model automatically generates the effect pictures of bounding boxes with

different precision

Fig. 7 Other models automatically generate bounding box renderings

The experimental results show that the bounding box automatically

generated by this algorithm is suitable for static models with different structures,

and with the improvement of accuracy, it can describe the characteristics of the

model more accurately. When there is only one bounding box, there is only one

leaf node, so there is no AABB bounding box, only one bounding sphere; In the 3

* 3 * 3 grid, there are 27 leaf nodes and 26 non-leaf nodes, that is, there are 27

bounding spheres and 26 AABB bounding boxes. This paper compares the

dynamic performance time of the manually added Collider in Unity, the method

of reference [19], the automatic generation collider without GPU parallel

Automatic generation algorithm of unity game object bounding box based on Morton code 25

processing, and after GPU parallel processing. Table 4 shows the comparison of

dynamic performance time of the four methods under different accuracy.
Table 4

Comparison of test model performance of collider with different structure

Methods Grid structure Model name

Bunny model Dragon model

Unity defines bounding boxes

manually
3 * 3 * 3 0.211s 0.247s

Methods of literature [19] 1 * 1 * 1 0.019s 0.021s

3 * 3 * 3 0.021s 0.022s

5 * 5 * 5 0.027s 0.027s

Our methods

(No GPU parallel processing)

1 * 1 * 1 0.018s 0.018s

3 * 3 * 3 0.023s 0.025s

5 * 5 * 5 0.025s 0.027s

Our methods

(GPU parallel processing)

1 * 1 * 1 0.008s 0.013s

3 * 3 * 3 0.012s 0.013s

5 * 5 * 5 0.012s 0.015s

Fig. 8 shows the dynamic performance time comparison between the

method in this paper and the method in reference [19] under the same network

structure.

Fig. 8 Dynamic performance time comparison diagram of the three methods

26 Huawei Mei, Chenyao Fan, Ronghua Zhang

The experimental results show that the method proposed in this paper can

quickly realize the automatic generation of a variety of colliders, and with the

improvement of accuracy, it can more accurately describe the three-dimensional

features of the model. The efficiency of manually defining the bounding box is the

lowest. Under the condition of GPU parallel processing, the efficiency of this

method is significantly higher than that of the method in literature [19] and

without GPU parallel processing. When the grid structure is more complex, the

dynamic performance time of the method in this paper is only increased by 0.004s

at most, which is still far less than that of Unity adding collider manually.

Manually defining the bounding box requires a lot of time to calculate the center

coordinates and radius of the sphere bounding box, which is inefficient and error-

prone. This method generates the bounding box results in real-time after setting

the accuracy and ensures that the generated bounding box can accurately describe

the model structure and avoid manual errors.

Table 5 shows the comparison between the method in this paper and the method in

reference [19] in the effect of automatically generating bounding boxes under the

same model and the same accuracy.

Table 5

Comparison between our method and the method in literature [19]

on the generation effect of bounding box

Model

names

Grid

structure
Our methods Methods of literature [19]

Stanford

bunny

model

1 * 1 * 1

grid-

based

3 * 3 * 3

grid-

based

Automatic generation algorithm of unity game object bounding box based on Morton code 27

5 * 5 * 5

grid-

based

Dragon

model

1 * 1 * 1

grid-

based

3 * 3 * 3

grid-

based

5 * 5 * 5

grid-

based

The generation effect shown in this method hides the AABB bounding box used

to eliminate collision, and only shows the sphere bounding box used to depict the

shape of the model. Compared with the method in reference [19], the bounding

box generation quality of this method is higher and can describe the model

features more accurately. In the experiment, with the increase of voxel accuracy,

the collection of colliders is closer, and the shape features of the model are

described more specifically.

28 Huawei Mei, Chenyao Fan, Ronghua Zhang

Table 6

Simulation results of the experimental model

Method
Grid

structure

64 * 64 cloth model

Bunny Dragon

Unity

cloth &

one

collider

1*1*1

Our

methods

1*1*1

3*3*3

5*5*5

Table 6 intuitively shows the impact simulation effect of the static model

of cloth component and the method in this paper with flexible cloth in the

simulation scene with collision. This paper is implemented in the form of Unity

Automatic generation algorithm of unity game object bounding box based on Morton code 29

plug-in. Our 5*5*5 precision method can more realistically display the simulation

effect of objects in a shorter time than unity's collision processing based on a

single Collider and cloth component.

4. Conclusions

Based on the Unity game engine, this paper designs and implements an

automatic generation algorithm of hierarchical bounding box based on Morton

code, which eliminates the redundant work of manually defining bounding box

and improves operational efficiency. This paper compares the two cases of using

GPU parallel processing and without GPU parallel processing. GPU parallel

processing reduces the dynamic performance time by about 50% under the

condition of ensuring the same effect of automatic generation of the bounding

box, improves the performance of the algorithm, and makes the method in this

paper more real-time. At the same time, this paper compares the effect and

performance with the bounding box manually defined in Unity and the method in

reference [19]. Experimental results show that this method reduces cumbersome

human tasks, automatically generates higher quality hierarchical bounding boxes

with shorter dynamic performance time under the condition of higher accuracy,

and accurately describes the characteristics of the static model. At present, only

the automatic generation algorithm of the static model is considered, and the

automatic generation algorithm of the dynamic model is considered to be explored

in the future. At the same time, different construction methods are used to

evaluate the performance of the automatic generation algorithm, and the latest

collision processing algorithm [22-24] is considered to improve the realistic

effect. The algorithm is applied to cloth simulation and other scenes with high

real-time requirements, so as to provide a more immersive simulation effect and

more realistic visual feedback.

R E F E R E N C E S

[1]. Meister D, Ogaki S, Benthin C, et al. A Survey on Bounding Volume Hierarchies for Ray

Tracing. Computer Graphics Forum, 2021, 40(2): 683-712.

[2]. Wodniok D, Goesele M. Recursive SAH-based Bounding Volume Hierarchy

Construction//Graphics Interface. 2016: 101-107.

[3]. Yang Fan. AABB bounding box collision detection Algorithm based on B+ tree storage.

Computer science, 48(6A): 331-333.

[4]. Qu Huiyan. Research on fast collision detection technology in complex virtual Environment.

Jilin University, 2020.

[5]. Lauterbach C, Garland M, Sengupta S, et al. Fast BVH Construction on GPUs. Computer

Graphics Forum, 2009, 28(2): 375-384.

[6]. Pantaleoni J, Luebke D. HLBVH: Hierarchical LBVH construction for real-time ray tracing of

dynamic geometry// Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on

High Performance Graphics 2010, Saarbrücken, Germany, June 25-27, 2010. ACM, 2010.

30 Huawei Mei, Chenyao Fan, Ronghua Zhang

[7]. Hu Y, Wang W, Li D, et al. Parallel BVH Construction Using Locally Density Clustering. IEEE

Access, 2019: 105827-105839.

[8]. Xu-Sheng S, Li-Hong Q, Zuo-Wei Z. Algorithm of collision detection based on improved

oriented bounding box. J. Hunan Univ.(Natural Sci.), 2014, 41(5): 26-31.

[9]. Cheng Shijun, Feng Yueping. Fast collision detection algorithm based on bus bar of cylindrical

bounding box. Journal of Jilin University (Natural Science), 2015, 53(02): 291-296.

DOI:10.13413/j.cnki.jdxblxb.2015.02.26.

[10]. Erxi Z, Min X, Yuanjun H. A collision detection algorithm using delaunay triangulation. Journal

of Graphics, 2015, 36(4): 516.

[11]. Xing-Xing Z, Ming-Hong X, Ya-Yun Z. Fast collision detection algorithm based on uniform

spatial subdivision and linear programming. Comput. Eng. Appl., 2017, 53(23): 236-240.

[12]. Wang Chao, Zhang Zhili, LONG Yong, Wang Shao-di. Research on improved Hybrid Bounding

Box Collision Detection Algorithm. Journal of System Simulation, 2018, 30(11): 4236-

4243.DOI:10.16182/j.issn1004731x.joss.201811023.

[13]. Jian L I, Ming-Yue W, Ru-Jing Y, et al. Optimization of collision detection algorithm based on

hybrid hierarchical bounding box under background of big data. J. Jilin Univ.(Sci. Ed.), 2017,

55(3): 673-678.

[14]. Xie Weichao. Research on collision detection algorithm of hybrid bounding box in complex

environment. Jiangxi University of Science and Technology,2018.

[15]. Liu Xiaoping, Zhang Yingkai, Xie Wenjun, et al. Sphere-obb bounding box Fast collision

detection algorithm for Character Animation. Journal of System Simulation, 2014, 26(7): 1535-

1540.

[16]. Sun Hanqin. Research and implementation of key technology of Automobile virtual Assembly

System. University of north, 2017.

[17]. Guo X, Zhang Y, Liu R, et al. Efficient collision detection with a deformable model of an

abdominal aorta//2016 IEEE International Conference on Information and Automation (ICIA).

IEEE, 2016: 927-932.

[18]. Meister D, Bittner J. Parallel Reinsertion for Bounding Volume Hierarchy Optimization.

Computer Graphics Forum, 2018, 37(2): 463-473.

[19]. Minsang Kim, Nak-Jun Sung, Sang-Joon Kim, Yoo-Joo Choi, Min Hong. Parallel cloth

simulation with effective collision detection for interactive AR application. Springer US, 2019,

78(4).

[20]. Chitalu F M, Dubach C, Komura T. Binary Ostensibly‐Implicit Trees for Fast Collision

Detection//Computer Graphics Forum. 2020, 39(2): 509-521.

[21]. Karras T. Maximizing parallelism in the construction of BVHs, octrees, and k-d

trees//Proceedings of the Fourth ACM SIGGRAPH/Eurographics conference on High-

Performance Graphics. 2012: 33-37.

[22]. Min Tang, Tongtong Wang, Zhongyuan Liu, Ruofeng Tong, and Dinesh Manocha. I-Cloth:

Incremental Collision Handling for GPU-Based Interactive Cloth Simulation, ACM Transactions

on Graphics, 37(6), Article 204 (November 2018), 10 pages (Proc. of ACM SIGGRAPH Asia),

2018.

[23]. Tang M, Liu Z, Tong R, et al. PSCC: Parallel self-collision culling with spatial hashing on GPUs.

Proceedings of the ACM on Computer Graphics and Interactive Techniques, 2018, 1(1): 1-18.

[24]. Huamin Wang. 2021. GPU-Based Simulation of Cloth Wrinkles at Submillimeter Levels. ACM

Transactions on Graphics (SIGGRAPH), vol. 40, no. 4, pp. 169: 1-16.

