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LEARNING MULTI-VIEW BINARY CODES FOR SPEEDING
UP CROSS-VIEW VEHICLE RE-IDENTIFICATION

Zhiyuan JINY, Lu LU?, Tiejun PAN?, Jun LIU®, Shoubiao TAN?*

In this paper, a novel Multi-View Binary Identities (MVBI) algorithm with the
help of a hash technique is proposed to vehicle re-indentification (Re-1D). The
hashing method can transform the real-valued multiplications into binary XOR
operations to speed up the target lookup process. First, MVBI aims at
simultaneously minimizing the Hamming distance between the samples of similar
vehicles in different views and maximizing that between samples of different
vehicles. Hence, the semantic structure of different examples across all views of a
same vehicle can be definitely maintained. Then, with considering the constraint
condition, a set of hash functions can be learned to project all samples from
different views into a suitable common Hamming space. The hash code calculated in
this space can capture the discriminant as much as possible. Finally, through the
simple Hamming distance calculation, we can realize the efficient vehicle Re-ID.
The experimental results in the two bench-mark datasets show that the proposed
method significantly outperforms some state-of-the-art methods.

Keywords: Vehicle Re-identification, Binary Codes, Hamming Distance, Cross-
view Identities.

1. Introduction

With the rapid economic development, a large number of cars have
flooded into the streets and, as a result, traffic safety has become a serious social
problem. In order to monitor public transport, most of the traffic jam areas have
installed a large number of surveillance cameras, making the acquisition of
vehicles more convenient. However, in the majority of cases, it is not possible to
obtain all the images of license plates from video recording due to the challenge
of perspectives and the environment. Therefore, automatic vehicle re-
identification based on other visual features and clues is particularly desirable.

To this end, in recent years, researchers have begun to pay attention to the
problem of vehicle re-identification in a wild. One of the most well-known work
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[13] is to first obtain the vehicle characteristics for matching by wireless magnetic
sensors and then use dynamic time warping method to calculate the distance of
signatures and reduce the recognition error rate through iteration parameters. In
order to quickly train a large amount of data, in [16], the problem of re-
identification is solved by using a colour histogram of the directional gradient of
the SVM linear classifier, in [8], proposed a dataset to facilitate the research of
vehicle Re-ID (this paper also uses this experimental dataset). In this method,the
high-level semantic information of vehicles was first extracted based on the color
features, local texture features and semantic features of CNN learning [6] and then
the re-identification was conducted through K-means clustering. At the same time,
the magnetic sensor [14] is used to obtain the matched vehicle features, in which
the dual window vehicle detection algorithm is first used to obtain the waveform
data, and then the features of each vehicle are extracted.

Fig. 1. First row: five different views of the vehicle picture. Second row: different view of the
vehicle image that vehicle detection has been resolved.

The Euclidean distance-based metrics are time-consuming in the
application of large-scale data, the hash method can improve the retrieval speed,
S0 it can be a good solution to this problem.

* We propose a novel cross multi-modal hashing algorithm which
utilizes three constraints to enable fast vehicle re-identification.

* As far as we know, this work is the first attempt to apply the hashing
approach to multi-view vehicle re-identification.

* In order to find the optimal solution to the hash function, we propose an
iterative method to solve the complex objective function.

* Our experimental research on two different public datasets clearly
demon-strates the advantage of our method (MVBI) under cross-view scenarios

2. Related work

This paper focuses on the re-identification of different types of vehicles,
which, compared to the Person Re-ID [5], is in the early stage of research and has
low attention. As shown in Fig. 1, the method is based on the situation in which
the vehicle has been located in the image. It means the location of the vehicle in
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the image is completely known, and the input information for vehicle re-
identification is a picture that just contains the vehicle. Various semantic
information such as color and shape etc. are considered in this paper.

Actually, hash algorithm has been used widely in the field of computer
vision nearest neighbor search, such as image retrieval, object recognition and
image matching, but rarely used in re-identification. The core idea of the hash
algorithm is to use the hash function to convert the data into the corresponding
binary code string, where the semantic information similarity between the data
and the Hamming distance [10] of the corresponding binary code string are
consistent. This method can reduce the storage space (binary code storage only
need to consume very little storage space) and improve the retrieval speed
(bitwise XOR operation can be quickly calculated between the coding string
Hamming distance) [11]. Consequently, more and more research interest has been
devoted to cross-modal hashing. For instance, the core idea of Cross-Modality
Similarity Sensitive Hashing (CMSSH) [1] is to treat the hash function
corresponding to each binary code as a weak classifier and learning the hash
function by eigenvalue decomposition and AdaBoost algorithm. Similarly, CMFH
learns a common subspace by decomposing the data into different modes through
the cooperative matrix, and then generating a unified binary code string by the
quantization method. Moreover, Predictable Dual-View Hashing (PDH) [12]
algorithm to maintain predictability of the the binary codes by applying an
iterative optimization method based on block coordinate descent.

We accomplish the vehicle Re-ID by learning a set of hash functions for
each view. The MVBI algorithm learns the discriminant binary representation of
each vehicle image to make more efficient distance measurements in the
Hamming space. In particular, MVBI focuses on learning similar binary codes of
similar vehicles from different perspectives but maximizes the Hamming distance
between different vehicles of different perspectives.

3. Learning cross-view Binary ldentities

Without loss of generality, this paper considers only five views of the
vehicle. In fact, five views are also common and universal in the real-world
monitoring system. Hence, we can reorganize the original dataset into five

training sub-datasets as: X, ={x}, x2,---x"}, X, =X, % .- %o}, X, ={x;, X5, =X},

c! C’.

Xy =X, %, x3}, X, ={x,x%,---x}, Our aim is to find K hash functions F =

er Mgt ’

{f} £ £} for each view v e {a, b, ¢, d, e} and vy (k)=fk(x) to

simultaneously minimize the Hamming distance between the samples of similar
vehicles in different views and maximize that between samples of different
vehicles. In this paper, the hash functions are constructed by a set of linear hyper
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planes:W, ={w,,wW,--, W} W, ={w,,w?,--,wi} Thus, for the dataset X , we
obtain Y, ={y’, y?,---, y'} by using Y = sign((w¥)" x). It is obvious that there is

y, e {-1 1}K and, for simplicity, we can rewrite it as: Y, = sign(W,’ X )

3.1 Minimizing the intra-class distance

Our first consideration is to generate a valid binary code for each sample,
where the differences between the samples of the same car are minimized. The
smaller the distance, the higher the probability that the samples are similar,
indicating that they may belong to the same type of vehicle. Therefore, we can
match the pair of samples using the Hamming distance calculated on these binary
codes.

For a pair of sample sets (X, X,) collected under the two views v and u,

we assume that all the image samples between the two sets can be matched. Then,
we can define the cumulative Hamming distance between them as:

Lintra(xwXU)ZZDh(y\i/!yliJ); (1)

In order to minimize the Hamming distance calculated based on binary
codes between the samples of the same vehicle, it is necessary to minimize the
cumulative Hamming distance defined in Eq.1 for all the views to obtain our hash
projections in the stage of training.

F* = arg mlnzz Lintra(xv' Xu)’ (2)

where there are v, u € (a, b, c, d, e).
3.2 Maximizing the inter-class distance

In fact, merely minimizing the intra-class distance is not enough to
determine whether a pair of samples belong to the same vehicle or not. Thus,
inspired by the method [7] which constructs a triple loss function to maximize the
relative distance between matched and unmatched pairs, we also consider
maximizing the Hamming distance between different vehicles. By learning the
hash functions for all views, the positive pairs of samples can be pulled closer
whilst the negative pairs of samples are pulled far away. In other words, we
should simultaneously minimize the intra-class Hamming distance and maximize
the inter-class Hamming distance for all the pairs of samples in the learned
Hamming space. Therefore, based on these considerations, the following formula

can be established for a given pair of sample sets ( X, X, ):
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Linter(xv’ Xu)ZZZDh(y\I/’yJ)! (3)

[IE|
where there are v, u € (a, b, c, d,e),y' €Y,,y) €Y,
Similarly, in order to maximize the Hamming distance of binary codes be-

tween the samples of the different vehicle, the Hamming distance of all views in
Eq.3 is summed to obtain the hash projections in the stage of training.

F= arg maxzz I-inter(xv’ Xu); (4)
where there are v, u € (a, b, ¢, d, e). S
3.3 Minimizing the maximum mean difference

Maximum Mean Difference (MMD) is a nonparametric distance measure
for the data distribution of two domains [3]. It uses fewer illustration and safer
exploration strategies than the existing methods while maintains a strong theo-
retical guarantee on performance. This method can make use of the information
acquired from the source domain to construct the feature extraction model suit-
able for the target domain to a certain extent. The principle of maximum mean di
erence is to find a function, assuming different expectations for two different
distributions.In addition, to better preserve the semantic structure of the training
in-stances, the distribution of hash codes can be also required to guide the learning
of mapping by adding some kinds of constrains. Obviously, this constraint can be
achieved by minimizing the mean of the hash codes from different views, that is,
minimizing the maximum mean difference (MMD) [4] between different views.
Therefore, given two datasets X, and X, with their corresponding binary codes

Y, and Y,, the mean difference can be defined as follows:

Lo (Xy» X,) = supll E(Y,) —E(Y,)[]; ()
where E(.) is the average of the matrix elements and sup[.] means upper bound,
that is, greater than the minimum of all its values.

In addition, it is necessary to minimize the sum of the maximum average
differences defined in Eq.5 to constrain the samples.

F'=arg max>_ > Lo (X,: X,); (6)

where there are v, u € (a, b, ¢, d, e).
3.4 Overall objective function

In the above sections, we introduce three requirements to obtain the
desirable binary codes for the cross-view vehicle re-identification. The aim of
learning is to find optimal hash functions which can embed the samples from the



56 Zhiyuan Jin, Lu Lu, Tiejun Pan, Jun Liu, Shoubiao Tan

original feature space into the Hamming space with satisfying the above
requirements. To avoid that the hash functions for each pair of views are learned
separately, we integrate all the requirements into a unified framework and all
these hash functions can be jointly learned. Since the constraint of distance
between vehicles and class, the latter needs to be multiplied by a fixed value
because it is not in one order of magnitude. The value n is the number of samples,
we obtain:

F'= (n -1)arg mind> > L..(X,, X,) +arg max>_ > Lo (X, X,); (7)
Substitute (1), (3) into (7) and convert it to find the minimum

Fr=argmind > > > [(n -1)D,(y,, ¥,)- D,(%" v (®

0]
To integrate the first two constraints, we define a new triplet loss as:

LtripIeZZZ(Dh(yvi’ yui)_Dh(yvi’ yu]))’ (9)

iz
where y! = f (x!) . Combining the Eq.1 and 3, we can see that, when the sample

is considered as an anchor, our framework is also related to the triplet loss.
However, there are some differences between the two approaches. Obviously, the
positive and negative samples come from the same view, whereas the anchor
sample comes from a different view. The classical triplet loss is a special case of
our framework when only one view is available. To this end, we randomly choose
a sample from one view as the anchor. Then, from another view, we select a
sample that belongs to the same vehicle with the anchor as the positive sample
and another sample that belongs to a different vehicle as the negative sample. It is
easy to prove that minimizing the triplet loss in Eq.9 can decrease the
corresponding item in Eqg.1 and increase the corresponding item in Eq.3.

Therefore, the overall objective function combines the both triplet loss Eqg.
9 and semantic structure of the maintained instances in Eq.5 form all views as
follows:

F* = arg mFin ZZ L[riplet(xu’ Xv) +A’LMMD(XU' Xv)’ (10)

where is a hyper-parameter to balance the two items.

The integrated objective function guarantees that each view can learn only
one set of hash functions and while the requirements between all the pairs of
views can be satisfied. Similar to most of existing hashing methods [17], the sign
function in the objective function is omitted and thus the classical gradient



Learning Multi-View Binary codes for speeding up cross-view vehicle re-identification 57

descend based optimization strategies can be used. More specifically, the
objective function can be expressed as:

n k k

W, Wy We Wy W = argmin > > > (n=1) W, x, W, x; |I2
Wy Wy We Wa We i=1 u u=v
k

SIDIP RN NEET RIS WIS NIAEEI RO AEED

i=1 j=li#j u u=v u uzv

+7,RW,,\ W, , W, , W, ,W,)

where v,u € (a, b, ¢, d, e), Y () : X — H is a linear projection from the source
space to the Hamming space, .9 Y (x)) =W x..4,, are tradeoff parameters.

3.5 Learning hash functions

The Eq. 11 builds a Lagrange equation and it is non-convex with respect to
the five matrix variables W,, W, , W, , W, , and W,. Fortunately, it is convex with
respect to anyone of them while fixing the others. The optimal solution of the
function can be transformed into the extreme of the function. Thus, the function
would get the extreme point when the partial derivative of convex function is 0.
Therefore, the optimization problem can be solved by following the listed five
steps iteratively until convergence:

If fix W,,W_,W, ,W,and let :WL =0, then we can obtain:

W, = ((4n=8) X, (Xy)" = X (X)) +4AE(X)E(X,)" +n1)™
[ X (=D)(XI(X0)W, = X3 (X)W, + AE(X)E(X}) W,)]

u={b,c,d e}

(12)

=0, then we can obtain:

If fix W,,W_,W,,W,and let ;L

W, = ((4n—7)X{ (X)) = XJ (X)) +4AE(XE(X]) +71)*
[(N=1) X, (X)TW, = X (X2)'W, + AE(X)E(X})'W, + (13)
> (DX W, = X (X)W, + AE(XDE(X])TW,)]

u={c,d e}

If fix W,,W,,W,,W,and let :WL =0, then we can obtain:

c
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W, = ((4n-6) X (X;)" =2X/(XJ)" +4AE(X)E(X)" +711)7

[ (=DXI(X)TW, = XJ (X)W, + AE(X)E(X})TW, + (14)
u={a,b}

> (=X W, = XE(XD)TW, + ZE(XDE(XDTW,)]

u={d,e}

IF fix W, W, W, W, and let

d

=0, then we can obtain:

W, = ((4n=5) X4 (Xg)" =3XJ(XJ)" +4AE(X)E(X)" +71)7
[ 2 (N=DX(X) W, = XJ(X,)"W, + AE(X)E(X,) W, + (15)

u={a,b,c}

(N=D)(X5 (X)W, = X5 (X)W, + AE(X3)E(X,)"W,]

If fix W,,W,,W,,W, and let ;WL =0, then we can obtain:

W, = (40 -D XX —4XJ ()T +42E(XDE(X)T +71)™
[ Z (n _1)XEI3(XLIJ)TWU - Xej(xLiJ)TWu +iE(X;)E(XJ)TWU]

u={a,b,c,d}

(16)

where X! =[x',x,--,x"],E(x!) represents the mean of different pictures of the
same view.

3.6 Realizing vehicle re-identification

First, the optimal projections including W, ,W, ,\W_ ,W, and W, are

obtained by MVBI training using the above constraint equations. Second, for the
gallery sample set X, we can obtain the binary codes in advance by using the

corresponding projections Y, =sign(W," X,). Then, test sample X, can be also
converted into the a set of hash codes, i.e y, = sign(W,"x,) . Finally, the Hamming

distance Eq. 17 between the gallery set and the test sample can be calculated and
sorted.

Dy (Y. ) =Usign(W, ;) # sign(W, x;)] (17)

where Dh indicates the Hamming distance and xju represents the jth

sample in the dataset X -1[.] is an indicator function, that the total number of
unequal records.
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1.

Algorithm 1 MVBI training
Input: Data matrix Xy, u=a, b, ¢, d, e, parameters 4,y,,n
Output:

Initialize W,, W, , W, W, , W, by random matrices and center sample set

Xu by the mean of samples.

2.
CFix W, W, W, , W,, update W, by Equation 12;
CFixW,, W, W, , W,, update W, by Equation 13,;
CFix W, W, , W, , W,, update W, by Equation 14,
CFix W, W, , W, W,, update W, by Equation 15;
CFixW,, W, , W, W, , update W, by Equation 16;
. until convergence.

0o N o 0o W

repeat

4. Experiments

MVBI is validated for cross-view vehicle re-identification on two public

dataset-CompCars [15] and VeRi [8]. Some example images of the two datasets
are shown in Fig.2.

CMC rank score on VeRi50 ~ CMC rank score on VeRi100 _ CMC rank score on VeRi150

M)atching}rateﬁ (°/g) )

~—&—MVBI
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I\/‘Ilatching‘ratev (0/9,)
_ Matching rate (%)
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(a) p=50 (b) p=100 (c) p=150

Fig. 2. Using the CMC Curve to VeRi the Google net Feature of the compcars Data Set in Each

Hash Method

In order to illustrate the performance and efficiency of MVBI, this paper

compares MVBI with three cross-modal hashing methods and one statistical
method: canonical correlation analysis (CCA) [9].

Datasets: The CompCars dataset contains data from two scenarios,

including images from web-nature and surveillance nature that are widely used in
the real-world applications. In particular, the web-nature data contains 163 car
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makes with 1, 716 car models, covering most of the commercial car models in the
recent ten years. There is a total of 136, 727 images capturing the entire cars and
27, 618 images capturing the car parts, where most of them are labeled with
attributes and viewpoints.

_ CMC rank score on CompCars  CMC rank score on CompCars  CMC rank score on CompCars

_ Matching rate (%)
_ Matching rate (%)
_ Matching rate (%)

Rank Score "7 RanksScore ' " Rank Score
(a)p=50 (b)p=100 (C)p=150

Fig. 3. Using the CMC Curve to Compare the Google net Feature of the VeRi Data Set in Each
Hash Method

The surveillance-nature data contains 44,481 car images captured in the
front view. Each image in the surveillance-nature partition is annotated with
bounding box, model, and color of the car. Overall, the CompCars dataset offers
four unique features in comparison to existing car image databases, namely car
hierarchy, car attributes, viewpoints, and car parts. To further investigate the
attributes of car re-identification, CompCars dataset is reclassified according to
the color RGB threshold and randomly selected 3750 images are considered as
data for future training and testing. It can capture the high-level semantic
information of the vehicle as a semantic feature by extracting the feature from
images. Another data set used in this paper, the VeRi, contains over 40,000
bounding boxes of 619 vehicles captured by 20 cameras in unconstrained traffic
scene. Moreover, each vehicle is captured by cameras in different viewpoints,
illuminations, and resolutions to provide high recurrence rate for vehicle Re-Id.
To enable cross-view re-identification, we also label the views of images in
datasets VeRi [8], which contains 619 vehicles captured by 20 cameras, with the
same setting of CompCars dataset [15].In order to facilitate the operation, the
experimental data consisted of 750 sample pairs containing 3,570 images, each
pair containing five images from different views of the same vehicle.

In this paper, we randomly divided the datasets into two parts according to
a certain percentage. The probe set consists of a picture of each car and the others
will be considered as a training set. The experiment will be conducted 10 times
and the results are averaged finally. We randomly divided the datasets into two
parts according to a certain percentage. The probe set consists of a picture of each
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car and the others will be considered as a training set. The experiment will be
conducted 10 times and the results are averaged finally.

In our experiment, for each data set, we randomly select all the images of
the p number of cars for testing, the rest are used to train our model. For example,
we can select p = 150 pairs (750 pictures) as a test set and 600 pairs
(3000pictures) as a training set. We use the average Cumulative Match
Characteristic (CMC) curve over 10 trials to show the accuracy rate. The accuracy
rate at ranks: r = 1,5,10, 20 indicates the percentage of the test image with the
correct match in the p training set which are ranked in the top r list. Actually, the
first rank r = 1 is the most important factor to indicate the performance of a
method.

Comparison with other hashing methods, We compared our MVBI with
CCA (The method used by CCA is to linearly transform the multidimensional ‘X’
and ‘Y’ into one-dimensional ‘X’ and “Y’, and then use the correlation coefficient
to see the correlation between ‘X’ and ‘Y’. Changing the data from multi-
dimensional to one-bit can also be understood as CCA is performing
dimensionality reduction, reducing high-dimensional data to one-dimensional, and
then using correlation coefficients for correlation analysis.) [9] and recently
proposed multi-modal binary codes learning methods including PDH (The PDH
algorithm embeds the proximity of the data samples into the original space, and
by creating a cross-view Hamming space, compares the information in the
previously incomparable domain with the concept of “predictability”.) [12], CBI
(It learns two sets of discriminant hash functions for two different views by
simultaneously minimizing their distance in Hamming space and maximizing
cross covariance and margin. It embeds the image in the Hamming space and can
find similar binary images of the same person captured in different views.) [17]
and CMFH (It learns the unified hash code through collective matrix
decomposition and a potential factor model of different modalities of an instance.
It can not only support cross-view search, but also improve search accuracy by
combining multiple view information sources.) [2] on the CompCars and VeRIi
datasets. Most of the compared methods are used for cross-model search, such as

cross retrieval between texts and images.
Table 1 :
Top ranked matching rate (%)on CompCars. p is size of the gallery
set (larger p means larger training set) and r is the rank.

Methods Methods MVBI PDH CCA CBI CMFH
r=1 36.80 21.20 30.80 11.60 19.60

p =50 r=5 50.40 24.40 39.60 23.20 31.20

r =10 54.00 34.00 45.60 35.60 43.60

r =20 58.00 50.40 58.00 56.80 58.00

r=1 33.40 19.60 28.60 14.60 13.60

p =100 r=5 46.80 23.80 35.20 22.80 23.80
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r=10 51.20 27.00 38.80 29.40 32.60
r=20 56.00 32.40 43.20 39.40 49.40
r=1 32.00 19.07 26.80 12.80 12.53
p =150 r=5 43.60 22.27 34.27 23.60 21.60
r=10 49.47 24.80 37.73 27.73 26.80
r=20 53.47 29.73 42.40 34.80 36.40

Table 2:
Top ranked matching rate (%) on VeRi. p is size of the gallery
set (larger p means larger training set) and r is the rank.

Methods Methods MVBI PDH CCA CBI CMFH
r=1 38.80 23.60 32.80 19.60 18.80

p =50 r=5 50.00 32.80 45.20 46.40 30.00
r=10 56.40 44.40 50.80 54.80 40.40

r=20 61.20 62.40 60.40 64.00 56.80

r=1 36.80 17.60 29.80 18.80 18.20

p =100 r=5 46.60 28.80 38.40 41.00 29.80
r=10 50.80 35.60 42.60 46.00 37.20

r=20 57.00 50.00 49.80 56.00 44.40

r=1 32.67 16.93 27.60 16.80 17.60

p =150 r=5 42.40 27.73 35.60 33.07 25.33
r=10 46.80 32.40 39.87 38.80 31.47

r=20 52.27 42.00 44.80 46.27 39.33

Firstly, we can see that our proposed MVBI is related to the method of
cross-view binary identities (CBI). To some extent, our method can be considered
as extension of CBI in a setting of multiple views. However, it can preserve the
semantic structure of instances better since the mean of binary codes of all
samples is minimized, thus resulting in highly correlated binary codes. At the
same time, MVBI increases the constraint of Hamming distance between different
views and makes the mean of the hash matrix elements similar to those of samples
in different views. In contrast, CBI do not take into account the relationship
between the pairs of different identities in the different modalities and solutions of
CBI may be affected by highly relevant but unimportant variables. Moreover, in
the method of PHD, samples have also been projected by maximizing distance
differences, but it is significantly different from MVBI from the two following
perspectives. On the one hand, both covariance and variance of MVBI have been
maximized, but PDH do not consider them. On the other hand, PDH obtains the
projection by using the classical SVM directly but the MVBI obtain the solutions
by an alternative optimization method in which an extreme value of the dual
problem can be obtained to learn the projection. While PHD cannot improve the
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performance by increasing the number of bits, CMFH with MVBI are similar with
each other since the projections of the both methods are obtained by loop
iteration.

We compare MVBI with three hash methods including CBI, PDH and
CMFH and one statistical method CCA which can produce real representations.
Due to the finite level of the variance matrix, the characteristic dimension of the
CCA is limited, so the best performance is poor. We compare the proposed
method on the two datasets: CompCars and VeRi datasets when p=50, p=100 and
p=150.The rank performance of the compared methods is shown in Fig. 2 and 3.
From these figures, we can see that 305 the proposed method achieves better
results than other methods. No matter what the number of test sets is, our
algorithm can get the highest accuracy.

On both the CompCars and VeRi datasets, the results in Table 1 and 2
clearly show that the recognition rate of the proposed MVBI increases
significantly by reducing the number of test sets (The number of training sets will
also be increased accordingly). This conclusion can be obtained for all ranks from
r =1 to r = 20. Moreover, from the tables, it is clear that our approach is superior
to other hash methods in all cases. Finally, it is worth mentioning that these
advantages are not very obvious in these tables, but they can also be clearly
displayed in the figures.

5. Conclusions

In this paper, we propose a novel multi-view hash algorithm for cross-view
vehicle re-identification problem. This method can save storage space (about
87.5% saved.) as well as speed up (upto 10 times) the procedure of identification
by converting matching in Euclidean space to binary XOR operations. In the
proposed framework, three constraints are defined, which make it possible to
simultaneously preserve the intra-class similarity between the pair of the same
identity and the inter-class similarity between the pair of different identities in the
learned hash space as much as possible. The experimental results of the two
datasets: Compcars and VeRi show that the accuracy of the vehicle re-recognition
can be improved using MVBI algorithm and the speed of identification is faster
than CCA. PDH. CBI. CMFH algorithms.
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