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MULTITIME DIFFERENTIABLE STOCHASTIC PROCESSES,

DIFFUSION PDES, TZITZEICA HYPERSURFACES

Constantin Udrişte1, Virgil Damian1, Laura Matei3 and Ionel Ţevy4

În această lucrare extindem teoria integrabilităţii complete la sisteme dife-
renţiale stochastice multitemporale, utilizând integrale curbilinii independente de
drum. Rezultatele principale includ procesele stochastice multitemporale cu depen-
denţă volumetrică, derivata unui proces stochastic ı̂n raport cu un proces Wiener
multitemporal şi descrierea lor prin EDP de difuzie, polinoame Hermite şi hiper-
suprafeţe Tzitzeica. Orice proces stochastic multitemporal diferenţiabil admite o
dezvoltare in serie de polinoame Hermite. Geometric, mulţimile de nivel constant
ale proceselor stochastice multitemporale cu dependenţă volumetrică sunt reuniuni
de hipersuprafeţe Tzitzeica. Rezultatele principale pot fi utilizate pentru amelio-
rarea tehnicilor de spirometrie.

In this paper we address the problem of extending the complete integra-
bility theory to multitime stochastic differential systems, using path independent
curvilinear integrals. The main results include the multitime stochastic processes
with volumetric dependence, the derivative of a stochastic process with respect
to a multitime Wiener process and their description via the multitime diffusion
PDEs, Hermite polynomials and Tzitzeica hypersurfaces. Any differentiable mul-
titime stochastic process admits an expansion in series of Hermite polynomials.
Geometrically, the constant level sets of multitime stochastic processes with volu-
metric dependence are union of Tzitzeica hypersurfaces. The main results can be
used to improve the spirometry techniques.

Keywords: Multitime stochastic process, volumetric functions, multitime diffu-
sion PDEs, Hermite polynomials, Tzitzeica hypersurfaces, spirometry.

MSC2010: 60H15, 60J60, 53C21.

1. Introduction

The paper [2] described the possibility of introducing stochastic curvilinear
integrals along all sufficiently smooth curves in Rm

+ . The most simple situation
is that of increasing curves. Our papers [9], [13] extended this point of view to
stochastic curvilinear integrals and to completely integrable stochastic differential
systems in Rm

+ (non-negative orthant of Rm defined via the product order). These
research trends and the original results are based on Itô-Udrişte stochastic calculus
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rules [13]

dW a
t dW b

t = δab cα(t)dt
α, dW a

t dtα = dtα dW a
t = 0, dtα dtβ = 0,

for any a, b = 1, d;α, β = 1,m, where t = (t1, ..., tm) ∈ Rm
+ means the multitime,

δab is the Kronecker symbol, v = t1 · · · tm is the volume of the hyperparallelepiped
Ω0t ⊂ Rm

+ , cα(t) =
∂v
∂tα and the tensorial product δab cα(t) represents the correlation

coefficients.
Section 2 studies differentiable multitime stochastic processes, highlighting

their volumetric character. Section 3 describes the differentiable multitime stochastic
processes as solutions of multitime backward diffusion PDEs or as sums of series of
Hermite polynomials. Section 4 studies unions of Tzitzeica hypersurfaces and their
connection to differentiable multitime stochastic processes. Section 5 underlines
possible applications in Thermodynamics, Biology, Chemistry, Medicine etc.

2. Multitime differentiable stochastic processes

Let (Wt)t, t = (t1, ..., tm) ∈ Rm
+ be a multitime Wiener process [9] and let

f (t, x) , t = (t1, ..., tm) ∈ Rm
+ , x ∈ R be a real-valued function, with f(t, 0) = 0,

which has continuous partial derivatives of the first order with respect to tα, α = 1,m
and of the second order in x. Such a function defines a stochastic process

yt = f (t,Wt) , t ∈ Rm
+

By Itô-Udrişte Lemma [13], the foregoing process is involved in the associated sto-
chastic equation

dyt =

(
1

2

∂2f

∂x2
(t,Wt) cα (t) +

∂f

∂tα
(t,Wt)

)
dtα +

∂f

∂x
(t,Wt) dWt. (1)

2.1. Multitime backward diffusion PDE

In order that the stochastic process yt be a martingale, the drift coefficients
in formula (1) must vanish, i.e., f is a solution of the backward diffusion-like system

1

2

∂2f

∂x2
(t,Wt) cα (t) +

∂f

∂tα
(t,Wt) = 0, for α = 1,m. (2)

Theorem 2.1. The solution f of the diffusion system (2) depends on the point
(t1, ..., tm) only through the product of components t1 · · · tm, i.e., it is a function of
the volume v = t1 · · · tm of the hyperparallelepiped Ω0t ⊂ Rm

+ .

Proof From (2) it follows

cβ(t)
∂f

∂tα
(t,Wt) = cα(t)

∂f

∂tβ
(t,Wt) , α ̸= β.

The general solution of this PDEs system is f(t) = φ(t1 · · · tm,Wt), t ∈ Rm
+ .

Let us take into account the shape of volumetric features, recalling that a vol-
umetric function is invariant under the subgroup of central equi-affine (i.e., volume-
preserving with no translation) transformations, where the determinant of the rep-
resenting matrix is 1.
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If v = t1 · · · tm is the volume of Ω0t ⊂ Rm
+ and g (v, x)

def
= φ

(
t1 · · · tm, x

)
has

continuous partial derivatives of the first order in v and of the second order in x,
then from (2) it follows that g satisfies the backward multitime heat PDE

∂g

∂v
+

1

2

∂2g

∂x2
= 0. (3)

Consequently, the relation (1) reduces to

dg (v,Wt) =
∂g

∂x
(v,Wt) dWt.

Thus, if E
[(

∂g
∂x (v,Wt)

)2]
is bounded with respect to t, in bounded subsets of Rm

+ ,

then the stochastic process g (v,Wt) is differentiable with the stochastic derivative
∂g
∂x (v,Wt).

2.2. Path independent stochastic curvilinear integral

The foregoing theory suggests introducing the notion of multitime differen-
tiable stochastic processes. For this purpose we need a multitime Wiener process
(Wt)t, t = (t1, ..., tm) ∈ Rm

+ .

Definition 2.1. Let γ0t ⊂ Rm
+ be an increasing curve joining the points 0, t ∈ Rm

+ .
A multitime stochastic process Φt = Φ(t,Wt), t ∈ Rm

+ is called differentiable with
respect to Wt, on Rm

+ , if there exists a multitime adapted measurable process ϕt =

ϕ(t,Wt), t ∈ Rm
+ such that E

[
ϕ2
t

]
is bounded for t in compact sets of Rm

+ and

Φt = Φ0 +

∫
γ0t

ϕs dWs, (4)

where the stochastic curvilinear integral is path independent.

In terms of stochastic differentials, the multitime stochastic process Φt is dif-
ferentiable if the stochastic system

dΦt = ϕt dWt.

is completely integrable, i.e., Φ(t) is a function of v = t1 · · · tm and hence ϕ(t) is a
function of v [13].

The multitime process ϕt is called the derivative of the multitime process Φt

with respect to Wt (see also [2], [3]).
Remark A differentiable multitime stochastic process has properties similar

to those of a holomorphic function: a differentiable process has a differentiable de-
rivative, the curvilinear integral primitive of a differentiable process is differentiable,
and each differentiable process admits a power series expansion.

3. Hermite polynomials and stochastic processes

There is a special class of solutions of the backward multitime heat equation
which will be particularly interesting in stochastic problems. These are the Hermite
polynomials (e.g., [1], [4]). Denote by Hn (v, x) the nth Hermite polynomial of two
variables v and x, i.e.,

Hn (v, x) =
(−v)n

n!
e

x2

2v
∂n

∂xn
e−

x2

2v . (5)
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Examples:

H2(v, x) =
1

2
(x2 − v); H3(v, x) =

1

6
x3 − 1

2
xv; H4(v, x) =

1

24
x4 − 1

4
x2v +

1

8
v2.

For t = (t1, ..., tm) ∈ Rm
+ and v = t1 · · · tm, the sequence {Hn(v, ·)}∞n=0 is a

complete orthogonal system with respect to the weight (2πv)
−1
2 e

−x2

2v . The orthogo-
nality means

E [Hm (v,Wt)Hn (v,Wt)] =

{
0, if m ̸= n,
vn

n!
, if m = n.

(6)

Now, let us use the generating function expansion

exξ−
1
2
vξ2 =

∞∑
n=0

Hn(v, x)ξ
n, x, ξ ∈ R, v ∈ R+.

Taking the partial derivatives with respect to v and x, we replace the exponential
by the corresponding series, and equating the coefficients of both series, we find

∂

∂v
Hn = −1

2
Hn−2,

∂

∂x
Hn = Hn−1.

Consequently each Hermite polynomial Hn(v, x) is a solution of the backward mul-
titime heat PDE. Thus

Theorem 3.1. Each Hermite polynomial Hn(v,Wt) is a differentiable process and
its derivative is Hn−1(v,Wt).

It follows that finite sums of Hermite polynomials processes are differentiable
processes. We extend this statement to series of Hermite polynomials, following the
ideas of Cairoli and Walsh [2].

Theorem 3.2. Suppose {an}∞n=0 is a sequence of real numbers such that

∞∑
n=0

a2n
vn

n!
< ∞, for all v > 0 (the series is convergent).

Then, the process Φt defined by

Φt =

∞∑
n=0

anHn(v,Wt) (7)

is differentiable with respect to Wt and its derivative ϕt is

ϕt =

∞∑
n=1

anHn−1(v,Wt). (8)

The convergence of the series is understood in L2.

Proof. By the orthogonality relations (6), we find

E

( m∑
n=0

anHn (v,Wt)

)2
 =

m∑
n=0

a2n
vn

n!
.



Multitime differentiable stochastic processes, diffusion PDEs, Tzitzeica hypersurfaces 7

This mean value is bounded due to the convergence of the series in the right hand
member. It follows that the series (7) converges in L2 and the same is true for the
series (8). Consider now the sequence of partial sums

ϕ
(m)
t =

m∑
n=1

anHn−1 (v,Wt) ,

and let

Φ
(m)
t = a0 +

∫
γα
0t

ϕ(m)
s dWs = a0 +

m∑
n=1

anHn (v,Wt) ,

where

γα0t : t
1 = c1, ..., tα−1 = cα−1, tα = τα ∈ [0, tα] , tα+1 = cα+1, ..., tm = cm

is an increasing curve joining the points 0 and t, with cβ = const > 0, β ̸= α. It
follows

lim
m→∞

Φ
(m)
t = Φt in L2.

To finish the proof, we need only to check that

lim
m→∞

∫
γα
0t

ϕ(m)
s dWs =

∫
γα
0t

lim
m→∞

ϕ(m)
s dWs, α = 1,m.

Again, by the orthogonality relation (6), we have

E
[(

ϕt − ϕ
(m)
t

)2]
=

∞∑
n=m+1

a2n
vn−1

(n− 1)!
,

and consequently

E

(∫
γα
0t

(
ϕs − ϕ(m)

s

)
dWs

)2
 =

=

m∏
β=1
β ̸=α

tβ
∫ tα

0

∞∑
n=m+1

a2n

(
t1...tα−1ταtα+1...tm

)n−1

(n− 1)!
dτα =

∞∑
n=m+1

a2n
vn

n!
.

In other words,

lim
m→∞

∫
γα
0t

ϕ(m)
s dWs =

∫
γα
0t

ϕs dWs.

�
Theorem 3.3. Suppose that φ (v, x) has continuous partial derivatives of the first
order in v and of the second order in x, and that {φ (v,Wt)} is a differentiable
process, where v = t1 · · · tm. Then, for each t ∈ Rm

+ , we can write

φ (v,Wt) =

∞∑
n=0

anHn (v,Wt) ,

where the convergence is understood in L2 and, for t = (t1, ..., tm) ∈ Rm
+ ,

an =
n!

vn
E [φ (v,Wt)Hn (v,Wt)] . (9)
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Proof. Define the process Φt =
∑∞

0 anHn (v,Wt). Due to the convergence

∞∑
0

a2n
vn

n!
< ∞,

the series defining Φt converges in L2 and the process Φt is differentiable.
Since Hn is an orthogonal sequence, we get

E [ΦtHn (v,Wt)] = E
[
anH

2
n (v,Wt)

]
= an

vn

n!
.

But, by hypothesis, E [φ (v,Wt)Hn (v,Wt)] =
vn

n! an. Thus,

E [(φ (v,Wt)− Φt)Hn (v,Wt)] = 0, ∀n ∈ N.

Then, φ (v,Wt)− Φt ≡ 0. �

Remark We fix the point t = (t1, ..., tm) ∈ Rm
+ and the volume v = t1 · · · tm.

Using the fact that Hn is a complete orthogonal sequence, we can define

f (v, x) =

∞∑
0

anHn (v, x) ,

where

an =
n!

vn
1√
2πv

∫ +∞

−∞
f (v, x) exp

(
−x2

2v

)
dx.

This is just another way to write the relation (9).

4. Union of Tzitzeica hypersurfaces

A hypersurface M ⊂ Rm
+ , m ≥ 3, is called Tzitzeica hypersurface, provided

there exists a constant a ∈ R such that we have K = a dm+1, for all points t =
(t1, ..., tm) ∈ M , where K is the Gauss curvature of the hypersurface and d is the
distance from the origin of the space to the tangent hyperplane to the hypersurface
at the current point t. Since the Gauss curvature K describes the shape of the
hypersurface, a Tzitzeica hypersurface has a bending against the tangent hyperplane
in fixed proportion to the normal component of the position vector t. The simplest
Tzitzeica hypersurfaces are the constant level sets Mc : t1 · · · tm = c in Rm (2m−1

connected components) (see, also, [5], [7], [8] or [11]).
Remark The Gauss curvature of a Cartesian implicit surface

Mc : F (t1, t2, t3) = c

in R3 is the function

K =
[
[F3(F3F11 − 2F1F13) + F 2

1F33][F3(F3F22 − 2F2F23) + F 2
2F33

− (F3(−F1F23 + F3F12 − FyF13) + F1F2F33)
2
]
[F 2

3 (F
2
1 + F 2

2 + F 2
3 )

2]−1,

where the indices mean partial derivatives. The surface Mc is curving like a parab-
oloid if K(t) > 0, hyperboloid if K(t) < 0, or a cylinder or plane if K(t) = 0, near
a point t = (t1, t2, t3) ∈ Mc.

Let us show that the constant level sets of the functions φ(t1 · · · tm, x), with
respect to t = (t1, ..., tm) ∈ Rm

+ , are Tzitzeica hypersurfaces or unions of simple
Tzitzeica hypersurfaces in Rm

+ indexed by the points x.
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Theorem 4.1. If φ : R → R is a C2 nonconstant function and c is a noncritical
value of φ, then the constant level set Nc : φ(t1 · · · tm) = c is a union of simple
Tzitzeica hypersurfaces.

Proof. Let Ac be the set of the solutions of the equation φ(v) = c and
v = t1 · · · tm. Then the constant level set Nc is the union of the constant level sets
t1 · · · tm = k, k ∈ Ac. If c is not a critical value of φ, then the set Nc is a union of
hypersurfaces.

Remark If c is a critical value of φ, then the set Nc is a union of constant
level sets t1 · · · tm = k, k ∈ Ac, but the level sets which correspond to φ′(k) = 0 are
not hypersurfaces.

Theorem 4.2. (1) Each section x = c of the hypersurface Hn(v, x) = 0 in Rm+1 =
{(t, x)} is a union of Tzitzeica hypersurfaces in Rm

+ .
(2) A cylinder v = t1 · · · tm = c in Rm+1 = {(t, x)} intersects alternatively the

constant level sets Hn(v, x) = 0 and Hn+1(v, x) = 0 in Rm+1.

Proof Each Hermite polynomial Hn has n roots, real, distinct, and strictly
inside the interval of orthogonality, as a polynomial in an orthogonal sequence. Also,
the roots of each polynomial in an orthogonal sequence lie strictly between the roots
of the next higher index polynomial in the sequence.

For each simple Tzitzeica hypersurface v = t1 · · · tm = c, the zeroes of the
Hermite polynomial Hn(v, x) lie strictly between the simple zeroes of the Hermite
polynomial Hn+1(v, x).

The constant level set E [Hn (v,Wt)Hn (v,Wt)] = c > 0 is a simple Tzitzeica
hypersurface.

5. Volumetric functions and their applications

The applications of the foregoing theory are in domains based on volumetric
functions indexed after additional variables, such as Thermodynamics (e.g., thermo-
dynamic functions of volume and temperature), Chemistry (e.g., family of volume-
dependent interatomic pair potentials), Biology, Medicine (e.g., spirometry) etc.

One important example is Spirometry [6] (meaning the measuring of breath)
used for the Pulmonary Function Tests (PFTs), measuring Lung functions, i.e.,
functions of the amount (volume) and/or speed (flow) of air that can be inhaled and
exhaled. Spirometry is an important tool used for generating pneumotachographs
which are helpful in controlling certain ailing such as asthma, pulmonary fibrosis,
cystic fibrosis, and COPD (chronic obstructive pulmonary disease).

The spirometry test is performed using a device called a spirometer, which
comes in several different varieties. Most spirometers display the following graphs,
called spirograms:

1) a volume-time curve, showing volume (liters) along the vertical axis and
time (seconds) along the horizontal axis;

2) a flow-volume loop, which graphically depicts the rate of airflow on the
vertical axis and the total volume inspired or expired on the horizontal axis (a
graphic of the instantaneous rate of airflow during a forced expiration; it may be a
maximum expiratory flow-volume curve or a partial expiratory flow-volume curve).

A canonical prediction PDE for spirometric parameters and maximal expira-
tory flows is the diffusion PDE.
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