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SIMULATING THE SOLUTION OF THE DISTRIBUTED
ORDER FRACTIONAL DIFFERENTIAL EQUATIONS BY
BLOCK-PULSE WAVELETS

M. MASHOOF !, A. H. REFAHI SHEIKHANI ?

In this paper, we introduce methods based on operational matrix of
fractional order integration from fixed point (initial value point) for distributed
order fractional differential equations (DFDE). We use block-pulse wavelets and
hybrid functions matrix of fractional order integration from arbitrary initial point,
where a fractional derivative is defined in the Caputo form. By the use of this
method we translate a (DFDE) to algebraic linear equations which can be solved
then. The proposed method has been tested by some numerical examples.

Keywords: distributed order fractional differential equation, wavelet, block pulse,
hybrid function, operational matrices.

1. Introduction

The history of fractional calculus is more than three centuries old;
however, only in the last two decades the field has received practical attention and
interest; see [1], [2], [3] and [4] for more details on this regard. Fractional calculus
is the generalization of calculus, in which the order of derivatives and integrals
can be arbitrary numbers. The distributed-order operators can be obtained when
we integrate the fractional-order calculus operators with respect to the order
variable. The first idea of distributed order differential equation was stated by
Caputo in 1969 and later developed by [5] and [6]. These distributed-order
differential equations were mainly formed in constitutive equations of dielectric
media [7], diffusion equations [8] and the multidimensional random walk models
[9]. The interested readers can refer to [10], [11], [12], [13], [14] and [15] for
more details. Here and in this paper, we consider the distributed order linear
equations of the form

b

[ola) OF y(tha =g(t). t, <t (1)

under initial conditions,
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' y(i)(to): yi,i=01..., LbJ (2)
where  °D/ is the a" fractional order derivative of y(t) in Caputo

sense from t,. A recent development of approximation theory is approximation of

an arbitrary function by wavelet polynomials. There are different types of wavelet
such as block-pulse wavelet, Haar wavelet, Mexican-Hat wavelet, Shannon
wavelet, Daubechies wavelet, Meyer’s wavelet, and so forth. In this paper, we
mainly focus on approximation by block-pulse wavelet and hybrid functions of
based on Block-pulse wavelet and Shifted Legendre polynomials. Any time
function can be synthesized completely to a tolerable degree of accuracy by using
set of orthogonal functions. For such accurate representation of a time function,
the orthogonal set should be “complete” [16]. In this paper, we will apply Block-
pulse and Hybrid functions based on Block-pulse wavelet and Shifted Legendre
polynomials to approximate the solution of (1) under conditions (2). In section 2
we present a number of definitions about fractional calculus, distributed order
derivative, block-pulse wavelets, hybrid functions and its properties. In section 4
we will introduce a numerical method based on block-pulse and hybrid
operational matrix, and in section 5 we will discuss the convergence of the
described method. At the end, we will present some numerical examples.

2. Preliminaries

In this section, we present some basic definitions and properties of
fractional calculus, distributed order derivative and wavelets [16].

Definition 2.1. A real function f(x),x>0 is said to be in space C,,
peR if there exists a real number p(> ), such that f(x)=x"f,(x)
where f,(x)e[0,c0), and it is said to be in the space C[" if f" eC,, meN .

Definition 2.2. The Riemann-Liouville fractional integral of order « from

t
t, with respectto tis , |:’(f(t))=ij(t — ) f(r)dzr,a>0.
’ Na);

Definition 2.3. The fractional derivative of f(t) by means of Caputo

Sense from t, is defined as

C a 1 t n—a— n n
tth f(t):F(n—a)-[(t_T) 1f()(r)dz',n—1<053n,ne N,t>t, f eC.

f
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The relation between the Riemann-Liouville integral and Caputo
derivative operator is given by the following expressions as in [17] and [18]:

cHa a a ca < + t—t )
Or ()= 10, 7ot = 10 -3 1)
k=0 :
Definition 2.4. The fractional derivative of distributed order in the Caputo

sense with respect to order-density function a(a)>0from a to b with 0<a<b
b
isas “Dy f(t)= J.a)(oc)toC D f(the .
Remark 2.5. We can see that when o(a), is Dirac delta function, then
fractional derivative of distributed order-density function @(cr) and fractional

derivative of order « are the same.
Definition 2.6. The m-set of block-pulse functions fori =0,1,2,...,m—1, on

LT .
[0,T) is defined as b, (t) = L st< ( +1)E’
0, otherwise .

It can be shown that the functions b, are disjoint and orthogonal [16].
Theorem 2.7. A function f(t)e L2([0,T)) may be approximated by the

block-pulse function as f(t)= Zl fb(t)=F'B,(t),
i=1

ih
where F™ = (f,--f_),B, (t)= (b, (t)---b, (t))" and f :% [ .
(i-1)h
Proof: In [16].
Remark 2.8. From above theorem we have,

min  f(t)< f, < max f(t), this shows that if we approximate
(i—1)h<t<ih (i—1)h<t<ih

f(t) by F'B,(t); then the function f(t)—F'B,(t) has at least one zero in the
[(i—1)h,ih).

Now we define the hybrid functions of Block-pulse and shifted Legendre
polynomials. Firstly, we recall the shifted Legendre polynomials.

Definition 2.9. The shifted Legendre polynomials are defined on the
interval [0,1] and can be determined with the aid of the following recurrence

formula

p_.(t)= % R0 Pyt)i =1, where B t)=1and R (1) = 1.
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Definition 2.10. Hybrid functions of block-pulse and shifted Legendre

polynomialsh,, i=012,..,m-1and j=012..,n-1 are defined on [0,T) as

m m whereP;is  the j"shifted Legendre
0; otherwise ,

hy, (t)= Pj(%—ij;ilg SRS

polynomials on[0,1].

Now, for approximating the function f we can set

ft)=> > c;hy,(t)=H"Hy,,(t), whereH" = (c00 ---c(m_l)(n_l)),

i=1 j=1
(fhy,) f
HY, . (t) = (hyoo(t)~~~hy(m71)(n71)(t)), andc, =——%, where(u,v) = ju(t)v(t)dt.
<hyijvhyij> 0
Now we introduce the operational matrix methods based on block-pulse
functions. Fractional integration from t, =0 of the block-pulse function vector is

given as, 1B, (t)=F'“'B, (t), where F® is the block-pulse operational matrix
of the fractional order integration [18] and

18 & « S
TV 1 01 & .. &
@ _[ 1) L+ _ o oo ed
" (mj F(a+2)? O 1 érr;—S & =(k+1) 2k +(k -1) 4)
0o 0 0 - 1

Now, let Hy, .(t)= ®B,(t) and, 17 Hy, . (t)= Q"“'Hy, . (t); then we can

construct operational matrix for Hybrid functions asQ(“)=CDF(“)CD‘1. In the
following lemmas, we present operational matrix of fractional order integration
from arbitrary t, for block-pulse wavelets and shifted Legendre hybrid functions.

Lemma 2.11. The operational matrices of the fractional order integration

. 1
a from t, forB,on t,<t are given asF“ =F“ - — =¥ . where
° F(a+1) ’

TY "
qt)=¥,;,B,(t) and q(t)= (t_JEJ —(t-t,)" 1, <t
0, otherwise.
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Proof: (178, J)= 2 [(t- o) *B, (e )de
1

Remark 2.12. Itis clear that if j=0,(t, =0)then F*) = F.

Lemma 2.13. The operational matrices of the fractional order integration
a from t, for shifted Legendre hybrid functions vector Hy,  on t, <t are given

as Q) =dF " o™,

Proof: Let (to 1EHY )(t) - Qt(o”‘)Hymm (t), so (to 12 Hy, Xt) = Qt(f)‘Dan(t)'
Moreover; (to 1*Hy, . )(t): @(to | an)(t): ®F“B,,(t), that is Q'@ = dF '), or
Q" =oF ™,

In the following section, we will consider block-pulse wavelets and shifted
Legendre hybrid functions for solving the distributed order linear equations as (1)
under initial conditions (2). By the above descriptions, we can approximate a
function f in L*([0, T ))as

ft)=wwit). (5)
3. Numerical methods

For the sake of the simulation of solution of distributed order fractional equation
(1) under condition (2), first, we consider the integration formulas of Newton and
Cotes for the integral term in the distributed order equation [19], and next we use
block-pulse functions described in the previous section for approximation of
fractional derivative by using fractional operational matrices. Then we will have a
system of linear equations in which it can be solved by existent methods; for
example, we can use modified iterative methods [20] for this matter. Let we
consider the following formula for approximation the integral term in the
distributed order equation
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b
IR(Zﬁ(Z hZ5R 0{ =a+ih (6)
By applying (6) to (1) we will
b n
have, [ o{a) D y(tMla = 03 S 0(e; ) DE yi)
a i=0
thus, hi@w(ai N, 12D )ly() = 17)a(t) , so we have
i=0

hi So(a;), 17 (to 5 (t; D/ ))y(t) = (to I )g (t), from equation (3) we have
hz5a) )( e )
n o] k) +
=hY > 5.0(e, ts) T+ )(t—to)b‘”"+k (1)),

rrotar: ki T(o-a +k+1
Now by using equation (5) we have

W] 3" 60(a, )8 W (1) = W] G W (1) + hl, W (t), )

sum

where y(t)=wW(t) , g(t)=w;W(t), and W(t) is block-pulse or hybrid
functions of block-pulse and shifted Legendre vector functions, and w is it’s
corresponding vector coefficients, respectively, SO

Zn:%@w(ai)y(k)(tg) I(k +1) (t—t, )™ =wl W), with t <t,

i~0 k=0 k! F(b -, +K +1) sum
equation (7) implies that

hw] anéia)(ai GO =w]G®) + hwl,,. (8)
i=0

Remark 3.1. Note that, as pointed out in [21], Y 5a(e; ) D y(t) can be

i=0
b
viewed as the limiting case of ja)(a)toc DZy(tle , where a very large number of

terms are considered. On the other hand, from above relations we have
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- h.zn:5ia’(ai )((to N )y(t)_tad Y )( N Xt b J

therefore; the right hand side of the last relation tends to (to 1°) o(a): D y(thea

o

[

which is equal to (to 1°)g(t), as n— .

If we replace the approximation with equality in the equation (8), we will
have a linear algebraic equation which is solvable. By solving that, we can find

w, and then simulate y(t) as y(t)=wjw (t).

4. Convergence analysis

In this section we want to investigate the convergence of the method
described in the previous section. Let(C[04] ||||) be the Banach space of all

continuous functions with norm ||f (t)] = max|f (t).
o<t<1

Theorem 4.1. Let f(t) be an arbitrary real bounded function, which is
square integrable in the interval [0,1), ande, (t)= f (t)— F "B, (t); Then [e,(t)| < %

Proof: In [16].

Let L?[0,T] be the space of square integrable functions on[0,T],
and X = Spanthy; (t):i=0,..m~1, j =0,..,n—1. It is clear that hy; is at most a
function of degree n — 1. Now, let f e L2[0,T]. Since X is a finite dimensional

vector space, f has the unique best approximation out of X such asp € X ; that is
IpeXvge X :|f—p|, <|f —q||2, where | f|, =(f, f). Therefore, there exists

m-1 n-1

the unique coefficients such that f(t)= p = chuhyu , Where ¢;; are defined
i=0 j=0

in definition 2.10, for more details refer to [22].

Theorem 4.2. Let f e L*[0,T] be n times continuously differentiable, and
m-1 n-1
fOE)<Mon [0,T]. 1F Y > cihy,(t)=H" Hy,,(t) is the best approximation of

i=0 j=0
MAT?
V3nim’

f out of X , then we have Hf —HHy, (t)”2 <
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Proof: Let f, be the Taylor polynomial of order n-1 for f on

]
. L
[Eﬂj therefore; f,(t)=>" f(ij—m, moreover; for each i there
m m o um k!

T’
t—
. E (I +1)T . (n) ( m j .
exists &, e( R j such that |f(t)— f,(t) s‘f (gﬁ)‘—n! . Since

HTHy, . (t) is the best approximation of f out of X, f, € X , from the last

inequality we have
2

(i+1)7 (t _iTjn
- n M 2T3
[F - HTHy, (1), < 2 i 1) nr!n dt< 3(n1f?m?’

Now, we want to show the convergence of the block-pulse wavelets method for
(DFDE).

Theorem 4.3. If we use, Newton and Cotes for the integral term and the
operational matrix of the Block-Pulse functions for fractional term in equation (1),
then we can convergence to the exact solution of (DFDE).

Proof: Let |o(e) <v on [a,b]. Now, we show

foterory- o000t orer8,0-<78,0)

a

thatE,, =

tends to zero when n,m —co. By integration of order b from t,of E_we have

[z.a)(a)to *y(t)dar, |yg(t)j —(hizn;‘da)(ai ), 15CT By (1), 171 B, (t)j

b
tOItEmS

b

fofa. 12y -0 g0k ) 1162,

a

<

+H(to Itbg(t))_(to I7c; B, (t)}‘ when

n — oo, we have
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b

[ ole), 1°y(t)a - [ ola), 1% B, (t1da

a

j t)-c!'B, (t)da

a

sj|a)(ag)|to 1P |y(t)—c} B, (t)da+, 17|g(t)-cy B, (t)]

b
tOItEmS

+H(t0 Itbg(t))_(to ItbC; Bn ('[)M
Al 1290)-(, 1768, )

thus,  I°E,, < vi G Hy(t)— ¢, B, (t)”da+to N Hg(t)— cy B, (tX‘ : therefore, from

theorem 4.1 and the above referred inequality we can see that

b
C c
b b ™1 b ~2
tOItEm£vI[tolt Ejdaﬁoltﬁ,so IPE, <, t( (b—a)2

a

j, the last
m m

inequality shows that when m — oo then E_ — 0; this means that the method

described in section 3 is convergent.
A similar theorem can be obtained from theorem 4.3 when we use the
operational matrix of the hybrid of block-pulse and shifted Legendre functions.
Theorem 4.4. If we use Newton and Cotes for the integral term and the
operational matrix of the hybrid functions of block-pulse and shifted Legendre
functions for fractional term in equation (1), then we can have convergence to the
exact solution of (DFDE).

Proof: The proof is similar to the proof of theorem 4.3.

5. lllustrative Examples

In order to show the efficiency of the methods described in section 3 and simulate
the exact solution of distributed order equations, we consider some examples that
their exact solutions are known.

0.9 11
5.1. Example. Consider jr(s—a)oijy( Mo =2t In_(t) 0<t<1y(0.1)=00L.

The exact solution of this example is y(t)=t?. In this manner we use trapezoidal
rule [19] for integral term withh=0.2, Bsz() and B, (t)for approximating y(t).

Now from equation (8) we can find ¢, and then simulate y(t) by c]B,(t) ,
andc; Bg,(t). Figure 1 shows the numerical results generated by block-pulse
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vector functions B,,(t) and B, (t)for the example 5.1, and from that we will see

when m increases from 32 to 64; the numerical solution tends to exact solution.
Table 1 shows the absolute error in some points.

0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1

By B32(t) and h=0.2 By Be4(t) and h=0.2

Fig. 1. Numerical and exact solutions of example 5.1 by block-pulse functions.

t5

1 T
exact solution ]
0.9f numerical solution |

0 0.2 04 0.6 0.8 1
t

Fig. 2. Numerical and exact solutions of example 5.2 by hybrid functions Hyj ;.
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2
52.  Example.  Now consider'fwg X ()dazﬁ,OStgl,
. 120 In(t)
y(0)=y'(0)=0. The exact solution is y(t)=t°. Similar to example 5.1, in this
example we use trapezoidal rule [19] for integral term with h=0.2 and Bgz(t),
B, (t) and Hy,,(t) for approximating y(t). In figure 2 we present the numerical

and exact solutions generated by hybrid functions. Form figure 2 we can see that
the numerical solution generated by hybrid functions are so closed to the exact
solution. In table 2, we can compare absolute error of solutions generated B.,(t),

B, (t) and Hy,,(t)in some points. From table 2 we can see that the errors of
hybrid function are less than block-pulse functions.

Table 1
Melting points and elemental analyses
t e)B(t)-t7 | ¢} Baut) -t
0.144 4.0425%e-6 0.4062 2.0174%e-5
0.242 8.4520xe-5 0.5918 1.9726%e-5
Table 2
Melting points and elemental analyses
t T 5 T 2 2
Ba0-t | [eBu®-t] [ [Hys(0) -t
0.1 5.9470%e-6 1.3777xe-7 4.4538xe-7
0.2 1.3073x%e-5 5.4498xe-5 1.3319xe-5
0.3 1.9812x%e-4 8.4561xe-5 8.6726xe-5
0.4 1.4000xe-3 4.9081xe-4 2.6389x%e-4
0.5 4.7000%e-3 1.9000xe-3 5.5607xe-4
0.6 5.4000xe-3 2.2676xe-5 9.2704xe-4
0.7 2.7000xe-3 6.9000x%e-3 1.3000xe-3
0.8 7.6000xe-3 8.1000xe-3 1.6000xe-3
0.9 3.1300xe-2 6.8000xe-3 1.6000xe-3
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Fig. 3. Error of block-pulse approximations generated by m = 32, 64 for examples 5.1, 5.2.

Also, in figure 3 we present the error for examples 5.1, 5.2 generated by m = 32,
64. From figure 3 we see that when we double m, the number of zeros of

y(t)—c; B, (t) are double in each interval (%%} . This idea was supported

in remark 2.8. Notice that in each example we translate a DFDE to algebraic
linear equations such as Ax =b and then solved these equations.

6. Conclusions

The fractional differential equations play an important role in physics,
chemical mixing and biological systems. The distributed-order operators can be
obtained when we integrate the fractional-order calculus operators with respect to
the order variable. The fundamental goal of this work has been to apply block-
pulse and shifted Legendre hybrid functions operational matrix method to
simulate the solution of DFDE with initial conditions at t,. This method translates

a DFDE to an algebraic linear equation which was presented in section 3 and the
convergence of this method was demonstrated in section 4, also from section 4 we
saw when m increases, we can obtain a good simulation of solution of DFDE with
initial conditions. Moreover, two numerical examples were given to verify the
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effectiveness of the proposed schemes to simulation of solutions. Although the
proposed numerical algorithms are quite effective in case of deterministic
differential equations with smooth solutions, one has to further investigate how
pulse wavelets numerically behave in case of stochastic differential equations
(which really are sources of fractal signals).
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