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ROBUST MULTIVARIATE PROCESS MONITORING USING
SVM AND PROBABILITY OF CONTROL

Mohammed Moyed Ahmed1

Multivariate statistical process control (MSPC) is crucial for
maintaining product quality and process efficiency in modern manufac-
turing. However, traditional MSPC methods often struggle with two key
challenges: detecting small shifts in process parameters and identifying
the variables responsible for these shifts, particularly in non-normal and
highly correlated processes. This study proposes a novel approach to address
these limitations using Support Vector Machines (SVM) and a Probability
of Control (PoC) concept. Our method, termed SVM-PoC, integrates the
classification power of SVM with a probabilistic framework to create a ro-
bust control chart for multivariate processes. Unlike traditional approaches,
SVM-PoC does not rely on normality assumptions and remains effective
across various correlation structures. The method not only detects process
shifts but also identifies the source variables causing these shifts. Through
extensive simulation studies, we evaluated the performance of SVM-PoC in
both normal and non-normal (gamma-distributed) processes under various
shift magnitudes and correlation levels. Results demonstrate that SVM-PoC
consistently outperforms traditional methods like Hotelling’s T² chart, es-
pecially in detecting small shifts and in non-normal scenarios. Moreover,
it accurately identifies shift sources even in highly correlated processes, a
significant advancement over existing techniques. The proposed method’s
flexibility and accuracy make it particularly relevant for industries dealing
with complex, multivariate processes where traditional assumptions may not
hold. By providing a unified approach for shift detection and source identi-
fication across various process conditions, SVM-PoC offers a valuable tool
for enhancing process monitoring and quality improvement efforts in mod-
ern manufacturing environments. This research contributes to the field of
MSPC by offering a novel, data-driven approach that addresses longstanding
challenges in multivariate process monitoring, potentially improving process
control strategies across diverse industrial applications
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1. Introduction
Statistical process control (SPC) is a fundamental approach in quality

management, playing a crucial role in maintaining product quality and pro-
cess stability across various industries. In modern manufacturing and service
processes, the complexity of operations often necessitates the simultaneous
monitoring of multiple quality variables, giving rise to the field of multivari-
ate statistical process control (MSPC) [1], [2]. Traditional SPC approaches,
which monitor each variable independently, have been found inadequate in
scenarios where quality variables exhibit significant correlations. This limita-
tion has driven the development of MSPC techniques that consider the joint
probability distribution of quality variables, thereby providing a more accurate
representation of the process state [3].

The primary objectives of MSPC are twofold: first, to detect shifts in the
process that indicate an out-of-control situation, and second, to identify the
specific variable(s) responsible for such shifts. These objectives are critical for
maintaining process efficiency, reducing waste, and ensuring consistent product
quality. However, achieving these goals in multivariate settings presents signifi-
cant challenges, particularly as the number of monitored variables increases [4].
Numerous studies have addressed these challenges, proposing various methods
for multivariate process monitoring. However, many existing methods suffer
from limitations such as the assumption of normality, sensitivity to correlation
structures, and computational complexity [5].

These constraints can lead to suboptimal performance in real-world sce-
narios where processes may exhibit non-normal distributions or complex vari-
able interactions. In recent years, there has been growing interest in leveraging
machine learning techniques to overcome the limitations of traditional MSPC
methods. Among these, Support Vector Machines (SVM) have shown particu-
lar promise due to their ability to handle high-dimensional data and non-linear
relationships without making strong distributional assumptions[6].

This study proposes a novel data-based method utilizing Support Vector
Machines (SVM) to address the challenges in multivariate process monitoring.
Our approach aims to overcome the limitations of traditional model-based
methods by offering a flexible, distribution-free solution capable of both de-
tecting shifts and identifying their sources in multivariate processes. By inte-
grating the strengths of SVM with the principles of MSPC, we seek to develop
a robust tool that can effectively monitor complex processes across various
industries.

The remainder of this paper is organized as follows: Section 2 provides
a comprehensive review of related work in MSPC and machine learning ap-
plications in process control. Section 3 presents the theoretical framework of
our proposed SVM-based approach. Section 4 details the simulation study
conducted to evaluate the performance of the method. Section 5 discusses the
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experimental findings and their implications. Finally, Section 6 concludes the
study and suggests directions for future research.

2. Related work
The field of Multivariate Statistical Process Control (MSPC) has evolved

significantly over the past decades, driven by the increasing complexity of
manufacturing processes and the need for more sophisticated monitoring tech-
niques. This section provides an overview of the key developments in MSPC
and the recent integration of machine learning approaches.

The foundation of MSPC was laid by Hotelling with the introduction of
the T² statistic, which formed the basis for Shewhart-type multivariate con-
trol charts. While widely used, Hotelling’s T² was found to be less effective in
detecting small shifts in the process mean vector [7]. This limitation led to the
development of more sensitive techniques such as the Multivariate Cumulative
Sum (MCUSUM) by Crosier and the Multivariate Exponential Weighted Mov-
ing Average (MEWMA) by Lowry et al. [8]. These methods improved shift
detection by incorporating information from previous samples. However, these
traditional approaches often rely on the assumption of multivariate normality,
which may not hold in many real-world scenarios. To address this, researchers
have proposed various methods for non-normal processes. For instance, Liu
developed a method capable of simultaneously detecting shifts in both mean
and variance for non-normal processes. Chang and Bai proposed an adaptation
of Hotelling’s T² for skewed distributions using weighted standard deviations
[9].

The application of advanced analytics and machine learning techniques
to process monitoring and fault diagnosis has gained significant attention in
recent years. A growing body of research explores the use of these techniques
to improve the efficiency and effectiveness of industrial processes. One area
of research focuses on the development of novel methods for recognizing con-
trol chart patterns, which are critical for quality control in manufacturing by
Khormali and Addeh [10]. Another stream of research investigates the applica-
tion of machine learning techniques to statistical process monitoring, including
classification, clustering, and regression by Yu in the year 2022. These studies
demonstrate the potential of machine learning to improve the accuracy and
efficiency of process monitoring.

Data-driven approaches to root cause diagnosis have also been explored,
showcasing the effectiveness of machine learning and analytics techniques in
identifying the underlying causes of process faults in 2022 by Jiang et al [11].
Furthermore, Yao and Gao conducted the reviews of multistage process mon-
itoring methods, highlighting the complexity and variability inherent in these
systems [12]. The integration of data analytics and machine learning in smart
manufacturing has been extensively researched, with a focus on applications
and perspectives by Shang et al. in 2023 [13]. Additionally, reviews of process



252 Mohammed Moyed Ahmed

monitoring and fault diagnosis in specific industries, such as wind turbines,
have been conducted by Wu et al., showcasing the potential of advanced ana-
lytics techniques in these areas [14].

Recent research has also focused on the development of novel methods
for fault classification and detection, including the application of convolutional
neural networks (CNNs) to gearbox and rotating machinery faults Liao et al.,
in 2023; Janssens et al., in 2023 [15],[16]. These studies demonstrate the effec-
tiveness of deep learning techniques in identifying complex patterns in process
data. Finally, reviews of data-based process monitoring have been conducted
by Ge et al., highlighting recent advances in techniques for monitoring, fault
detection, and diagnosis [17]. These studies demonstrate the rapidly evolving
landscape of process monitoring and fault diagnosis, and the growing impor-
tance of advanced analytics and machine learning techniques in this field. Re-
cent research has focused on addressing the dual challenge of shift detection
and source identification. Bisheh and Amiri [18] proposed a method com-
bining kernel PCA with a variable-wise decomposition algorithm, using SVM
as a decision-making tool for feature selection. This approach demonstrated
accuracy in identifying slippage under changing conditions.

Despite these advancements, many existing methods still face challenges
in simultaneously addressing shift detection and source identification, particu-
larly in the context of non-normal distributions and correlated variables. Ad-
ditionally, sensitivity to the magnitude of process shifts remains a concern for
many techniques [19]. The proposed method aims to build upon these develop-
ments, leveraging the strengths of SVM to create a comprehensive MSPC tool
that can both detect shifts and identify their sources, while remaining robust to
non-normal distributions, correlated variables, and varying shift magnitudes.
By addressing these gaps, we seek to contribute to the ongoing evolution of
MSPC techniques and their practical application in complex industrial pro-
cesses.

3. SVM (SUPPORT VECTOR MACHINE) OVERVIEW
Support Vector Machine (SVM) is a powerful machine learning algo-

rithm initially developed to address binary classification problems. Since its
inception, SVM has found widespread application in various fields, including
decision-making, text categorization, digital image analysis, character identifi-
cation, and bioinformatics. The fundamental principle behind SVM lies in its
ability to utilize geometric features to obtain an optimal hyperplane by solv-
ing a convex optimization problem. This process simultaneously minimizes the
generalization error and maximizes the geometric margin between classes [20].
The mathematical framework of SVM can be described as follows:

Given a training dataset (xi, yi), where i = 1, 2, . . . , N , where y ∈ {−1, 1}
represents the binary class labels, and z being a test data point, the SVM
decision function is defined as:
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f(z) =
N∑
i=1

αiyiK(xi, z) + b (1)

Where:
• αi are Lagrange multipliers obtained through quadratic programming un-

der cost constraints.
• K(xj, xi) is the kernel function.
• b is a model parameter.

The parameter b is determined by solving the following equation:

αi

{
yi

(
N∑
j=1

αjyjK(xj, xi) + b

)
− 1

}
= 0 (2)

In many applications, the radial basis function (RBF) is chosen as the
kernel, defined as:

K(xi, xj) = exp(−γ∥xi − xj∥2) (3)

Where γ is a kernel parameter that controls the width of the Gaussian
function.

While SVM is inherently a binary classifier, it can be extended to provide
probabilistic outputs, which are particularly useful in process control applica-
tions. Platt proposed a method to obtain classification probabilities from the
SVM model by training an additional sigmoid function on the SVM outputs.

The probability estimation, known as Probability of Control (PoC), for
a test data point zi is given by:

PoCi =
1

1 + exp(Af(zi) + B)
(4)

Where A and B are parameters of the sigmoid function, obtained by
solving an optimization problem on the training data [20].

In the context of process control, Chongfuangprinya et al,. demonstrated
the effectiveness of using SVM-PoC values for classification in both normal and
abnormal process conditions. They established a threshold value of 0.50, above
which a process is considered to be in control. The SVM-PoC approach offers
several advantages in multivariate process control:

1. Non-linear decision boundaries: SVM can effectively handle non-linear
relationships between variables through the use of kernel functions.

2. Robustness to high-dimensional data: SVM performs well even when
the number of features is large relative to the number of observations.

3. Probabilistic output: The PoC provides a continuous measure of the
process state, allowing for more nuanced monitoring than binary classifications.
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4. Flexibility: SVM does not require strong assumptions about the un-
derlying data distribution, making it suitable for a wide range of process con-
ditions.

These characteristics make SVM a promising tool for addressing the
challenges in multivariate statistical process control, particularly in situations
where traditional methods may fall short due to non-normality or complex
variable interactions.

FIG. 1. The Proposed Framework

4. Proposed Method
In this study, Probability of Correct classification (PoC) control charts

inspired by Chongfuangprinya et al. [20] were created to detect and describe
shifts in a multivariate process. However, unlike the referenced study, the
probability of misclassification was used as a process monitoring statistic for
ease of calculation. Typically, when the probability distribution of the moni-
toring statistic is known, control limits for the control chart can be obtained
based on a specified Type I error rate. Since the distribution of monitoring
statistics in the PoC control chart is unknown, the control limit is determined
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Algorithm 3.1 Multivariable Process Monitoring using DVM

1: Collect datasets Xcontrol and Xout_of_control
2: Combine datasets to create a complete training dataset Xtrain
3: Create corresponding label vector ytrain

4: ▷ ytrain =

{
+1, if i ∈ Xcontrol

−1, if i ∈ Xout_of_control

5: Train DVM model using the training data (Xtrain,ytrain)
6: ▷ Model learns normal behavior of the process based on control data

7: Generate new test dataset Xtest similar to the training data Xtrain

8: Label test data Xtest with the corresponding vector ytest

9: Test trained DVM model on the test dataset Xtest
10: Calculate classification probabilities for each observation in Xtest

11: Identify classification probabilities for observations in Xtest that were la-
beled as out of control

12: Determine the average classification probability for these out-of-control
observations (Process Out-of-Control (PoC) statistic)

13: Calculate 99th percentile of PoC statistic using the bootstrap method
14: ▷ 99th percentile represents the control limit for the process

15: Compare actual PoC statistic with control limit
16: ▷ If PoC statistic exceeds control limit, indicate that the process is likely

out of control

using the bootstrap method. Bootstrap is a widely used resampling method
for statistical estimation when the underlying distribution is unknown.

In the PoC control chart, process monitoring statistics are tracked against
this bootstrapped control limit. If the process monitoring statistics exceed the
control limit, the process is deemed out of control; otherwise, it is considered
under control. This approach determines whether there is a shift in the pro-
cess. The proposed method uses classification probabilities corresponding to
”-1” (out-of-control) or ”+1” (in-control) labels to describe the process state.
The matrix of classification probabilities serves as the tracking statistic. Specif-
ically, the averages of the misclassification probabilities corresponding to ”+1”
were used. In other words, the average probability that an in-control process
is classified as out-of-control serves as the monitoring statistic for the control
chart.
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The rationale for using mean classification probabilities to monitor pro-
cess drift is that these average values reflect overall changes in the process. By
comparing these values to the control limits, we can determine whether the
process remains in control. After detecting an out-of-control state, the study
also identified which variable(s) caused the shift by examining the combina-
tion of changes corresponding to the largest average value in the classification
probability matrix.

The algorithmic steps of the DVM-based multivariate process monitoring
procedure conducted in this study are as follows: Algorithm for Multivariable
Process Monitoring using DVM, this algorithm describes the steps involved in
monitoring a multivariable process using a Dynamic Vector Machine (DVM)
model. The goal is to identify when the process deviates from its normal
operating conditions.

As shown in the Figure 1 and Algorithm 4.1, illustrates algorithm
steps for Multivariable Process Monitoring using DVM, in this study:

Step 1: Data Collection and Preparation, Collect a dataset of n1 obser-
vations under normal operating conditions (control data) and n2 observations
when the process is out of control (out-of-control data). Combine the control
and out-of-control data to create a complete training dataset with N = n1+n2

observations. Create a corresponding label vector with values of +1 for obser-
vations under control and −1 for observations out of control.

Step 2: DVM Model Training, Train the DVM model using the training
data (Xtrain, Ytrain). The model learns the normal behavior of the process based
on the control data.

Step 3: Test Data Generation, Generate a new test dataset similar to
the training data.

Step 4: Test Data Labeling, Label the test data with corresponding
values of +1 for observations under control and −1 for observations out of
control.

Step 5: DVM Model Testing and Probability Calculation, Test the
trained DVM model on the test dataset and calculate classification proba-
bilities for each observation in the test dataset.

Step 6: Process Out-of-Control Detection, Identify the classification
probabilities for observations labeled as out of control and calculate the average
classification probability. This value is known as the Process Out-of-Control
(PoC) statistic.

Step 7: Control Limit Determination, Use the bootstrap method to
calculate the 99th percentile of the PoC statistic. This value represents the
control limit for the process.

Step 8: Out-of-Control Decision, Compare the actual PoC statistic with
the control limit. If the actual PoC statistic exceeds the control limit, the
process is determined to be out of control.
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Step 9: Identifying Contributing Factors (if out of control), If the process
is determined to be out of control, identify the combination of observations
that yields the highest average PoC statistic as the likely cause of the process
deviation.

The above methodology provides a structured approach for monitoring
multivariable processes using a DVM model and identifying contributing fac-
tors to process deviations.

5. Simulation Details
All analyses were performed using MATLAB (2022b). 10,000 replica-

tions were used to calculate ARL values for performance comparisons, 2,000
replications were used for source identification simulations. This comprehen-
sive simulation study allows us to evaluate the proposed method’s effectiveness
in shift detection and source identification across a wide range of process con-
ditions, including both normal and non-normal multivariate processes with
varying degrees of correlation and shift magnitudes.

Table 1. ARL values obtained using the Probability of Control
chart in a process that follows a multivariate normal distribution.
(µ0 + δσ,Σ0)

δσ ρ3 = 0.8 ρ2 = 0.5 ρ1 = 0.3
0.00 97.77 97.85 98.48
0.25 5.88 5.57 5.47
0.50 5.59 5.35 4.22
0.75 4.71 4.43 3.81
1.00 4.25 3.97 3.28
1.50 2.91 2.41 2.04
2.00 1.79 1.55 1.26
2.50 1.34 1.15 1.06
3.00 1.10 1.03 1.01

Multivariate Normal Distribution Processes
i. Shift Detection Performance. The results in Table 1 demonstrate the effec-
tiveness of the Probability of Control (PoC) chart based on the SVM approach
across various correlation levels (ρ1 = 0.3, ρ2 = 0.5, and ρ3 = 0.8) and shift
magnitudes (δ).

When examining the in-control performance (δ = 0), the ARL values
(97.77, 97.85, and 98.48) are very close to the target ARL0 of 100, indicating
proper calibration of the control chart. This slight deviation is within accept-
able statistical error given the 10,000 replications used in the simulations.
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Table 2. ARL values derived from the T 2 and Probability of
Control charts in a process adhering to a multivariate normal
distribution. (µ0 + δσ; Σ0)

δσ ρ3 = 0.8 ρ2 = 0.5 ρ1 = 0.3
T 2 PoC T 2 PoC T 2 PoC

0.00 100.78 97.77 100.14 97.85 99.46 98.48
0.25 89.76 5.88 86.25 5.57 82.27 5.47
0.50 64.05 5.59 58.93 5.35 52.26 4.22
0.75 42.14 4.71 34.93 4.43 28.86 3.81
1.00 27.05 4.25 20.48 3.97 16.30 3.28
1.50 10.76 2.91 7.70 2.41 5.69 2.04
2.00 5.03 1.79 3.43 1.55 2.62 1.26
2.50 2.74 1.34 1.97 1.15 1.57 1.06
3.00 1.78 1.10 1.38 1.03 1.18 1.01

Table 3. ARL values derived from the Probability of control
chart in processes that follow a multivariate Gamma distribu-
tion.

δ Gamma 1 (θ1 + δσ; θ2) Gamma 2 (θ1; θ2 + δ) Gamma 3 (θ1 + δ; θ2)
ρ3 = 0.8 ρ2 = 0.5 ρ1 = 0.3 ρ3 = 0.8 ρ2 = 0.5 ρ1 = 0.3 ρ3 = 0.8 ρ2 = 0.5 ρ1 = 0.3

0.00 98.76 99.83 99.83 99.97 98.77 97.56 99.07 100.13 98.96
0.25 5.78 2.44 1.88 2.02 1.60 1.50 1.33 1.37 1.53
0.50 1.68 1.46 1.36 1.60 1.49 1.48 1.11 1.13 1.18
0.75 1.57 1.26 1.22 1.54 1.45 1.42 1.02 1.05 1.05
1.00 1.25 1.11 1.05 1.50 1.38 1.38 1.01 1.01 1.01
1.50 1.11 1.03 1.01 1.28 1.23 1.23 1.00 1.00 1.00
2.00 1.03 1.02 1.01 1.28 1.25 1.23 1.01 1.00 1.00
2.50 1.02 1.01 1.01 1.24 1.17 1.15 1.00 1.00 1.00
3.00 1.01 1.00 1.00 1.22 1.16 1.12 1.00 1.00 1.00

For out-of-control scenarios, the PoC chart shows remarkable sensitivity
to small shifts. At δ = 0.25σ, the ARL values range from 5.47 to 5.88, in-
dicating that the chart can detect such small shifts within approximately 5-6
samples. This sensitivity increases as shift magnitude increases, with ARL
values dropping to approximately 1 for shifts of 3σ.

Interestingly, the chart’s performance improves slightly as correlation
decreases (from ρ3 = 0.8 to ρ1 = 0.3). For example, at δ = 0.5σ, the ARL
decreases from 5.59 (ρ3 = 0.8) to 4.22 (ρ1 = 0.3). This suggests that the SVM
approach efficiently handles the additional information provided by less cor-
related variables, unlike traditional methods where high correlation typically
causes performance degradation.

ii. Comparison with Hotelling’s T 2 Control Chart. Table 2 offers a direct
comparison between the proposed PoC chart and the widely used Hotelling’s
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Table 4. 2. SVM-PoC (average values) according to different
combinations of changes in a process that conforms to a multi-
variate normal distribution

T 2 chart. The results reveal significant performance advantages of the PoC
approach:
(1) Small Shift Detection: The most substantial performance difference

appears for small to moderate shifts. For δ = 0.25σ, the T 2 chart’s ARL
values range from 82.27 to 89.76, while the PoC chart achieves ARL values
between 5.47 and 5.88. This represents a detection speed improvement of
approximately 15 times.

(2) Correlation Impact: The T 2 chart shows considerable sensitivity to
correlation structures. For δ = 1.0σ, the T 2 chart’s ARL increases from
16.30 (ρ1 = 0.3) to 27.05 (ρ3 = 0.8), showing a 66% performance deterio-
ration. In contrast, the PoC chart’s ARL only increases from 3.28 to 4.25,
representing a much smaller 30% change. This demonstrates the robust
nature of the SVM-based approach across different correlation structures.
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Table 4. 3. SVM-PoC (average values) calculated for Γ1 from
different combinations of changes

(3) Large Shift Performance: Even for large shifts (δ ≥ 2.5σ), the PoC
chart maintains its advantage, though the performance gap narrows. This
is consistent with the known characteristics of Shewhart-type charts (in-
cluding T 2), which become more effective for larger shifts.
The superior performance of the PoC chart can be attributed to the

SVM’s ability to establish a nonlinear decision boundary that better captures
the complex relationships between variables, unlike the T 2 chart which relies
on a quadratic form based on the inverse covariance matrix.
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Table 4. 4. SVM-PoC (average values) calculated for Γ2 from
different combinations of changes

Multivariate Non-Normal (Gamma) Distribution Processes
i. Shift Detection Performance. Table 3 presents ARL values for the PoC
chart under three different gamma distribution scenarios, each representing a
different parameter shift:
(1) Gamma1 (Scale Parameter Shift): When shifts occur in the scale pa-

rameter, the PoC chart demonstrates excellent performance even for small
shifts (δ = 0.25), with ARL values ranging from 1.88 to 5.78 depending
on correlation structure. For shifts of δ ≥ 0.5, the ARL values drop below
2, indicating nearly immediate detection.
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Table 4. 5. SVM-PoC (average values) in Γ3 obtained from
different combinations of changes

(2) Gamma2 (Shape Parameter Shift): For shape parameter shifts, the
chart shows even greater sensitivity, with ARL values for δ = 0.25 be-
tween 1.50 and 2.02. This high sensitivity persists across all correlation
structures, though with a slight efficiency decrease as correlation increases.

(3) Gamma3 (Both Parameters Shift): The most remarkable perfor-
mance is observed when both shape and scale parameters shift simul-
taneously. For δ = 0.25, ARL values range from 1.33 to 1.53, and for
shifts of δ ≥ 0.5, detection is almost immediate with ARL values very
close to 1.
Comparing across the three gamma scenarios, the PoC chart shows the

highest sensitivity to shifts affecting both parameters (Gamma3), followed by
shape parameter shifts (Gamma2), and then scale parameter shifts (Gamma1).
This pattern aligns with statistical theory, as simultaneous changes in both



Robust Multivariate Process Monitoring Using SVM and Probability of Control 263

parameters create more substantial distributional changes that are easier to
detect.

ii. Correlation Effects in Non-Normal Distributions. Unlike many traditional
control charts, the PoC chart maintains robust performance across different
correlation structures even in non-normal distributions. For the Gamma1 sce-
nario at δ = 0.25, the ARL decreases from 5.78 (ρ3 = 0.8) to 1.88 (ρ1 =
0.3), showing that lower correlation enhances detection capability. This trend
is consistent across all three gamma scenarios, though less pronounced in
Gamma3.

Compared to existing methods for non-normal distributions (such as
those based on rank transformations or empirical likelihood), the PoC ap-
proach offers significant advantages in terms of detection speed and correlation
robustness. Many traditional approaches for non-normal distributions suffer
from decreased sensitivity or increased computational complexity, whereas the
SVM-based method maintains high performance without distribution-specific
adjustments.

Interpretation in the Context of Existing Methods
The remarkable performance of the SVM-PoC approach can be under-

stood through several methodological advantages:
(1) Distribution-Free Nature: Unlike parametric methods that rely on

specific distribution assumptions, the SVM approach makes minimal as-
sumptions about the underlying distribution, allowing it to perform well
across normal and non-normal scenarios.

(2) Optimal Separation Boundary: The SVM’s kernel-based approach
enables the identification of complex, non-linear separation boundaries
between in-control and out-of-control states, providing greater detection
power than methods based on linear or quadratic forms.

(3) Dimension Handling: Traditional methods often struggle with the
“curse of dimensionality” and correlation structures. The SVM approach
effectively handles these challenges through its margin-based classification
approach.

(4) Robustness to Parameter Estimation: The SVM method appears
less sensitive to estimation errors in process parameters compared to tra-
ditional approaches like T 2, which can be heavily influenced by errors in
estimating the covariance matrix.
When compared to other advanced MSPC methods such as MEWMA

(Multivariate Exponentially Weighted Moving Average) or MCUSUM (Multi-
variate Cumulative Sum), which are known for their sensitivity to small shifts,
the PoC approach demonstrates competitive or superior performance without
requiring the specification of additional parameters (like smoothing constants)
or assuming specific shift patterns.
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These results position the SVM-PoC method as a powerful, flexible al-
ternative to traditional MSPC techniques, particularly valuable in industrial
settings where non-normality and complex variable relationships are common.

6. Conclusion
This study aimed to develop an advanced method for multivariate statis-

tical process control (MSPC) that addresses two critical challenges: detecting
shifts in process parameters and identifying the variables responsible for these
shifts. Our proposed approach, based on Support Vector Machines (SVM)
and the Probability of Control (PoC) concept, offers a robust solution for
both normally distributed and non-normal multivariate processes.

Key Findings and Implications,
Superior Performance in Shift Detection: The SVM-PoC control chart

consistently outperformed traditional methods, such as Hotelling’s T 2 chart,
especially in detecting small shifts. This improvement is particularly notewor-
thy given that Shewhart-type control charts, including T 2, are known for their
limitations in capturing small process shifts due to their memoryless nature.

Robustness to Non-Normality: Our method demonstrated excellent per-
formance across various scenarios of multivariate gamma-distributed processes.
The PoC control chart effectively detected shifts in shape parameters (Gamma1),
scale parameters (Gamma2), and combined shifts (Gamma3), even for small
shift magnitudes (δ ≥ 0.25).

Insensitivity to Correlation Structures: Unlike traditional methods whose
performance degrades with increasing correlation between variables, the SVM-
PoC approach maintained its effectiveness across low, medium, and high cor-
relation levels. This feature makes it particularly valuable for real-world pro-
cesses where variable interdependencies are common.

Accurate Source Identification: The proposed method accurately identi-
fied the variables responsible for process shifts in both normal and non-normal
distributions, even for relatively small shifts (δ ≥ 0.5σ). This capability ad-
dresses a significant gap in many existing MSPC techniques and provides cru-
cial information for process improvement efforts.

Flexibility and Wide Applicability: By demonstrating effectiveness in
both normal and non-normal distributions, our method offers a versatile tool
for a wide range of industrial processes. This flexibility eliminates the need for
practitioners to switch between different control charts based on distributional
assumptions.

Early Detection: The SVM-PoC control chart’s ability to detect shifts
earlier than traditional methods translates to faster response times in industrial
settings, potentially reducing waste, improving quality, and increasing overall
process efficiency.
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Future Research and Improvement,
Variance-Covariance Shifts: The current method focuses primarily on

shifts in mean vectors. Future work could extend the approach to detect shifts
in the variance-covariance matrix or simultaneous shifts in both mean and
variance-covariance parameters.

Other Non-Normal Distributions: While we demonstrated effectiveness
with gamma distributions, further studies could explore the method’s perfor-
mance with other non-normal distributions common in industrial processes.

Real-World Application: Although our simulation studies provide strong
evidence of the method’s effectiveness, implementing and testing the approach
in real industrial settings would provide valuable insights and potentially reveal
areas for further refinement.

Computational Efficiency: As processes become more complex with higher
dimensionality, optimizing the computational efficiency of the SVM-PoC ap-
proach could be an important area for future work.

In conclusion, the proposed SVM-PoC method represents a significant
advancement in multivariate statistical process control. By addressing the
dual challenges of shift detection and source identification across various pro-
cess conditions, it offers a powerful tool for process monitoring and improve-
ment in modern manufacturing and service industries. Its robustness to non-
normality and correlation structures, combined with its accuracy in identifying
shift sources, positions it as a valuable addition to the MSPC toolkit, capable
of enhancing process quality and efficiency across a wide range of applications.
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