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The problem of traffic in big cities represents one of the greatest challenges of 

this century because cities are becoming more and more populated with both people 

and vehicles. Therefore, solutions are needed to control traffic, algorithms or models 

that can model the main traffic parameters. This paper is based on speed-density 

models, and within this paper, the most important speed-density models were analyzed 

for the purpose of estimating travel speed based on a database containing data from 

highways. Seven different traffic flow models were analyzed in order to find the most 

suitable one for the highway conditions. 
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1. Introduction and Related Work 

As urbanization accelerates and the population continues to grow, traffic in 

major cities has become one of the most critical issues of the modern era. In many 

cases, the existing road infrastructure cannot cope with the increasing demands for 

transport, leading to severe congestion of the traffic. These bottlenecks not only 

affect the quality of life but also the environment and economic performance. 

Traffic congestion manifests itself through a significant slowdown in travel speeds, 

the formation of endless queues, and an exponential increase in travel times. Its 

causes are multiple and interconnected, including insufficient road capacity, high 

transport demand during peak hours, unforeseen road events (accidents, 

roadworks), poorly synchronized traffic lights, and the lack of efficient public 

transport alternatives [1]. Traffic congestion can be interpreted and compared to a 

Lorenz chaotic system, as traffic can sometimes exhibit chaotic behavior depending 

on the participants and external conditions that might occur [2]. Therefore, 

identifying and implementing effective traffic management solutions becomes an 

absolute priority.  

Macroscopic traffic flow models are fundamental tools for analyzing and 

managing road traffic dynamics. They provide an overview of the collective 

behavior of vehicles on a road network, using parameters such as density, speed, 

and flow, without detailing the individual trajectories of vehicles. 
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Macroscopic traffic flow models are based on three fundamental traffic 

parameters: traffic flow (the number of vehicles passing a specific point per unit of 

time), traffic density (the number of vehicles per unit length of the road) and the 

traffic speed (the average speed of vehicles in the traffic stream) [3]. 

The study in [4] proposes a new model to characterize the physiological and 

psychological response of drivers to changes in traffic flow. The authors introduce 

a regulation parameter that describes drivers’ reactions to the conditions ahead, 

enabling a more realistic representation of traffic compared to existing models. The 

study shows that, for a slow response, traffic tends to form congestion, while a rapid 

response leads to a smoother flow. Additionally, it highlights that speed variations 

affect pollutant emissions and fuel consumption, suggesting that adjusting the 

regulation parameter for autonomous vehicles can reduce these negative effects. 

The proposed model provides a foundation for analyzing the behavior of 

autonomous vehicles, contributing to strategies for reducing fuel consumption and 

pollution. In the study from [5] the author proposes a new macroscopic traffic flow 

model that considers driver reactions and traffic stimuli. Unlike the Payne–

Whitham (PW) model, which uses a constant velocity and can lead to unrealistic 

behavior in density and speed, the proposed model characterizes traffic behavior 

based on the distance between vehicles. The performance of both models was 

evaluated on a circular 300-meter route without active bottlenecks, with results 

indicating that the proposed model provides a more realistic representation of traffic 

behavior. Additionally, as highlighted in the study referenced in [6], traffic can be 

examined through the lens of channel information theory. 

In this paper, we evaluate several macroscopic traffic flow models, selected 

after a comparative analysis of multiple approaches, and implement the most 

suitable ones under highway conditions. The focus is on identifying and validating 

the models that best reflect highway traffic dynamics through both theoretical 

analysis and practical implementation. The paper is organized as follows. Section 

2 shows the used traffic flow models; section 3 shows the data description and 

model calibration and section 4 conclusions. 

2. Traffic flow models 

In this section the traffic flow models used and the boundary conditions for 

each one will be explained. The traffic models described in the following sections 

stand out due to their distinct characteristics, ranging from simple linear relations 

between speed and density to more sophisticated forms, including exponential, 

logarithmic, or combined approaches. These models provide a deeper 

understanding of traffic flow mechanisms, highlighting their importance in 

addressing congestion, improving efficiency, and designing effective transportation 

systems. The first one that will be described is the Greenshields model:  
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2.1 The Greenshields model 

This model has been created and proposed by Greenshields in 1935, and it 

is a linear approach designed to examine the relation between speed, flow, and 

density [7]. While the model is straightforward and adheres to all boundary 

conditions (𝒖 = 𝟎 when 𝒌 =  𝒌𝒋 and  𝒖 =  𝒖𝒇 when 𝒌 = 𝟎), its overall fit tends to 

be low, particularly when applied to freeway data. The formula for the Greenshields 

model is the following [8]: 

                                     𝑢 = 𝑢𝑓 (1 −  
𝑘

𝑘𝑗
),             `                               (1)  

where there are the following meanings: 𝑢 is the speed, 𝑢𝑓 is the free flow speed, 

𝑘 represents the density and the 𝑘𝑗 represents the jam density. 

2.2 The Underwood model 

Introduced in 1961, the Underwood model uses an exponential approach to 

describe the interaction between speed, flow, and density. It assumes that speed 

decreases exponentially as density rises, making it well-suited for traffic conditions 

with low to moderate densities [9]. However, its performance is less reliable in 

heavily congested situations. The Underwood model is as follows [8]:  

                                          𝑢 =  𝑢𝑓 ∗ 𝑒
−

𝑘

𝑘𝑐,                                                     (2) 

where 𝒖 and 𝒖𝒇 represents the speed and the free flow speed, 𝒌 is the density and 

𝒌𝒄 is the critical density, the density at which the maximum flow occurs. 

2.3 The Greenberg model 

The Greenberg model, developed in 1959, uses a logarithmic equation to 

represent the interaction between speed, flow, and density [9]. It assumes that speed 

decreases logarithmically as density increases, making it particularly useful for 

describing traffic behavior in high-density conditions. The model adheres to the 

boundary condition 𝑢 = 0  when  𝑘 = 𝑘𝑗  (jam density). However, it struggles to 

represent free-flow conditions accurately, as it predicts infinitely high speeds at 

very low densities, limiting its effectiveness in such scenarios. The formula of the 

model is the following [8]:  
 

                                          𝑢 = 𝑢𝑐 ∗ ln
𝑘𝑗

𝑘
 ,                                               (3) 

where  𝑢𝑐  is the speed at capacity, which is the speed corresponding to the 

maximum flow of traffic and the other terms have the same meanings. 
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2.4 The Drake model 

The Drake model builds upon traffic flow theory by utilizing a combined 

exponential-logarithmic relation to describe the interaction between speed, flow, 

and density [10]. It captures the behavior of traffic by assuming a logarithmic 

decrease in speed at high densities and an exponential decrease at low densities. 

The model adheres to the boundary conditions 𝑢 = 0  at 𝑘 =  𝑘𝑗  (jam density) and  

𝑢 =  𝑢𝑓 at 𝑘 = 0 (free-flow density), ensuring it is applicable across a wide range 

of conditions. This adaptability makes the Drake model effective for analyzing both 

free-flow traffic at low densities and congested traffic at higher densities. The 

equation of the Drake model is the following [11]: 

                             𝑢 =  𝑢𝑓 ∗ 𝑒𝑥𝑝 (−
1

2(
𝑘

𝑘𝑗
)

2),                                         (4) 

where all the terms have the same meaning as for the previous models. 

2.5 The Robertson model 

The Robertson traffic flow model aims to describe the relation between 

speed, flow, and density through an empirical approach designed for urban 

environments and traffic signal analysis [12]. It is particularly effective for 

capturing traffic behavior at intersections or within road networks where signal 

timing plays a critical role. The model highlights stop-and-go traffic dynamics, 

accounting for vehicle platooning and delays caused by traffic signals. 

The boundary conditions of the model are as follows: 𝑢 = 0  at 𝑘 =  𝑘𝑗 

(jam density), representing a complete halt in traffic, and 𝑢 =  𝑢𝑓 at 𝑘 = 0 (free-

flow density), reflecting ideal conditions with no obstructions to traffic movement. 

This model is most suitable for urban traffic systems where signal timings, 

congestion, and vehicle interactions significantly influence traffic patterns. Its 

ability to represent non-uniform traffic flow makes it highly effective in such 

contexts. However, for freeway or high-speed traffic, the model may require 

additional calibration to ensure accuracy. The equation associated with this model 

is as follows: 

𝑢 =  𝑢𝑓 ∗ (1 − (
𝑘

𝑘𝑗
)

𝑛

),                                           (5) 

where n is empirical exponent, typically ranging from 2 to 4, defining the shape of 

the speed-flow curve (its value determines the rate at which speed decreases with 

increasing flow). 

2.6 The Van Aerde model 

The Van Aerde traffic flow model offers a comprehensive mathematical 

framework to describe the relation between speed, flow, and density. Developed as 
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a unified model, it is capable of capturing traffic behavior across the entire spectrum 

of traffic conditions, from free-flow to congested states [7]. The model combines 

both exponential and hyperbolic components to represent speed changes as density 

varies, ensuring accuracy under diverse traffic scenarios. This model is particularly 

well-suited for analyzing both freeway and urban traffic flows. Its versatility makes 

it a valuable tool for evaluating uninterrupted traffic, as well as congested scenarios 

where interactions between vehicles are significant. This model is defined by the 

following equation [14]:  

                           
1

𝑢
=  

1

𝑢𝑓
+  (

𝑘

𝑘𝑗
) ∗ (

𝑢𝑓− 𝑢0

𝑢𝑓∗ 𝑢0
),                                     (6) 

where 𝑢0 represents the minimum speed, the speed of vehicles at very high density, 

just before reaching complete congestion and the other terms have the same 

meaning as in the other models. 

2.7 The Northwestern model 

The Northwestern traffic flow model aims to describe the interplay between 

speed, density, and flow, focusing on the gradual reduction in speed as density rises 

[13]. It is especially effective for examining traffic scenarios involving a critical 

density (𝑘0)where maximum flow is achieved, while also accounting for stop-and-

go traffic patterns in light to moderate congestion. In terms of boundary conditions, 

𝑢 =  𝑢𝑓 if the 𝑘 = 0 and that means at zero density, traffic operates at free-flow 

speed, as there are no interactions between vehicles. Also, 𝑢 = 0 as 𝑘 → ∞ and 

that means at very high densities approaching jam density ( 𝑘𝑗), traffic speed 

gradually drops to zero due to congestion. 

This model employs a Gaussian-inspired exponential decay function to 

represent speed, making it particularly useful for analyzing traffic behavior on 

freeways and highways. The Northwestern traffic model demonstrates strong 

efficiency in scenarios requiring a deep understanding of vehicle flow patterns and 

driver responses across different density conditions. This model is expressed as: 

          𝑢 =  𝑢𝑓 ∗ 𝑒−
1

2*(
𝑘

𝑘0
)

2

,                                             (7) 

where 𝑘0 is the critical density, the density at which traffic achieves its maximum 

flow. It represents the optimal balance between speed and density. 

3. Data description and model calibration 

The data used for this study comes from the National Highways of England 

website and the data related to A2 was used from the year 2014. This database 

contains logs about the date and time, the value of traffic flow (in vehicles per hour) 

and the speed value (in miles per hour, mph) [16]. The present data is for each day 

of the year and from 15 to 15 minutes. Because the data contains values about traffic 

flow and in the above models, we are using the density and the speed values, in the 
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preparation part of the data, the values of the density were obtained based on the 

fundamental equation in traffic [17], [18]:  

                                           𝑞 = 𝑢 ∗ 𝑘,                                                    (8) 

where 𝒒 represents the traffic flow, 𝒖 is the speed and 𝒌 is the density of the traffic. 

The results after running the traffic flow models can be seen in Table 1: 
 

Table 1 

Comparison of traffic flow models parameters 

Model 
𝒖𝒇 

Km/h 

𝒌𝒋 

Veh/km 

𝒖𝒄 

Km/h 

𝒌𝒄 

Veh/km 
𝑹𝟐 

Greenshields 119.2 150.4 59.6 75.2 0.76 

Underwood 122.4 - 61.2 73.4 0.80 

Greenberg - 180.4 28.7 55.11 0.61 

Drake 123.4 - 73.9 106.23 0.91 

Robertson 120.5 140.3 64.2 84.5 0.74 

Van Aerde 121.8 138.2 62.3 83.2 0.70 

Northwestern 122.8 - 71.4 85.6 0.88 

 

In the following figures, it can be seen model fit, showcasing how well each 

model aligns with the study data, through an analysis of how speed and density 

interact within each model. 

In Fig. 1 the relation between speed and traffic density according to the 

Greenshields model can be seen. The coefficient of determination obtained is 𝑹𝟐 =
𝟎. 𝟕𝟔, indicating a strong correlation between the observed data and the proposed 

model, with a particularly good fit for medium and high densities. However, slight 

discrepancies from the regression line become noticeable at very low densities. 

 

Fig. 1. Model fit for Greenshields model 

For the Underwood model, in Fig. 2, the interaction between speed and 

density can be noticed. It is observed that at low densities, the speed remains almost 
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constant; however, as the density increases, the speed decreases exponentially, 

reflecting the transition to congested traffic conditions. 

     

Fig. 2. Model fit for Underwood model 

 In the Fig. 3 it can be seen that the model Greenberg, with a low value for 

the coefficient of determination, 𝑹𝟐 = 𝟎. 𝟔𝟏, indicating a weak correlation between 

the observed data and the proposed model. The Greenberg model shows a tendency 

to overestimate speeds at higher densities, likely due to its core assumption that 

speed decreases following a logarithmic trend as density increases. 

 

Fig. 3. Model fit for Greenberg model 

 Fig. 4 illustrates the dependency between speed and traffic density using the 

traffic model proposed by Drake, where an exponential relation is between the 

speed and density. The coefficient of determination, 𝑹𝟐 = 𝟎. 𝟗𝟏, indicates a good 

correlation between the model and the observed data, making it one of the best-

fitting models in this context. Compared with the other traffic flow models, the 
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Drake model shows the transition from free-flow conditions to the extreme 

conditions [19]. 

 

Fig. 4. Model fit for Drake model 

 In the case of the Robertson model, the graph in Fig. 5 illustrates the 

correlation between speed and density. Based on the coefficient of determination, 

𝑹𝟐 = 𝟎. 𝟕𝟒, the model does not adequately fit the analyzed situation. 

 

Fig. 5. Model fit for Robertson model 

 Similar to the Robertson model, Fig. 6 shows that the model proposed by 

Van Aerde exhibits a weak fit for the analyzed situation. This conclusion is 

supported by the coefficient of determination 𝑹𝟐 = 𝟎. 𝟕𝟎. 
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Fig. 6. Model fit for Van Aerde model 

 In the case of the last model that was analyzed, Northwestern model, in Fig. 

7, a strong correlation can be seen between the data analyzed and the proposed 

model, this fact being confirmed by the coefficient of determination, 𝑹𝟐 = 𝟎. 𝟖𝟖. 

 

Fig. 7. Model fit for Northwestern model 

The obtained results from all the traffic flow models were compared(and the 

results can be seen in the Table 1) in terms of values for the free flow speed(𝒖𝒇), 

speed at density(𝒖𝒄), density at capacity(𝒌𝒄), jam density(𝒌𝒋) and the value of the 

𝑹𝟐  parameter(this is a statistical measure used to assess how well a regression 

model explains the variation in the data and it can have values between 0 and 1, 

where 0 means no correlation between model and data and 1 means a perfect match 

for the variation of the data) [15]. Based on the values for 𝑹𝟐 parameter, it can be 

seen that the Drake model obtained the best result, with 𝑹𝟐 = 𝟎. 𝟗𝟏. Based on these 
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results, the Drake model can be recommended as the best macroscopic model that 

can be used for the freeway situation. The Drake model consistently achieves the 

highest observed R2 value among the traffic models for the study while also 

providing realistic estimates for free-flow speed, as well as speed and density at 

capacity [20]. 

4. Conclusions 

In the modern era, managing and monitoring traffic has become a crucial 

issue, as congestion impacts everyone by wasting valuable time. The quality of road 

infrastructure is a key factor in addressing this problem, as it can help streamline 

traffic flow. However, equally important are intelligent and adaptive traffic control 

systems that can analyze real-time traffic conditions and adjust traffic signals 

accordingly to enhance efficiency.  

Based on the study and analysis conducted, it can be observed that the 

presented traffic flow models can be used to characterize a road, allowing for the 

determination of speed or density. Among all the analyzed traffic flow models 

(Greenshields, Underwood, Greenberg, Drake, Robertson, Van Aerde, 

Northwestern), the best fit for the analysis performed on data from the National 

Highways of England was achieved using the Drake model because it is applicable 

to scenarios involving both jam density and free-flow density conditions. It is 

important to consider that, as demonstrated, each traffic model has distinct 

characteristics and is best suited for specific road conditions. Speed and density 

dynamics in a highly congested metropolitan area differ significantly from those in 

a smaller city or highways [21]. This type of comparison highlights that 

macroscopic traffic flow models involve lower infrastructure and computational 

costs, as they require fewer sensors, less granular data, and simpler algorithms 

compared to video-based approaches. Furthermore, their reliance on aggregated 

flow trends increases robustness to data loss and sensor failures. 

The future development of this project will focus on exploring advanced 

traffic flow models to identify the most suitable model for the specific scenarios 

from which the analyzed data originates. Machine learning algorithms are widely 

applied in domains such as healthcare, finance, and cybersecurity, and have shown 

significant impact in the traffic sector for tasks like traffic flow prediction, 

congestion detection, and anomaly identification [23]. Various machine learning 

algorithms can be applied to the analyzed scenarios, enabling both the prediction 

and optimization of critical traffic parameters, such as average speed and 

congestion levels for specific areas or road segments [22]. By leveraging historical 

data and real-time inputs, these algorithms provide accurate forecasts, offering 

valuable insights for optimizing traffic flow and improving urban mobility 

planning. 
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