
U.P.B. Sci. Bull., Series C, Vol. 87, Iss. 2, 2025 ISSN 2286-3540

GENERATING TILE-BASED 3D VIRTUAL ENVIRONMENTS

ON ARBITRARY CONVEX SURFACES USING WAVE

FUNCTION COLLAPSE

Silviu STĂNCIOIU 1, Anca MORAR 2, Alin-Dragoș-Bogdan MOLDOVEANU 3,

Florica MOLDOVEANU 4

A common trend in the video games industry is making use of Procedural

Content Generation methods to facilitate the efficient creation of game content such

as game assets or levels. One such technique is the Wave Function Collapse (WFC)

algorithm which proves to be useful for the creation of virtual 3D environments that

satisfy certain pre-defined constraints. While some variants were proposed for the

generation of environments on convex surfaces using the said algorithm, none of them

extend into the third dimension. In this paper we introduce a novel extension of the

algorithm that allows for the generation of 3D environments on top of any convex

surface. We present the creation potential of the algorithm using a complex 3D virtual

city environment generated using our technique and the impact that our modifications

have on the performance of the algorithm.

Keywords: Wave Function Collapse, Procedural Content Generation, Constraint

Solving, Game Content

1. Introduction

Procedural Content Generation (PCG) techniques are proved to be useful in

the process of creating 3D virtual environments. These techniques can be used for

assets that make up the scene, such as: textures, 3D models, sounds or character

animations, but also for the scene layouts. In video games, the virtual environments

must usually satisfy both visual and game-specific constraints (for example:

reachability). One PCG algorithm is the Wave Function Collapse (WFC) algorithm,

proposed by Maxim Gumin in 2016 [1]. The algorithm itself was initially used for

image synthesis, extracting patterns and their adjacencies rules from input images

and using them to produce new images. Although the name of the algorithm is

loosely inspired by quantum physics, the author was inspired by the technique

1 PhD Student, Faculty of Automatic Control and Computer Science, National University of Science

and Technology POLITEHNICA of Bucharest, Romania, e-mail: silviu.stancioiu00@upb.ro
2 Professor, Faculty of Automatic Control and Computer Science, National University of Science

and Technology POLITEHNICA of Bucharest, Romania, e-mail: anca.morar@cs.pub.ro
3 Professor, Faculty of Automatic Control and Computer Science, National University of Science

and Technology POLITEHNICA of Bucharest, Romania, e-mail: alin.moldoveanu@cs.pub.ro
4 Professor, Faculty of Automatic Control and Computer Science, National University of Science

and Technology POLITEHNICA of Bucharest, Romania, e-mail:

florica.moldoveanu@cs.pub.ro

32 Silviu Stăncioiu, Anca Morar, Alin-Dragoș-Bogdan Moldoveanu, Florica Moldoveanu

proposed by Paul Merrell [2]. Since its inception, WFC was used for more than

image synthesis, producing 3D models, 3D environments, video game levels and

more.

Many video game levels are generated using WFC, either offline during

production, or at runtime which allows them to constantly produce new game

content for the user. Caves of Qud [3] is a 2D roguelike game in which a multi-

layer WFC approach is used to generate portions of the levels. Oskar Stålberg used

the algorithm in various games he developed. In Bad North [4] he used WFC to

procedurally generate 3D islands. Townscapper [5], another game developed by the

same person, uses a real-time variation of the algorithm to ensure the compatibility

between the tiles being placed.

The WFC algorithm itself is a constraint satisfaction algorithm adapted for

the generation of content inside regular grids of tiles with adjacency rules. Karth

and Smith [6] examined WFC as an instance of constraint solving methods and

provided an Answer Set Programming (ASP) implementation. Based on this,

various implementations that extend the base capabilities of the algorithm appeared.

Sturgeon [7] is one such implementation that can generate complete 2D game levels

with reachability constraints in place, for various player movement methods (ex:

platformers, mazes). The reachability constraints are defined through a custom

high-level constraint solving API. The high-level API is implemented on top of

various constraint solvers such as clingo [8] or Z3 [9]. Another proposed solution

for making the generated video game levels playable is using genetic algorithms

[10] to optimize playability metrics given by the fitness functions. To improve the

visual quality of the levels generated using WFC, rather than defining more

complex constraints, various hierarchical versions of the algorithm were proposed

[11, 12]. Another different tool implementing WFC is miWFC [13], which

incorporates features such as controlled backtracking and manual editing of the

generated output. To generate more organic game levels, Møller et al. [14] proposed

running the Growing Grids [15] algorithm on an input image and subsequently

applying WFC on the resulting grid. Besides the standard grid variants of the

algorithm, different implementations use graph structures instead. Kim et al. [16]

describe the changes required so that WFC can be applied on any graph structure

and showcases it on various instances such as Sudoku games or Voronoi non-grids.

Tessera [17] is a tool for generating game levels using WFC which implements a

graph variant of the algorithm. This makes suitable for tile placement on “irregular

3d grids based on the surfaces of quad or triangle meshes”.

One limitation observed in most of the systems/ tools employing WFC for

3D environment generation is their exclusive dependence on flat and static grids.

Tessera [17] allows for more flexibility in the sense that it allows for the generation

of content on top of various surfaces given by meshes. However, the grids are not

extended into the third dimension while maintaining the integrity of the tiles due to

Generating tile-based 3D virtual environments on arbitrary convex surfaces using WFC 33

the static nature of the grids. While a static grid approach may be desired in certain

scenarios, it is worth noting that there are instances wherein the utilization of more

complex dynamic grids derived from the subdivision of the original grid cells can

yield more realistic outcomes. Subdividing the grid cells prior to the execution of

the algorithm, while a viable option, imposes a limitation on the algorithm’s

capacity to determine the density of specific structures. In this paper, we present the

modifications needed for adapting WFC to function properly on 3D grids generated

based on convex surfaces composed of quads. We implemented all functionalities

inside a Unity editor-level tool. With our modified WFC variant changes in place,

the tool can create complex 3D virtual environments on various types of convex

surfaces.

2. Generation of 3D environments

For the generation of 3D environments, the WFC algorithm is usually

employed to place tiles within a grid while ensuring that adjacency constraints

between neighboring tiles are satisfied. The tile distribution can be user-defined or

learned from an input example. Alternative approaches to this problem include:

● Wang Tiles – Wang Tiles are tiles that dictate how they can connect to

adjacent tiles. They get their name from a conjecture made in 1961 by Hao

Wang. Given a set of tiles that can produce a valid tiling, a basic 3D content

generation algorithm would consist of randomly placing valid Wang Tiles

adjacent to one another.

● Greedy Tile Placement – By extending the concept of Wang Tiles through

the addition of more complex adjacency rules, greedy algorithms can be used.

These algorithms iteratively place random compatible tiles adjacent to

existing ones in the grid until the environment is fully generated or a

contradiction occurs. Tile selection can also be weighted by probabilities to

control their distribution in the final environment.

● Cellular Automata [19] – Instead of using tiles characterized by adjacency

constraints, each grid cell is assigned a random state. To update the state of

each cell, all its neighbors are taken into account, then based on some

predefined rules, the state may change or remain the same. This process is

applied to each cell of the grid for a finite number of iterations. Once the grid

reaches a desirable configuration, tiles corresponding to the final states are

placed in the cells.

3. WFC Overview

WFC is a constraint-solving algorithm originally designed for image

synthesis. It takes a bitmap made of pixels as input, and its goal is to create an output

bitmap that respects the following conditions defined by Maxim Gumin [1]:

34 Silviu Stăncioiu, Anca Morar, Alin-Dragoș-Bogdan Moldoveanu, Florica Moldoveanu

● “(C1) The output should contain only those NxN patterns of pixels that are

present in the input.”

● “(Weak C2) Distribution of NxN patterns in the input should be similar to

the distribution of NxN patterns over a sufficiently large number of outputs.

In other words, the probability to meet a particular pattern in the output

should be close to the density of such patterns in the input. “

The output bitmap is initialized with pixels in an unobserved state, implying

that each pixel of the bitmap can be assigned any value present in the input. The

algorithm then starts an Observe-Propagate cycle which runs until either all pixels

of the output image are set, or the algorithm reaches a contradiction. The Observe-

Propagate cycle follows this sequence:

● Observe – Find the 𝑵 × 𝑵 pattern with the lowest entropy in the output

bitmap and collapse it into a fixed state. The entropy function can be

defined in multiple ways. The function used in the original implementation

is the Shannon Entropy [18]. Alternatively, the entropy can be defined by

the number of patterns that can be fixed in a section of the bitmap without

breaking the adjacency rules.

● Propagate – For every neighboring pattern of an 𝑵 × 𝑵 pattern that has

been collapsed or partially collapsed, update the list of input patterns into

which it can be collapsed. As the count of input patterns into which a

neighbor pattern can collapse decreases, the neighbor pattern becomes

partially collapsed, and the change is recursively propagated to the other

neighbors until the whole bitmap has been updated.

There are two models for the extraction of 𝑵 × 𝑵 patterns:

● The Simple Tiled Model – The tiles only present immediate adjacency

constraints and are not parts of bigger patterns. For this model, the tiles and

their constraints are usually defined manually.

● The Overlapping Tiled Model - The algorithm begins by extracting 𝑵 × 𝑵

patterns from the input image and determining their adjacencies. It also

calculates their distribution within the input image to ensure a similar

distribution in the output image.

4. Our technique

We implement a form of WFC adapted for 3D tile placement. The

terminology we use is different from the one used in the original description of the

algorithm [1] to make it suitable for our specific use case. Instead of collapsing

𝑵 × 𝑵 patterns into an output bitmap as the original implementation does, we

instead place tiles inside grid cells. The tiles are no longer pixels extracted from an

input bitmap, or predefined 2D images, and instead, they are 3D models placed

inside a bounding box for which adjacency rules are manually defined by a user.

Generating tile-based 3D virtual environments on arbitrary convex surfaces using WFC 35

4.1. Overview

To establish tile adjacencies, we adopted the same approach as Tessera [17].

Each tile is a cube, with 9 connectors on each of its faces. Each connector can be

assigned a label, defined by an ID and a color. Valid label adjacencies are

determined by a 2D Boolean array. By default, each label can exclusively connect

with itself and the default label (transparent). To prevent the need for defining the

same tile with different rotations, we implemented a method to augment the tiles

that are already defined. Augmentations can be generated through rotations around

the X, Y, and Z axes.

Our implementation takes a 3D model made of quads as input and generates

3D structures made of tiles on top of it. The quads of the mesh that form concave

surfaces are filtered out, leaving only the quads of the convex surfaces. These quads

are then used to create a 3D irregular grid with N layers. After the grid is created,

our modified variant of WFC is used to place tiles inside the grid and generate 3D

structures. Given the cubical nature of the tiles, each tile can be placed within a cell

through trilinear interpolation. When extending this type of convex grid to multiple

layers, its cells tend to expand, causing their top faces to become larger than the

bottom ones. When placing tiles within such cells, this expansion will also have an

impact on them, as shown in Fig. 1a.

a) b)

Fig. 1. a) Tile placed within a grid cell on top of a sphere. Because the surface is convex, the top

face of the cell becomes larger as the cell extends upwards, leading to an increasing distortion of

the tile. b) A tower with 5 layers. As the tower increases in height, its roof also becomes larger,

resulting in an unrealistic-looking tower.

This in turn, limits the creative potential of the algorithm. As an example,

consider a sphere on top of which a convex 3D grid is created. Suppose that this

sphere is meant to have towers generated on top of it. As the towers increase in

height, their roofs also linearly grow. While in some situations, such an outcome

may be desired for cartoonish effects, it lacks realism. Additionally, the

36 Silviu Stăncioiu, Anca Morar, Alin-Dragoș-Bogdan Moldoveanu, Florica Moldoveanu

enlargement of the roofs is solely controlled by the grid, leaving the person

generating the environment with no creative influence over the aspect (Fig. 1b).

To address this issue, we introduce a new type of tile called a shrink tile.

Shrink tiles allow the user to specify how much space within the cell the tile is

allowed to occupy. By default, when shrink tiles are placed within a grid, they

occupy all the space between the bottom quad of the cell and its projection onto the

top quad, resulting in a straight appearance. The remaining space within the cell is

filled with degenerate side cells (Fig. 2). These newly added cells are considered to

degenerate, because their bottom faces are missing. If there is no remaining space

within the pre-split cell, then no degenerate cells are added. This happens when the

algorithm is run using meshes that form flat surfaces. The newly added degenerate

side cells and their top neighbor cells are flagged accordingly so that only certain

tiles can be placed inside them. The tiles that can be placed within these flagged

cells must be manually specified by the user.

The amount of space filled by a shrink tile can be specified through a user-

defined function that returns values between 0 and 1. A value of 1 represents the

default behavior of the shrink tiles, which projects a bottom face onto the top face

of the cell and fills the entirety of the space in between. A factor smaller than 1

reduces the size of the bottom face projection onto the top face. The ability to

specify the behavior of shrink tiles can be useful for generating structures such as

pyramids.

Fig. 2. A shrink tile placed within a cell, partially filling its volume. The remaining space is

divided into four degenerate cells.

A class, identified by an integer ID, can be assigned to each shrink tile. The

user-defined function takes as input the number of shrink tiles from the same class

that were previously placed below the current tile. It returns a number between 0

and 1, which represents how much the bottom face of the shrink tile furthest below

should be projected onto the top face of the current cell. The intuition behind this

choice was that a class of shrink tiles would form the same structure as they are

placed upward. This, in turn, simplifies the process of specifying custom functions

for structures that linearly decrease in size.

Generating tile-based 3D virtual environments on arbitrary convex surfaces using WFC 37

In the case of grids with multiple layers, the placement of a shrink tile that

breaks the cell affects its top neighbor cells, subsequently breaking the

corresponding cells as well. Note that the addition of shrink tiles introduces a

limitation to the ability of the algorithm to place tiles within cells. A new tile can

only be placed within cells that are located above cells where tiles have already

been placed. Otherwise, the structure of the grid may break due to the structural

changes made by shrink tiles that could be placed below.

The addition of shrink tiles opens new possibilities for 3D environments

generation using WFC.

4.2. WFC Changes

Our implementation follows the original C# code proposed by Maxim

Gumin [1] with a few extra modifications to adapt for the nature of the grids. The

original implementation assumes that the orientation of tiles is consistent across the

entire grid. In other words, the directions of Left, Up, Right, and Bottom are the

same for each cell in the 2D bitmap grid. Throughout the remainder of this paper,

we will adopt the use of directional references such as North, East, South, West,

Top, and Bottom in the context of 3D grids. This choice is made due to the absence

of guaranteed absolute Up, Right, and Forward directions in such grids. Since our

application can accept any 3D grid composed of quads as input, there is no

guarantee that the quads will maintain uniform orientation throughout the mesh

(Fig. 3). Rather than treating orientations as absolute, we instead treat them as

relative to the orientations of neighboring cells. Let 𝑐1 be a cell and 𝑐2 be one of its

neighbors. We introduce a value called the rotation number, which signifies the

number of 90-degree clockwise rotations 𝑐2 needs to perform for its orientation to

align with that of 𝑐1. A rotation number of 0 indicates that the cells share the same

orientation.

Minimal changes are needed for the algorithm to function on single grid

layers. The main additional constraint is ensuring that tiles in adjacent cells with

non-zero rotation numbers remain compatible. To achieve this, the two primary

multi-dimensional arrays, 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑜𝑟 and 𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒, are extended to account

for all 𝑅 possible tile rotations. For a given direction 𝑑, rotation number 𝑟, and tile

𝑡, 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑜𝑟[𝑑][𝑟][𝑡] represents the list of tiles that can connect with 𝑡 when the

rotation between cells is 𝑟 and the direction is 𝑑. This adjustment is needed since

tiles no longer connect via opposite faces, requiring the 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑜𝑟 to

accommodate each of the 𝑅 possibilities.

38 Silviu Stăncioiu, Anca Morar, Alin-Dragoș-Bogdan Moldoveanu, Florica Moldoveanu

Fig. 3 Different orientations of the grid cells. The lines in the middle of the quads point toward

their neighbors. Black, Blue, Red, and White lines indicate orientations towards the North, East,

South, and West neighbors, respectively. If two cells share a South-North or an East-West edge,

they have the same orientation; otherwise, their orientations differ. The middle-left cell shares a

North-East edge with the middle right cell, resulting in different orientations.

The other main multi-dimensional array, 𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒, is also extended,

becoming a 4D array. For a given grid cell 𝑐 and a tile 𝑡 that can potentially be

placed within a cell, 𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒[𝑐][𝑡] becomes a 2D array with 𝐷 × 𝑅 elements,

where 𝐷 is the maximum number of neighbors a grid cell can have. This 2D array

represents the number of tiles that could potentially be placed near the current cell

for each direction 𝑑 and each cell rotation number 𝑟, so that the adjacencies of 𝑡

and the neighboring tiles’ adjacencies match. When any element of this 2D array,

𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒[𝑐][𝑡], becomes 0, it means that tile 𝑡 can no longer be placed within

cell 𝑐.

The only stage modified within the algorithm is the 𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒 stage where

for each pair of neighbor cells, the rotation number is calculated and used as index

for the extended arrays. In our context, we rotate directions within the horizontal

plane, including North, East, South, and West. Cells below or above other cells

share the same orientation, resulting in a rotation number of 0, requiring no

adjustments.

4.2.1. Shrink Tiles

Wave Function Collapse cannot directly handle shrink tiles for several

reasons. One reason is that when shrink tiles are placed, they may no longer be in

contact with neighboring cells. Instead, they will be in contact with the degenerate

cells automatically added upon placement. To address this issue, instead of directly

using the shrink tiles, we employ multi-tile modules [17]. In our case, a multi-tile

module comprises a central shrink tile and up to four degenerate side tiles. When

collapsing such a multi-tile module into a cell, the shrink tile is positioned at the

center of the cell, while the degenerate tiles are placed in the newly created

Generating tile-based 3D virtual environments on arbitrary convex surfaces using WFC 39

degenerate cells. When shrink tiles are placed within cells, they may not always

need the addition of four padding degenerate side cells. Such an outcome can occur,

particularly when the entire grid is generated based on a flat surface. Before

initiating the WFC algorithm, every cell undergoes an evaluation against all

potential shrink tiles or multi-tiles to check whether they can be placed within the

given cell. Any incompatible tiles or multi-tiles are banned. For each cell, a shrink

tile may potentially be placed directly or through a multi-tile, but not both ways.

4.2.2. Multiple Layers

Another problem that arises when using shrink tiles is that when they are

placed, they may also subdivide the cells above them, thereby modifying the

structure of the grid. This has two implications. Firstly, tiles must be placed in cells

that are either on the first layer or above cells that already have tiles placed inside

them. This is a direct consequence of the fact that shrink tiles alter the structure of

the grid for the upward layers. Placing a shrink tile below an already placed tile will

break the adjacencies on the next layers, resulting in invalid tile configurations or

causing the WFC Algorithm to fail. Secondly, the 𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒 values of the newly

created grid cells need to be calculated, and based on their values, changes must be

propagated to their neighbors. To address this problem, we adopted a

straightforward multi-layer approach. Since tiles must be positioned either above

already placed tiles or on the first layer, utilizing multiple layers and sequentially

generating one layer after another through WFC ensures compliance with this

constraint. Once each layer is generated, the algorithm proceeds to generate the

subsequent layer. To ensure proper connections between layers, each cell on the

current layer is restricted from using tiles that do not connect with the top faces of

the tiles placed below.

5. Creative potential

a) b)

Fig. 4 a) City generated on top of a spherical surface using a complex tileset containing elements

such as blocks, pyramids and walls. b) The same tileset being used to generate cities on top of the

convex surfaces of a teapot and a torus.

40 Silviu Stăncioiu, Anca Morar, Alin-Dragoș-Bogdan Moldoveanu, Florica Moldoveanu

We evaluated our technique using a complex tileset designed for city

creation (Fig. 4a), which includes blocks, towers, houses, pyramids, and walls.

None of these tiles can float. For generating blocks, towers, and houses, two types

of tiles represent their structural support. Shrink tiles without custom functions are

used to avoid distortion when stacked. An intermediary shrink tile, with a custom

function that decreases its size linearly, is used for roofs, giving them a sharp

appearance. Only similar or structural tiles can be placed on top. Pyramid structures

use a shrink tile with a similar size-reducing function, allowing for decorations in

nearby degenerate cells. Pyramid decorators include spheres and straight lines.

Walls consist of vertical tiles with Y-axis augmentations and corner tiles, with two

special decorator tiles that resemble those used for pyramids. This tileset

incorporates all key functionalities of our implementation: shrink tiles that maintain

structural integrity, undistorted towers and blocks, size-reducing roofs and

pyramids, placement in degenerate cells, non-ground tiles, tile rotations, and

dynamic grid modifications.

6. Performance

6.1. Memory usage and complexity

The only memory usage changes stem from extending the 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑜𝑟 and

𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒 variables to account for all 𝑅 possible rotations, where 𝑅 = 4, as the

grids are based on quads along mesh surfaces. When shrink tiles are used, memory

usage increases due to the precomputation of all possible degenerate neighbor pairs,

creating up to 𝑇8 composite tiles. In the extreme case, where all tiles are shrink tiles

and no compatibility constraints are defined for the tiles, the number of tiles, 𝑇′,
grows to 𝑇9. The theoretical complexity of the WFC algorithm is 𝑂(𝑇2 ∙ 𝐶2), with

𝑇 being the number of tiles and 𝐶 the number of grid cells. In practice, it requires

approximately 𝑇2 ∙ 𝐶 iterations. Our modified version performs 𝑅 additional

iterations per step, but since 𝑅 = 4 in our case, this does not affect the algorithm’s

overall time complexity.

6.2. Benchmarks

Performance testing was conducted on a system with an AMD Ryzen 5

5600H, 16GB RAM, NVIDIA RTX 3060 (laptop variant), and Windows 11. The

tests used the previously described city tileset on a spherical surface, which

highlights all the grid changes brought to the algorithm. Execution time was

measured on sphere resolutions ranging from 1 to 16, as shown in Table 1. A key

observation is that upper layers exhibit different execution times compared to lower

layers, as the time differences are not uniform across layers. While each layer

should theoretically have similar execution times, tiles placed on lower layers

introduce constraints that can reduce the time for upper layers. However, if shrink

Generating tile-based 3D virtual environments on arbitrary convex surfaces using WFC 41

tiles are used in lower layers, they may cause structural changes that increase

execution time for the upper layers.
Table 1

Execution times (in seconds) of the algorithm for 1, 2, 3, and 4 layers using the city tileset

for spheres with various resolutions

Number of layers

Sphere resolution
1 2 3 4

1 0.036 0.012 0.012 0.014

2 0.025 0.049 0.071 0.093

3 0.073 0.337 0.218 0.233

4 0.118 0.204 0.290 0.392

5 0.183 0.528 0.699 0.661

6 0.496 0.618 0.589 1.028

7 0.556 0.761 1.022 1.325

8 0.446 0.985 1.638 2.185

9 0.609 1.470 1.971 2.732

10 1.155 1.735 2.381 3.251

11 1.103 1.974 3.057 4.555

12 1.621 2.606 3.877 5.380

13 1.879 3.162 5.192 6.124

14 1.880 3.485 5.213 7.594

15 1.932 4.267 6.567 9.402

16 2.497 4.957 7.672 11.660

7. Discussion

The tiles utilized in our algorithm extend beyond the capabilities of Wang

Tiles, allowing for the definition of more complex adjacency rules for face tags.

This enables the generation of more complex structures. However, defining such

complex rules is challenging, making it more difficult to ensure that a given set of

tiles can produce a valid tiling compared to Wang Tiles.

Our algorithm, along with other variants of WFC, offers significant

advantages over greedy approaches for several reasons:

● Contradictions are more easily avoided as the algorithm prioritizes output

patterns (grid cells, in this case) with the lowest entropy, making backtracking

or restarting of the generation process more efficient.

● The distribution of local patterns is easier to control.

● When implementing WFC using constraint solvers, it becomes possible to

define rules beyond local adjacency constraints, such as reachability.

 Compared to cellular automata methods, our WFC variant offers the

following key advantages:

● The patterns in the output are easier to control.

● The final output is guaranteed to be valid.

● The rules are easier to define and understand.

42 Silviu Stăncioiu, Anca Morar, Alin-Dragoș-Bogdan Moldoveanu, Florica Moldoveanu

It is worth noting that procedural content generation systems based on

cellular automata may adjust rules between iterations to achieve the desired results.

In the case of WFC, this is analogous to manually placing tiles before the algorithm

completes the generation process.

 Cellular automata-based methods are particularly effective for generating

3D content with tiles, especially in creating natural-looking caves or other

environments that involve large areas. As WFC is a local constraint-solving

method, controlling larger patterns in the environment is harder compared to

cellular automata methods, requiring modifications to the algorithm that our

implementation does not currently support.

The modifications required to make controlling larger patterns easier when

using WFC may include:

● Using a hierarchical version of WFC.

● Using cellular automata to define larger areas of the environment, and then

applying WFC with different sets of tiles based on the areas.

Among WFC-based implementations for generating 3D virtual

environments with tiles, our approach offers some key advantages. One major

advantage is the ability to generate 3D structures on top of any convex surface

defined by a 3D mesh (Fig. 4b). This extension to the third dimension (height)

doesn’t cause the tiles to get distorted as they would if a naïve approach was to be

used. Another advantage is the ability to specify tiles that can be used as visual

decorators for other tiles. Our algorithm has the potential to be used in tools that

generate complex video game environments on top of surfaces that are not flat.

Some limitations compared to previous WFC variants include:

● The lack of a backtracking mechanism, which may prevent the algorithm

from finding a solution. The implementations presented in [13, 16] address

this problem by incorporating backtracking into the WFC algorithm.

Solutions such as [7, 17] use constraint solvers that are guaranteed to find a

solution if the constraints are not contradictory. [10] addresses this problem

from a different perspective, by implementing WFC as a repair operator

inside a genetic algorithm.

● The absence of reachability / path constraints, unlike the solutions proposed

in [7, 10, 14, 16, 17], meaning generated environments are not guaranteed to

be playable as game levels.

● Tile and adjacency constraints must be manually defined. Other

implementations allow the designer to define levels and then automatically

extract constraints from them [7, 10, 11].

● The implementation uses the Simple Tiled Model instead of the Overlapped

Tiled Model [1, 11, 12]. In [7], a more flexible paradigm for defining pattern

constraints is proposed. This paradigm allows custom pattern constraints,

including column-based patterns.

Generating tile-based 3D virtual environments on arbitrary convex surfaces using WFC 43

● Only quad-based grids are supported. Implementations such as [16, 17] utilize

graph-based WFC.

● Tiles cannot be manually placed inside the grid. This functionality is provided

by many WFC implementations [7, 11, 12, 13, 14, 16, 17].

Because these limitations are common and can be addressed, our proposed

changes can be integrated into the existing tools/algorithm variations without

difficulties. One limitation specific to our implementation is the lack of support for

concave surfaces. Another limitation is the reliance on multi-layer grids, preventing

the generation of structures like trees or those requiring non-grid transformations

(e.g., rotation and scaling).

8. Conclusions

This paper proposes modifications to the WFC algorithm to enable content

generation over multiple layers on convex surfaces. The goal is to ensure generated

structures are either undistorted or that any distortions can be controlled by the user.

Our implementation successfully generates complex structures incorporating the

proposed changes. The performance impact of these modifications is minimal, if

tags are properly defined by the user. Future work will focus on adding

functionalities for easier creation of playable 3D levels, including reachability

constraints and integration with existing constraint solvers. We also aim to simplify

the definition of tiles and adjacencies by implementing the overlapped version of

WFC.

R E F E R E N C E S

[1] M. Gumin, Wave Function Collapse, https://github.com/mxgmn/WaveFunctionCollapse, 2016.

[2] P. Merrell, Model Synthesis. Ph.D. Dissertation, University of North Carolina at Chapel Hill,

2009

[3] B. Bucklew, Tile-Based Map Generation using Wave Function Collapse in 'Caves of Qud', GDC,

2019

[4] O. Stålberg, Wave Function Collapse in Bad North, Everything Procedural Conference, Breda

University of Applied Sciences, 2018

[5] O. Stålberg, Organic Towns from Square Tiles, Indiecade Europe, 2019

[6] I. Karth, A. M. Smith, WaveFunctionCollapse is constraint solving in the wild, Proceedings of

the 12th International Conference on the Foundations of Digital Games (FDG '17).

Association for Computing Machinery, New York, NY, USA, Article 68, 1–10.

https://doi.org/10.1145/3102071.3110566, 2017

[7] S. Cooper, Sturgeon: tile-based procedural level generation via learned and designed constraints,

Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital

Entertainment, 18(1), 26-36. https://doi.org/10.1609/aiide.v18i1.21944, 2022

[8] M. Gebser, R. Kaminski, B. Kaufmann, T. Schaub, Multi-shot ASP solving with clingo, TPLP,

19(1), 27–82, 2019

[9] L. de Moura, N. Bjørner, Z3: an efficient SMT solver, 2008 Tools and Algorithms for

Construction and Analysis of Systems, 2008

https://doi.org/10.1145/3102071.3110566
https://doi.org/10.1609/aiide.v18i1.21944
https://www.cs.uni-potsdam.de/wv/publications/#DBLP:journals/corr/GebserKKS17

44 Silviu Stăncioiu, Anca Morar, Alin-Dragoș-Bogdan Moldoveanu, Florica Moldoveanu

[10] R. Bailly, G. Levieux, Genetic-WFC: Extending Wave Function Collapse with Genetic Search,

IEEE Transactions on Games, vol. 15, no. 1, pp. 36-45, doi: 10.1109/TG.2022.3192930, 2023

[11] M. Beukman, B. Ingram, I. Liu, B Rosman, Hierarchical WaveFunction Collapse. Proceedings

of the AAAI Conference on Artificial Intelligence and Interactive Digital

Entertainment, 19(1), 23-33. https://doi.org/10.1609/aiide.v19i1.27498, 2023

[12] S. Alaka, R. Bidarra, Hierarchical Semantic Wave Function Collapse. In Proceedings of the

18th International Conference on the Foundations of Digital Games (FDG '23). Association

for Computing Machinery, New York, NY, USA, Article 68, 1–10.

https://doi.org/10.1145/3582437.3587209, 2023

[13] T. S. L. Langendam, R. Bidarra, miWFC - Designer Empowerment through mixed-initiative

Wave Function Collapse. In FDG '22: Proceedings of the 17th International Conference on

the Foundations of Digital Games (FDG '22), September 5–8, 2022, Athens, Greece. ACM,

New York, NY, USA 8 Pages. https://doi.org/10.1145/3555858.3563266, 2022

[14] T. N. Møller, J. Billeskov, G. Palamas, Expanding Wave Function Collapse with Growing Grids

for Procedural Map Generation. In Proceedings of the 15th International Conference on the

Foundations of Digital Games (FDG '20). Association for Computing Machinery, New York,

NY, USA, Article 28, 1–4. https://doi.org/10.1145/3402942.3402987, 2020

[15] B. Fritzke, Growing Grid — a self-organizing network with constant neighborhood range and

adaptation strength. Neural Process Lett 2, 9–13, doi: 10.1007/BF02332159, 1995

[16] H. Kim, S. Lee, H. Lee, T. Hahn, S. Kang, Automatic Generation of Game Content using a

Graph-based Wave Function Collapse Algorithm, IEEE Conference on Games (CoG),

London, UK, 2019, pp. 1-4, doi: 10.1109/CIG.2019.8848019, 2019

[17] A. Newgas, Tessera: A Practical System for Extended WaveFunctionCollapse. In Proceedings

of the 16th International Conference on the Foundations of Digital Games (FDG '21),

Association for Computing Machinery, New York, NY, USA, Article 56, 1–7.

https://doi.org/10.1145/3472538.3472605, 2021

[18] C. E. Shannon, A mathematical theory of communication, in The Bell System Technical

Journal, vol. 27, no. 3, pp. 379-423, doi: 10.1002/j.1538-7305.1948.tb01338.x, July 1948

[19] S. Wolfram, Statistical Mechanics of Cellular Automata, in Reviews of Modern Physics 55, pp.

601-644, doi: 10.1103/RevModPhys.55.601, July 1983

https://doi.org/10.1609/aiide.v19i1.27498
https://doi.org/10.1145/3582437.3587209
https://doi.org/10.1145/3555858.3563266

