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ALL-PAIRS SHORTEST PATH MODIFIED MATRIX-

MULTIPLICATION BASED ALGORITHM FOR A ONE-CHIP 

MapReduce ARCHITECTURE 

Voichita DRAGOMIR1 

An implementation of a newly developed parallel all-pairs shortest 

path algorithm based on modified matrix-multiplication on a new one-chip many-

core structure with a MapReduce architecture is presented. The generic structure's 

main features and performances are described together with the new general 

purpose features added for upgrading the existing generic structure in order to run 

the best performance of this algorithm. The main outcome of the presented research 

is that our MapReduce architecture, in spite having a simpler and smaller structure, 

has the same theoretical time performance as the hypercube architecture. Also, the 

actual energy performance of our architecture is 7 pJ for 32-bit integer operation, 

compared with the ~ 150 pJ per operation of the current many-cores. 

Keywords: parallel computing; MapReduce; many core; all-pair shortest path; 

matrix multiplication; parallel algorithm 

1. Introduction 

Many structures - physical such as transportation or road networks, social 

such as friendship networks, or virtual such as computer networks - have natural 

graph representations. Graphs, one of the most versatile data structures, play an 

important role in many domains because they provide an easy and systematic way 

to model many problems. Because of the ever-expanding amounts of computation 

and captured data [1], both researchers and industry are confronted with the need 

to process increasingly large amounts of data, essential form by graphs and solved 

using standard graph algorithms. So, graph processing is becoming increasingly 

important nowadays.  In graph theory, the shortest path problem is the problem of 

finding a path between two vertices (nodes) in a graph such that the sum of the 

weights of its constituent edges is minimum. There are two algorithms: Single-

Source Shortest Path (finding the shortest path from a single vertex to every other 

vertex) and All-Pair Shortest Path (APSP) algorithms (finding the shortest path 

between all pairs of vertices). The optimal sequential algorithm for APSP is in 

O(N3); N being the number of vertices in the graph.  This paper is about a parallel 

formulation of an All-Pair Shortest Path algorithm: the Modified Matrix-

Multiplication based algorithm on a one-chip MapReduce architecture. 
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 The modified matrix multiplication is not an optimal algorithm. Its 

sequential time is in O(N3logN), but we use it because of its simplicity and the 

efficiency on our new structure, the one-chip many-core MapReduce engine. This 

new structure is described in chapter 3. This APSP algorithm is called matrix-

multiplication based, because it uses the modified matrix multiplication which 

substitutes the multiplication operation with addition and addition operation with 

minimum. Our approach is different than what has been done so far. Let us take a 

look on the current existing solutions in the next chapter. Chapter three describes 

the new structure we are working on. It performs best on matrix-vector 

operations. Therefore, we designed an APSP algorithm based on the dense 

matrix representation of graph, presented in chapter four. We did not cover the 

sparse matrix version because we can't talk of one in this case, due to the fact that 

the only zeroes that appear in the matrix are on the main diagonal. Chapter five 

contains the new general purpose features added for upgrading the existing 

generic structure, in order to run the best performance of this algorithm. To 

determine the efficiency of the parallel algorithms we developed for the 

MapReduce structure, we are comparing them to the most efficient and used 

parallel structure today, the distributed hypercube parallel computer.  Concluding 

remarks are presented in chapter six. 

2. Current existing solutions 

 So far, parallel APSP algorithms have been implemented on multi-core 

processors, with shared external memory. They are limited in the number of cores, 

the memory size and they are non-scalable for big data size [2] [3]. Another 

existing implementation is cloud MapReduce architecture, with distributed 

memory, where the MapReduce approach is limited by the latency introduced by 

the communication network [4] [5], which means a significant increase in energy 

and time use. For example, if the interconnection network used is a hypercube – 

one of the most efficient solution for communication nowadays – then the size of 

the entire system belongs to O(PlogP) with a latency in communication in 

O(logP), where P represents the number of cells.  What is new in our approach is 

that we are going to implement the parallel APSP algorithm on a one-chip many-

core structure not on multi-core or distributed computing. There are other one-

chip MapReduce approaches. For example, the Intel SCC family. In [6] and [7] 

two different MapReduce applications are presented. The use of this general-

purpose array of processors has a much slower response, because it has no more 

than 48 cores (which are also much too complex for solving this kind of problem) 

and the MapReduce functionality is implemented in software, not hardware, as in 

our case.  
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3. New Generic One-Chip MapReduce Architecture 

 The research presented in this paper is part of a larger project set out to 

improve, this generic new architecture, the one-chip MapReduce architecture. For 

this purpose, we address the collection of algorithm families important in parallel 

computing that the Berkeley research report on parallel computation talks about, 

naming them the 13 “dwarfs” [12]. The “dwarf” considered in this paper is Graph 

traversal and the APSP with modified matrix-multiplication is one of the graph 

traversal algorithms. 

3.1. The Structure  

 The structure we work on is a one-chip MapReduce architecture, presented 

in Fig. 1, where: 
 

  
Fig. 1. MapReduce one-chip architecture 

 

• pairs eng-mem in the MAP section; they correspond to each cell from a linear 

array of hundreds or thousands of cells containing execution units and local 

memory of few KB, and consist of: 

 – eng, the engine, which is an execution unit  

 – mem, the local memory to store data  

• REDUCE unit; is a log-depth tree structure used to compute some reduction 

functions (add, min, max, ...) which provides for the controller CONTR a scalar 

from a vector. 

• CONTR, a controller used as sequencer; a processing unit which issues in each 

cycle an instruction and various data distributed, if needed, in the array of cells. 

• MEMORY, a memory resource for data and programs. 

 The cellular structure of the generic structure is accompanied by the 

standard scalar processing structure used as controller. In the cellular structure all 

the resources are of vectorial type. The instruction set architecture works on four 

storage resources: 

• vectorial resources, distributed along the array of cells 
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• scalar resources, in the controller 

• control resources, in the controller 

• evaluation resources, used to evaluate the performance of the execution 

all of which are described as follows: 
 

// vector domain, V 

reg [x-1:0] ixVect[0:(1<<x)-1] ;  // index read-only vector 

reg [a-1:0] actVect[0:(1<<x)-1] ;  // activation vector 

reg   boolVect[0:(1<<x)-1] ;  // Boolean vector 

reg [n-1:0] accVect[0:(1<<x)-1] ;  // accumulator vector 

reg   crVect[0:(1<<x)-1] ;  // carry vector 

reg [v-1:0] addrVect[0:(1<<x)-1] ;  // address vector 

reg [n-1:0] vectMem[0:(1<<x)-1][0:(1<<v)-1] ; // vector memory 

 

// scalar domain, S 

reg [n-1:0] acc ;    // scalar accumulator 

reg   cr ;     // scalar carry 

reg [s-1:0] addr ;    // scalar address 

reg [n-1:0] mem[0:(1<<s)-1] ;  // scalar memory 

 

// control resources 

reg [p-1:0] pc ;     // program counter 

reg [31:0] ir ;     // instruction register 

reg [31:0] progMem[0:(1<<p)-1] ;  // program memory 

 

// evaluation resources 

reg [31:0] cc ;     // cycle counter 

reg       ccEnable ;    // cycle counter enable 

 

The generic structure starts with the simplest and smallest resources, like: 

• each of the 2x cell’s engine is an execution unit (not a processing unit) 

• both, the execution unit of the controller and the execution unit of each cell 

are accumulator based 

• 32-bit interface to the external memory 

 The described structure has a few physical implementation versions. The 

last out of the three implemented versions, issued in 2008, in 65nm standard cells 

technology [8], provides the following performances: 100 GOPS/Watt and 5 

GOPS/mm2, while the current sequential engines (x86 architecture, for example) 

have, in the same technology: ~1 GOPS/Watt and ~0,25 GOPS/mm2 (GOPS 

stands for Giga Operations Per Second). 

 The size of the structure is in O(P), where P is the number of cells, while 

the communication latency between the array and the controller is in O(logP). 

3.2. The Instruction Set Architecture 

Instruction Set Architecture defines the operations performed over the two 

data domains: scalar domain, S, and vector domain, V. Therefore, the structure of 

the MapReduce generic architecture consists of two parts – one associated to  
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Controller and another for Array –, and the resulting instruction set architecture, 

ISAMapReduce, is a dual one: 

ISAMapReduce = (ISAS × ISAV) 

where: 

• ISAS = SSarith&logic ∪ SScontrol ∪ SScommunication is the ISA associated to the 

Controller, with its three subsets of instructions 

• ISAV = SSarith&logic ∪ SSspatialControl ∪ SStransfer is the ISA associated to the cellular 

Array, with its three subsets of instructions 

 In each clock cycle from the program memory of the controller a pair of 

instructions is read: one from ISAS, to be executed by Controller, and another from 

ISAV to be executed by Array. 

 The SSarith&logic are identical in the two ISAs. The SScommunication subset 

controls the internal communication between array and controller and the 

communication of the MapReduce system with the host computer. The SStransfer  

subset controls the data transfer between the distributed local memory of the array 

and the external memory of the system. The SScontrol subset consists of 

conventional control instructions in a standard processor. We must pay more 

attention to the SSspatialControl subset used to perform the specific spatial control in 

an array of execution units. The main instructions in SSspatialControl  subset are: 

activate: all the cells of the array are activated for executing the next 

instructions  

where: maintains active only the active cells where the condition cond is 

fulfilled; for example: where(zero) maintains active only the active cells 

where the accumulator is zero (it corresponds to the if(cond) instruction 

form the SScontrol subset) 

elsewhere: activates the cells inactivated by the associated where(cond) 

instruction (it corresponds to the else instruction form the SScontrol subset) 

endwhere: restores the activations existed before the previous where(cond) 

instruction (it corresponds to the endif instruction form the SScontrol subset) 

3.2.1. The Instruction Structure 

 The instruction format for the MapReduce engine allows issuing two 

instruction at a time, as follows: 
 

mrInstruction[31:0] = {controllerInstr, arrayInstr} = 

       {{instr[4:0], operand[2:0], value[7:0]}, 

       {instr[4:0], operand[2:0], value[7:0]}} 

where: 

instr[4:0] : codes the instruction 

operand[2:0] : codes the second operand used in instruction 

value[7:0] : is mainly the immediate value or the address 
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 The field operand[2:0] is specific for our accumulator centered 

architecture. It mainly specifies the second n-bit operand, op, and has the 

following meanings: 

val : immediate value 

    op = {{(n-8)value[7]}, value[7:0]} 

mab : absolute from local memory 

    op = mem[value] 

mrl : relative from local memory 

    op = mem[value + addr] 

mri : relative from local memory and increment   
    op = mem[value + addr]; addr <= value + addr; 

cop : immediate with co-operand – coop 
    op = coop ; 

mac : absolute from local memory with co-operand  
    op = mem[coop]; 

mrc : relative from local memory with co-operand  
    op = mem[value + coop] ; 

ctl : control instructions ; 

where the co-operand of the array is the accumulator of the controller: acc, while 

the co-operand of the controller is provided by the four outputs of reduction 

section of the array: 

redSum: the sum of the accumulators from the active cells:  ∑ i
p

acc
0  

redMin: the minimum value of the accumulators from the active cells: i
p

accMin
0  

redMax: the maximum value of the accumulators from the active cells: i
p

accMax
0  

redBool: the sum of the active bit from the active cells: ∑ i
p

bool
0  

3.2.2. The Assembler Language 

The assembly language provides a sequence of lines each containing two 

instructions, one for Controller (containing the prefix c) and another for Array. 

Some of the line are labeled, LB(n), where n is a positive integer. 

Example 1. The program which provides in the controller’s accumulator the sum 

of indexes is: 

cNOP;      ACTIVATE; // activate all cells 

cNOP;      IXLOAD;   // load the index of each cell in accumulator 

cCLOAD(0); NOP;     // load in controller’s accumulator the sum of 

indexes 
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3.3. Concluding About Our MapReduce Architecture 

This one-chip MapReduce architecture is used as an accelerator in 

application fields like video [9], encryption, data mining and also for efficiently 

generating pseudo-random number sequences [10]. 

Matrix-vector operations are very frequent and it is important to cover this aspect. 

The system we work with is a many-core one-chip with a MapReduce architecture 

and it performs best on matrix-vector operations. The operation supposes a series 

of scalar (dot, inner) products whose results must be assembled in a vector stored 

back into the array's distributed memory. The generic MapReduce structure 

performs very efficiently the vector multiplication (on the Map section of the 

engine) and then the n-ary addition (in the Reduce section of the engine). This is 

why we choose to do the all-pair shortest path based on the modified matrix 

multiplication algorithm, although it's not an optimal algorithm. 

4. All-Pairs Shortest Path Modified Matrix-Multiplication Based 

Algorithm for Dense Matrix Representation of Graphs  

Important note: only the dense matrix version of the modified 

multiplication algorithm is considered, because the only zeroes that appear in the 

matrix are on the main diagonal and this means dense matrix, so there is no sparse 

case. 

4.1. The Algorithm 

 Modified matrix multiplication algorithm assumes to substitute the 

multiplication with addition and addition with minimum, such that in computing 

the elements of the resulting matrix instead of: 







Nk

k

kjikij bac

1

 

we use: 

)(min
1 kjik
Nk

kij bac  


 

If, the graph is represented by the weighted adjacency matrix A, then, for a graph 

with the number of vertexes |V| = N, the output of the APSP algorithm will be the 

N × N matrix D = AN−1, computed using, instead of the matrix multiplication, the 

modified matrix-multiplication algorithm. 

4.2. The Program 

 The program is based on the efficiency of our MapReduce architecture in 

computing the inner product. The Map section computes the sums aik +bkj, for the 

modified algorithm, while the Reduce section, pipeline connected, computes the 

minimum, for the modified algorithm. Thus, the vector-matrix product is very 
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efficiently computed by the following program stored as the file 

modifiedMatrixVectMult.v of form: 
       cLOAD(6);   NOP;        // acc <= last line of matrix 

       cLOAD(0);   CADDRLD;    // acc <= N; addr[i] <= acc 

       cVSUB(1);   RLOAD(0);   // acc <= N-1; load last matrix M1 line 

       cNOP;       ADD(0);     // add line with vector 

LB(6); cCPUSHL(1); RILOAD(127);// push reduction min; load next line 

       cBRNZDEC(6);ADD(0);     // test end of loop; line-vector add 

                               // latency = 1 + 0.5 log N 

       cNOP;       NOP;        // latency 

       cNOP;       NOP;        // latency 

       cLOAD(9);   SRLOAD;     // acc <= mem[9]; load result in acc 

       cVADD(1);   CSTORE;     // acc <= acc+1; store in vector memory 
 

The loop consists of the following two lines:  
 

LB(6); cCPUSHL(1);  RILOAD(127); // push reduction min; load next line 

       cBRNZDEC(6); ADD(0);      // test end of loop; line-vector add 
 

Actually the hole program stays mainly on these two lines. The weight of the 

program from the execution time point of view falls on these two lines, the loop 

labeled with LB(6). The execution time for a N ×N matrix is: 

TVector-Matrix(N) = 2N + 6 + 0.5logP  O(N) 

with N ≤ P, where N is the number of vertices in the graph which gives the 

dimension of the matrix and P is the number of the execution units from the 

engine's array of cells. 0.5logP is due to the latency introduced by the reduction 

network. For N = 1024 the execution time for vector matrix multiplication is 

TVector-Matrix(N) = 2048 + 6 + 5 = 2048 +11 

which means that only 0.5% of the overall time is spent by the program outside 

the loop. This small and concise loop is possible because: 

• the control of the loop is performed by the controller in parallel with the 

computation done in the Map section and Reduce section. 

• the Map section and Reduce section are pipelined and, thus work in 

parallel contributing to the computing of two successive inner products. 

• the instruction cCPUSHL we added in the instruction set of the 

MapReduce engine builds the result vector in parallel. 

Based on the previous program, the modified matrix-matrix multiplication 

program stored as the file modifiedMatrixMatrixMult.v is: 
 

       ‘include "03_matrixTranspose.v" 

                              // select the first N cells only 

       cLOAD(0);  IXLOAD;     // acc <= N; acc[i] <= index 

       cLOAD(0);  CSUB;       // acc[i] <= index - N 

       cSTORE(5); WHERECARRY; // select only the first N cells 

       cLOAD(1);  NOP;  

       cADD(0);  NOP;  
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       cVSUB(1);  NOP;  

       cSTORE(6); NOP;        // mem[6] <= last line in M1 

       cLOAD(2);  NOP; 

       cSTORE(9); NOP; 

       cLOAD(3);   NOP; 

       cSTORE(10); NOP; 

 

// matrix M1 "x" matrix transpose M2T 

 

LB(7); cLOAD(10);  NOP;      // acc = address the transp. matrix 

  cVADD(1);   CALOAD;   // acc <= acc+1; acc[i]<=memVec[addr] 

  cSTORE(10); STORE(0); // save the pointer; load line at 0 

 

       ‘include "03_modifiedMatrixVectMult.v" 

 

       cSTORE(9);  NOP;  

       cLOAD(5);   NOP;      // acc = loopCounter 

       cVSUB(1);   NOP;      // decrement loopCounter 

       cSTORE(5);  NOP;      // store back loopCounter 

       cBRNZ(7);   NOP; 

 

The execution time for the modified matrix-matrix multiplication is: 

TmMMM = 3N2 + 44N + 0.5NlogP +2  O(N2) 

with N ≤ P, where P is the number of execution units and N is the number of 

vertices in the graph. 

For N = 1024 we obtain the result:    

TmMMM = 3.048N2  cycles 

out of which 3N2 are consumed in the following lines: 

• from the matrix transpose program (named 03_matrixTranspose.v) the 

following two lines are executed in N cycles:  
 

LB(2); cBRNZDEC(2);GLSHIFT; // global left shift cycle times 

... 

LB(3); cBRNZDEC(3);GRSHIFT; // global right shift N-cycles times 

 

• from the modified vector–matrix multiplication program (named 

03_modifiedMatrixVectMult.v) the following two lines are executed in 

2N cycles: 
 

LB(2); cCPUSHL(1);  RILOAD(63);// push reduction sum; load line 
  cBRNZDEC(2); ADD(0);    //test end of loop; line vector add 

 

The execution time for APSP is: 

TAPSP = (TmMMM + 11) logP = (3N2 + 44N + 0.5NlogP +13) logP   O ( N2logP) 
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with N ≤ P, where N is the number of vertexes and P is the number of execution 

units. 

4.3. The Test Program and the Results 

 For running and evaluating the algorithm on the described architecture we 

used a Verilog based simulator and we obtained the following. 

We considered the example represented in Fig. 2 (see in [11], Fig. 7.7). 

Fig. 2. The graph considered as example 
 

There are N = 9 vertexes in the graph. The corresponding weighted adjacency  

matrix A is: 
              

0199999999999999

99099999999999999

991099199999999

23209999999999

99999999099999999

9999299990999999

999999992109999

9999991999999099

999999999999320

I

H

G

F

E

D

C

B

A

IHGFEDCBA

 

 

The value 99 stands for ∞, meaning there is no path between the two vertexes.  

For N = 9 vertexes, we are computing by turn A2, A4 and A8 using the modified 

matrix multiplication.  

After running the program the results are: 
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where the resulting matrix contains the minimal distances from each vertex to 

another. For example, the fourth component of vect[38] which has the value 4 

represents the minimum distance from vertex A to vertex D. The value 99, like in 

the first component of vect[39], means that there is no path from vertex A to 

vertex B, and so on. So the list of existing minimum distances is: 

((A B 2)(A C 3)(A D 4)(A E 5)(A F 3)(A G 5)(A H 6)(A I 5) 

 (B E 4)(B F 1)(B G 3)(B H 4)(B I 3)(C D 1)(C E 2)(C G 3) 

 (C H 4)(D E 3)(D G 2)(D H 3)(F E 3)(F G 2)(F H 3)(F I 2) 

 (G E 1)(G H 1)(I H 1)) 

The rest of the vertexes don't have a path between them. The vectors have 

16 elements because we made the simulation with an engine having 16 processing 

units. Because the graph we considered has only 9 vertexes (N = 9), the last 

components of the vectors are unused (their value is undefined, x). The running 

time for the APSP algorithm, obtained in the simulation environment, is: TAPSP = 

2041 cycles. So, for N = 9, TAPSP = 8.39N2logP cycles. 

5. Upgraded Version of MapReduce Architecture and Organization 

 During the process of developing the parallel APSP algorithm based on 

modified matrix-multiplication on our new one-chip many-core structure with a 

MapReduce architecture we discovered and added some new general purpose 

features for the structure and so we were able to upgrade the existing generic 

structure in order to achieve a better, maybe the best performance. These 

improvement are the following: 

 a serial register distributed along the array added to the generic design 

 a direct loop from the Reduce module to Array (the loop does not go 

through the Controller, the results are sent directly to the Array). This 

means significantly faster response in time and less energy 

consumption (see Fig. 3) 

A      B  C  D  E  F  G  H  I 

 

A  vect[38] =  0  2  3  4  5  3  5  6  5 x x x x x x x 

B  vect[39] = 99  0 99 99  4  1  3  4  3 x x x x x x x 

C  vect[40] = 99 99  0  1  2 99  3  4 99 x x x x x x x 

D  vect[41] = 99 99 99  0  3 99  2  3 99 x x x x x x x 

E  vect[42] = 99 99 99 99  0 99 99 99 99 x x x x x x x 

F  vect[43] = 99 99 99 99  3  0  2  3  2 x x x x x x x 

G  vect[44] = 99 99 99 99  1 99  0  1 99 x x x x x x x 

H  vect[45] = 99 99 99 99 99 99 99  0 99 x x x x x x x 

I  vect[46] = 99 99 99 99 99 99 99  1  0 x x x x x x x 
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Fig. 3. a). Generic one-chip MapReduce structure; b). Upgraded structure with 

serial register and direct loop 
 

 two new instruction added to the set of instructions: 
 

pushl = 5'b01110, // push left to global shift register(c) 

pushr = 5'b01111, // push right to global shift register(c) 

So, the serial register will do the following: 

reg [n-1:0] serialReg[0:(1<<x)-1]  ; 

... 

case(contrOpCode) 

     pushl: if(i == 0) serialReg[i] <= op     ;  

     else      serialReg[i] <= serialReg[i-1]; 

     pushr: if (i == ((1<<x) - 1)) 

                       serialReg[i] <= op;  

     else      serialReg[i] <= serialReg[i+1]; 

    ... 

endcase 

As a result of this upgrading we have obtained an increase in performance 

by reducing the execution time for the matrix-vector multiplication from 

O(NlogP) to O(N). Let us see how it worked. Our generic MapReduce structure 

performs very efficiently the vector-vector multiplication. But, the sum involved 

in the inner product and the composing of the resulting vector for matrix-vector 

multiplication request an embarrassingly long sequence of operations, and more 

than that the execution time depends logarithmically by P. Indeed, the loop that 

would be written for the generic version looks as follows: 
 

00 LB(6); cSTORE(5); RILOAD(63); // load next matrix line 

01        cNOP;      MULT(0);    // multiply line with vector 

02        cLOAD(5);  IXLOAD;     // acc <= ixCounter; acc[i]<=ixVector[i] 

03        cNOP;      CSUB;       // acc[i] <= acc[i]-acc; 

04        cNOP;      WHEREZERO;  // for reduction latency 

05        cNOP;      NOP;        // for reduction latency if P > 16 

06        cNOP;      NOP;        // for reduction latency if P > 64 

                                 // ... if needed 

07        cCLOAD(0); NOP;      // acc <= reduceAdd 

08        cNOP;      CLOAD;  // acc[i] <= acc; 

09        cLOAD(5);  STORE(1);   // acc <= ixCounter; mem[i][1]<= acc[i] 

10        cBRNZDEC(6); ENDWHERE; // test end of loop; 

a). b)

. 
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Lines 01 to 07 provide in controller’s accumulator the scalar product of the 

vector with a line of the matrix. Because the latency of the reduction network for 

addition is 1+0.5logP, the above example is for an array of 256 cells. The 

minimum length of the loop is of 9 cycles, for P = 16, because in the lines 02 to 

04, in array is selected the cell which will receive the currently computed scalar 

product. The time for this loop is: 7 + 0.5logP. 

We were looking for an improvement to reduce this 7 + 0.5logP to the 

smallest possible constant in order to obtain: 
 

TmMMM  O(N2) 

instead of the current:                 

TmMMM  O(N2logP) 

(where mMMM stands for modified matrix-matrix multiplication) 

This is what we obtained with the inclusion of the shift register in the design. We 

were able to reduce the previous loop sequence to only two lines: 

LB(6); cCPUSHL(0);  RILOAD(63); //push redSum; load next matrix line 

  cBRNZDEC(6); MULT(0);    //test end; multiply line with vector 

And so, the execution time for matrix-matrix multiplication using the previous 

matrix-vector multiplication becomes: 

TmMMM  = (2N + 0.5log2P + c1)N + N2 + c2  O(N2) 

Thus, both, the magnitude order and the constant is small, because, for big N, 

TmMMM → 3N2. 

6. Concluding Remarks 

 The APSP matrix–multiplication based algorithm on a P-processor 

hypercube architecture is evaluated as working in O(N2logP) cycles [11], where N 

is the number of vertices and N ≤ P. Our architecture provides the same 

theoretical time performance, but the advantages we offer is that our engine has 

the size in O(P) compared with a hypercube organization with a size in O(PlogP). 

 Another advantage of our solution is that the cells in our engine are 

execution units,  not processing units like in the hypercube engines. The program 

in a distributed hypercube architecture is replicated P times in each of the P 

processing units, while in our approach it is stored only in the Controller’s 

program memory.  

 The last but not the least advantage of our solution is that the hypercube 

architecture supposes data multiplies many times in the processing cells' array, 
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while in our approach data is not multiplied in the array of the execution cells. 

Also, the actual energy performance of our architecture is 7 pJ for 32-bit integer 

operation, compared with the ~ 150 pJ per operation of the current many-cores. 
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