
U.P.B. Sci. Bull., Series C, Vol. 78, Iss. 4, 2016 ISSN 2286-3540

ALL-PAIRS SHORTEST PATH MODIFIED MATRIX-

MULTIPLICATION BASED ALGORITHM FOR A ONE-CHIP

MapReduce ARCHITECTURE

Voichita DRAGOMIR1

An implementation of a newly developed parallel all-pairs shortest

path algorithm based on modified matrix-multiplication on a new one-chip many-

core structure with a MapReduce architecture is presented. The generic structure's

main features and performances are described together with the new general

purpose features added for upgrading the existing generic structure in order to run

the best performance of this algorithm. The main outcome of the presented research

is that our MapReduce architecture, in spite having a simpler and smaller structure,

has the same theoretical time performance as the hypercube architecture. Also, the

actual energy performance of our architecture is 7 pJ for 32-bit integer operation,

compared with the ~ 150 pJ per operation of the current many-cores.

Keywords: parallel computing; MapReduce; many core; all-pair shortest path;

matrix multiplication; parallel algorithm

1. Introduction

Many structures - physical such as transportation or road networks, social

such as friendship networks, or virtual such as computer networks - have natural

graph representations. Graphs, one of the most versatile data structures, play an

important role in many domains because they provide an easy and systematic way

to model many problems. Because of the ever-expanding amounts of computation

and captured data [1], both researchers and industry are confronted with the need

to process increasingly large amounts of data, essential form by graphs and solved

using standard graph algorithms. So, graph processing is becoming increasingly

important nowadays. In graph theory, the shortest path problem is the problem of

finding a path between two vertices (nodes) in a graph such that the sum of the

weights of its constituent edges is minimum. There are two algorithms: Single-

Source Shortest Path (finding the shortest path from a single vertex to every other

vertex) and All-Pair Shortest Path (APSP) algorithms (finding the shortest path

between all pairs of vertices). The optimal sequential algorithm for APSP is in

O(N3); N being the number of vertices in the graph. This paper is about a parallel

formulation of an All-Pair Shortest Path algorithm: the Modified Matrix-

Multiplication based algorithm on a one-chip MapReduce architecture.

1 Teaching assistant., Dept.of Electronic Devices, Circuits and Architectures, University

POLITEHNICA of Bucharest, Romania, e-mail: voichita.dragomir@upb.ro

96 Voichita Dragomir

 The modified matrix multiplication is not an optimal algorithm. Its

sequential time is in O(N3logN), but we use it because of its simplicity and the

efficiency on our new structure, the one-chip many-core MapReduce engine. This

new structure is described in chapter 3. This APSP algorithm is called matrix-

multiplication based, because it uses the modified matrix multiplication which

substitutes the multiplication operation with addition and addition operation with

minimum. Our approach is different than what has been done so far. Let us take a

look on the current existing solutions in the next chapter. Chapter three describes

the new structure we are working on. It performs best on matrix-vector

operations. Therefore, we designed an APSP algorithm based on the dense

matrix representation of graph, presented in chapter four. We did not cover the

sparse matrix version because we can't talk of one in this case, due to the fact that

the only zeroes that appear in the matrix are on the main diagonal. Chapter five

contains the new general purpose features added for upgrading the existing

generic structure, in order to run the best performance of this algorithm. To

determine the efficiency of the parallel algorithms we developed for the

MapReduce structure, we are comparing them to the most efficient and used

parallel structure today, the distributed hypercube parallel computer. Concluding

remarks are presented in chapter six.

2. Current existing solutions

 So far, parallel APSP algorithms have been implemented on multi-core

processors, with shared external memory. They are limited in the number of cores,

the memory size and they are non-scalable for big data size [2] [3]. Another

existing implementation is cloud MapReduce architecture, with distributed

memory, where the MapReduce approach is limited by the latency introduced by

the communication network [4] [5], which means a significant increase in energy

and time use. For example, if the interconnection network used is a hypercube –

one of the most efficient solution for communication nowadays – then the size of

the entire system belongs to O(PlogP) with a latency in communication in

O(logP), where P represents the number of cells. What is new in our approach is

that we are going to implement the parallel APSP algorithm on a one-chip many-

core structure not on multi-core or distributed computing. There are other one-

chip MapReduce approaches. For example, the Intel SCC family. In [6] and [7]

two different MapReduce applications are presented. The use of this general-

purpose array of processors has a much slower response, because it has no more

than 48 cores (which are also much too complex for solving this kind of problem)

and the MapReduce functionality is implemented in software, not hardware, as in

our case.

All-pairs shortest path modified matrix-multiplication based algorithm for a one-chip (…) 97

3. New Generic One-Chip MapReduce Architecture

 The research presented in this paper is part of a larger project set out to

improve, this generic new architecture, the one-chip MapReduce architecture. For

this purpose, we address the collection of algorithm families important in parallel

computing that the Berkeley research report on parallel computation talks about,

naming them the 13 “dwarfs” [12]. The “dwarf” considered in this paper is Graph

traversal and the APSP with modified matrix-multiplication is one of the graph

traversal algorithms.

3.1. The Structure

 The structure we work on is a one-chip MapReduce architecture, presented

in Fig. 1, where:

Fig. 1. MapReduce one-chip architecture

• pairs eng-mem in the MAP section; they correspond to each cell from a linear

array of hundreds or thousands of cells containing execution units and local

memory of few KB, and consist of:

 – eng, the engine, which is an execution unit

 – mem, the local memory to store data

• REDUCE unit; is a log-depth tree structure used to compute some reduction

functions (add, min, max, ...) which provides for the controller CONTR a scalar

from a vector.

• CONTR, a controller used as sequencer; a processing unit which issues in each

cycle an instruction and various data distributed, if needed, in the array of cells.

• MEMORY, a memory resource for data and programs.

 The cellular structure of the generic structure is accompanied by the

standard scalar processing structure used as controller. In the cellular structure all

the resources are of vectorial type. The instruction set architecture works on four

storage resources:

• vectorial resources, distributed along the array of cells

98 Voichita Dragomir

• scalar resources, in the controller

• control resources, in the controller

• evaluation resources, used to evaluate the performance of the execution

all of which are described as follows:

// vector domain, V

reg [x-1:0] ixVect[0:(1<<x)-1] ; // index read-only vector

reg [a-1:0] actVect[0:(1<<x)-1] ; // activation vector

reg boolVect[0:(1<<x)-1] ; // Boolean vector

reg [n-1:0] accVect[0:(1<<x)-1] ; // accumulator vector

reg crVect[0:(1<<x)-1] ; // carry vector

reg [v-1:0] addrVect[0:(1<<x)-1] ; // address vector

reg [n-1:0] vectMem[0:(1<<x)-1][0:(1<<v)-1] ; // vector memory

// scalar domain, S

reg [n-1:0] acc ; // scalar accumulator

reg cr ; // scalar carry

reg [s-1:0] addr ; // scalar address

reg [n-1:0] mem[0:(1<<s)-1] ; // scalar memory

// control resources

reg [p-1:0] pc ; // program counter

reg [31:0] ir ; // instruction register

reg [31:0] progMem[0:(1<<p)-1] ; // program memory

// evaluation resources

reg [31:0] cc ; // cycle counter

reg ccEnable ; // cycle counter enable

The generic structure starts with the simplest and smallest resources, like:

• each of the 2x cell’s engine is an execution unit (not a processing unit)

• both, the execution unit of the controller and the execution unit of each cell

are accumulator based

• 32-bit interface to the external memory

 The described structure has a few physical implementation versions. The

last out of the three implemented versions, issued in 2008, in 65nm standard cells

technology [8], provides the following performances: 100 GOPS/Watt and 5

GOPS/mm2, while the current sequential engines (x86 architecture, for example)

have, in the same technology: ~1 GOPS/Watt and ~0,25 GOPS/mm2 (GOPS

stands for Giga Operations Per Second).

 The size of the structure is in O(P), where P is the number of cells, while

the communication latency between the array and the controller is in O(logP).

3.2. The Instruction Set Architecture

Instruction Set Architecture defines the operations performed over the two

data domains: scalar domain, S, and vector domain, V. Therefore, the structure of

the MapReduce generic architecture consists of two parts – one associated to

All-pairs shortest path modified matrix-multiplication based algorithm for a one-chip (…) 99

Controller and another for Array –, and the resulting instruction set architecture,

ISAMapReduce, is a dual one:

ISAMapReduce = (ISAS × ISAV)

where:

• ISAS = SSarith&logic ∪ SScontrol ∪ SScommunication is the ISA associated to the

Controller, with its three subsets of instructions

• ISAV = SSarith&logic ∪ SSspatialControl ∪ SStransfer is the ISA associated to the cellular

Array, with its three subsets of instructions

 In each clock cycle from the program memory of the controller a pair of

instructions is read: one from ISAS, to be executed by Controller, and another from

ISAV to be executed by Array.

 The SSarith&logic are identical in the two ISAs. The SScommunication subset

controls the internal communication between array and controller and the

communication of the MapReduce system with the host computer. The SStransfer

subset controls the data transfer between the distributed local memory of the array

and the external memory of the system. The SScontrol subset consists of

conventional control instructions in a standard processor. We must pay more

attention to the SSspatialControl subset used to perform the specific spatial control in

an array of execution units. The main instructions in SSspatialControl subset are:

activate: all the cells of the array are activated for executing the next

instructions

where: maintains active only the active cells where the condition cond is

fulfilled; for example: where(zero) maintains active only the active cells

where the accumulator is zero (it corresponds to the if(cond) instruction

form the SScontrol subset)

elsewhere: activates the cells inactivated by the associated where(cond)

instruction (it corresponds to the else instruction form the SScontrol subset)

endwhere: restores the activations existed before the previous where(cond)

instruction (it corresponds to the endif instruction form the SScontrol subset)

3.2.1. The Instruction Structure

 The instruction format for the MapReduce engine allows issuing two

instruction at a time, as follows:

mrInstruction[31:0] = {controllerInstr, arrayInstr} =

 {{instr[4:0], operand[2:0], value[7:0]},

 {instr[4:0], operand[2:0], value[7:0]}}

where:

instr[4:0] : codes the instruction

operand[2:0] : codes the second operand used in instruction

value[7:0] : is mainly the immediate value or the address

100 Voichita Dragomir

 The field operand[2:0] is specific for our accumulator centered

architecture. It mainly specifies the second n-bit operand, op, and has the

following meanings:

val : immediate value

 op = {{(n-8)value[7]}, value[7:0]}

mab : absolute from local memory

 op = mem[value]

mrl : relative from local memory

 op = mem[value + addr]

mri : relative from local memory and increment
 op = mem[value + addr]; addr <= value + addr;

cop : immediate with co-operand – coop
 op = coop ;

mac : absolute from local memory with co-operand
 op = mem[coop];

mrc : relative from local memory with co-operand
 op = mem[value + coop] ;

ctl : control instructions ;

where the co-operand of the array is the accumulator of the controller: acc, while

the co-operand of the controller is provided by the four outputs of reduction

section of the array:

redSum: the sum of the accumulators from the active cells: ∑ i
p

acc
0

redMin: the minimum value of the accumulators from the active cells: i
p

accMin
0

redMax: the maximum value of the accumulators from the active cells: i
p

accMax
0

redBool: the sum of the active bit from the active cells: ∑ i
p

bool
0

3.2.2. The Assembler Language

The assembly language provides a sequence of lines each containing two

instructions, one for Controller (containing the prefix c) and another for Array.

Some of the line are labeled, LB(n), where n is a positive integer.

Example 1. The program which provides in the controller’s accumulator the sum

of indexes is:

cNOP; ACTIVATE; // activate all cells

cNOP; IXLOAD; // load the index of each cell in accumulator

cCLOAD(0); NOP; // load in controller’s accumulator the sum of

indexes

All-pairs shortest path modified matrix-multiplication based algorithm for a one-chip (…) 101

3.3. Concluding About Our MapReduce Architecture

This one-chip MapReduce architecture is used as an accelerator in

application fields like video [9], encryption, data mining and also for efficiently

generating pseudo-random number sequences [10].

Matrix-vector operations are very frequent and it is important to cover this aspect.

The system we work with is a many-core one-chip with a MapReduce architecture

and it performs best on matrix-vector operations. The operation supposes a series

of scalar (dot, inner) products whose results must be assembled in a vector stored

back into the array's distributed memory. The generic MapReduce structure

performs very efficiently the vector multiplication (on the Map section of the

engine) and then the n-ary addition (in the Reduce section of the engine). This is

why we choose to do the all-pair shortest path based on the modified matrix

multiplication algorithm, although it's not an optimal algorithm.

4. All-Pairs Shortest Path Modified Matrix-Multiplication Based

Algorithm for Dense Matrix Representation of Graphs

Important note: only the dense matrix version of the modified

multiplication algorithm is considered, because the only zeroes that appear in the

matrix are on the main diagonal and this means dense matrix, so there is no sparse

case.

4.1. The Algorithm

 Modified matrix multiplication algorithm assumes to substitute the

multiplication with addition and addition with minimum, such that in computing

the elements of the resulting matrix instead of:







Nk

k

kjikij bac

1

we use:

)(min
1 kjik
Nk

kij bac  


If, the graph is represented by the weighted adjacency matrix A, then, for a graph

with the number of vertexes |V| = N, the output of the APSP algorithm will be the

N × N matrix D = AN−1, computed using, instead of the matrix multiplication, the

modified matrix-multiplication algorithm.

4.2. The Program

 The program is based on the efficiency of our MapReduce architecture in

computing the inner product. The Map section computes the sums aik +bkj, for the

modified algorithm, while the Reduce section, pipeline connected, computes the

minimum, for the modified algorithm. Thus, the vector-matrix product is very

102 Voichita Dragomir

efficiently computed by the following program stored as the file

modifiedMatrixVectMult.v of form:
 cLOAD(6); NOP; // acc <= last line of matrix

 cLOAD(0); CADDRLD; // acc <= N; addr[i] <= acc

 cVSUB(1); RLOAD(0); // acc <= N-1; load last matrix M1 line

 cNOP; ADD(0); // add line with vector

LB(6); cCPUSHL(1); RILOAD(127);// push reduction min; load next line

 cBRNZDEC(6);ADD(0); // test end of loop; line-vector add

 // latency = 1 + 0.5 log N

 cNOP; NOP; // latency

 cNOP; NOP; // latency

 cLOAD(9); SRLOAD; // acc <= mem[9]; load result in acc

 cVADD(1); CSTORE; // acc <= acc+1; store in vector memory

The loop consists of the following two lines:

LB(6); cCPUSHL(1); RILOAD(127); // push reduction min; load next line

 cBRNZDEC(6); ADD(0); // test end of loop; line-vector add

Actually the hole program stays mainly on these two lines. The weight of the

program from the execution time point of view falls on these two lines, the loop

labeled with LB(6). The execution time for a N ×N matrix is:

TVector-Matrix(N) = 2N + 6 + 0.5logP  O(N)

with N ≤ P, where N is the number of vertices in the graph which gives the

dimension of the matrix and P is the number of the execution units from the

engine's array of cells. 0.5logP is due to the latency introduced by the reduction

network. For N = 1024 the execution time for vector matrix multiplication is

TVector-Matrix(N) = 2048 + 6 + 5 = 2048 +11

which means that only 0.5% of the overall time is spent by the program outside

the loop. This small and concise loop is possible because:

• the control of the loop is performed by the controller in parallel with the

computation done in the Map section and Reduce section.

• the Map section and Reduce section are pipelined and, thus work in

parallel contributing to the computing of two successive inner products.

• the instruction cCPUSHL we added in the instruction set of the

MapReduce engine builds the result vector in parallel.

Based on the previous program, the modified matrix-matrix multiplication

program stored as the file modifiedMatrixMatrixMult.v is:

 ‘include "03_matrixTranspose.v"

 // select the first N cells only

 cLOAD(0); IXLOAD; // acc <= N; acc[i] <= index

 cLOAD(0); CSUB; // acc[i] <= index - N

 cSTORE(5); WHERECARRY; // select only the first N cells

 cLOAD(1); NOP;

 cADD(0); NOP;

All-pairs shortest path modified matrix-multiplication based algorithm for a one-chip (…) 103

 cVSUB(1); NOP;

 cSTORE(6); NOP; // mem[6] <= last line in M1

 cLOAD(2); NOP;

 cSTORE(9); NOP;

 cLOAD(3); NOP;

 cSTORE(10); NOP;

// matrix M1 "x" matrix transpose M2T

LB(7); cLOAD(10); NOP; // acc = address the transp. matrix

 cVADD(1); CALOAD; // acc <= acc+1; acc[i]<=memVec[addr]

 cSTORE(10); STORE(0); // save the pointer; load line at 0

 ‘include "03_modifiedMatrixVectMult.v"

 cSTORE(9); NOP;

 cLOAD(5); NOP; // acc = loopCounter

 cVSUB(1); NOP; // decrement loopCounter

 cSTORE(5); NOP; // store back loopCounter

 cBRNZ(7); NOP;

The execution time for the modified matrix-matrix multiplication is:

TmMMM = 3N2 + 44N + 0.5NlogP +2  O(N2)

with N ≤ P, where P is the number of execution units and N is the number of

vertices in the graph.

For N = 1024 we obtain the result:

TmMMM = 3.048N2 cycles

out of which 3N2 are consumed in the following lines:

• from the matrix transpose program (named 03_matrixTranspose.v) the

following two lines are executed in N cycles:

LB(2); cBRNZDEC(2);GLSHIFT; // global left shift cycle times

...

LB(3); cBRNZDEC(3);GRSHIFT; // global right shift N-cycles times

• from the modified vector–matrix multiplication program (named

03_modifiedMatrixVectMult.v) the following two lines are executed in

2N cycles:

LB(2); cCPUSHL(1); RILOAD(63);// push reduction sum; load line
 cBRNZDEC(2); ADD(0); //test end of loop; line vector add

The execution time for APSP is:

TAPSP = (TmMMM + 11) logP = (3N2 + 44N + 0.5NlogP +13) logP  O (N2logP)

104 Voichita Dragomir

with N ≤ P, where N is the number of vertexes and P is the number of execution

units.

4.3. The Test Program and the Results

 For running and evaluating the algorithm on the described architecture we

used a Verilog based simulator and we obtained the following.

We considered the example represented in Fig. 2 (see in [11], Fig. 7.7).

Fig. 2. The graph considered as example

There are N = 9 vertexes in the graph. The corresponding weighted adjacency

matrix A is:

0199999999999999

99099999999999999

991099199999999

23209999999999

99999999099999999

9999299990999999

999999992109999

9999991999999099

999999999999320

I

H

G

F

E

D

C

B

A

IHGFEDCBA

The value 99 stands for ∞, meaning there is no path between the two vertexes.

For N = 9 vertexes, we are computing by turn A2, A4 and A8 using the modified

matrix multiplication.

After running the program the results are:

All-pairs shortest path modified matrix-multiplication based algorithm for a one-chip (…) 105

where the resulting matrix contains the minimal distances from each vertex to

another. For example, the fourth component of vect[38] which has the value 4

represents the minimum distance from vertex A to vertex D. The value 99, like in

the first component of vect[39], means that there is no path from vertex A to

vertex B, and so on. So the list of existing minimum distances is:

((A B 2)(A C 3)(A D 4)(A E 5)(A F 3)(A G 5)(A H 6)(A I 5)

 (B E 4)(B F 1)(B G 3)(B H 4)(B I 3)(C D 1)(C E 2)(C G 3)

 (C H 4)(D E 3)(D G 2)(D H 3)(F E 3)(F G 2)(F H 3)(F I 2)

 (G E 1)(G H 1)(I H 1))

The rest of the vertexes don't have a path between them. The vectors have

16 elements because we made the simulation with an engine having 16 processing

units. Because the graph we considered has only 9 vertexes (N = 9), the last

components of the vectors are unused (their value is undefined, x). The running

time for the APSP algorithm, obtained in the simulation environment, is: TAPSP =

2041 cycles. So, for N = 9, TAPSP = 8.39N2logP cycles.

5. Upgraded Version of MapReduce Architecture and Organization

 During the process of developing the parallel APSP algorithm based on

modified matrix-multiplication on our new one-chip many-core structure with a

MapReduce architecture we discovered and added some new general purpose

features for the structure and so we were able to upgrade the existing generic

structure in order to achieve a better, maybe the best performance. These

improvement are the following:

 a serial register distributed along the array added to the generic design

 a direct loop from the Reduce module to Array (the loop does not go

through the Controller, the results are sent directly to the Array). This

means significantly faster response in time and less energy

consumption (see Fig. 3)

A B C D E F G H I

A vect[38] = 0 2 3 4 5 3 5 6 5 x x x x x x x

B vect[39] = 99 0 99 99 4 1 3 4 3 x x x x x x x

C vect[40] = 99 99 0 1 2 99 3 4 99 x x x x x x x

D vect[41] = 99 99 99 0 3 99 2 3 99 x x x x x x x

E vect[42] = 99 99 99 99 0 99 99 99 99 x x x x x x x

F vect[43] = 99 99 99 99 3 0 2 3 2 x x x x x x x

G vect[44] = 99 99 99 99 1 99 0 1 99 x x x x x x x

H vect[45] = 99 99 99 99 99 99 99 0 99 x x x x x x x

I vect[46] = 99 99 99 99 99 99 99 1 0 x x x x x x x

106 Voichita Dragomir

Fig. 3. a). Generic one-chip MapReduce structure; b). Upgraded structure with

serial register and direct loop

 two new instruction added to the set of instructions:

pushl = 5'b01110, // push left to global shift register(c)

pushr = 5'b01111, // push right to global shift register(c)

So, the serial register will do the following:

reg [n-1:0] serialReg[0:(1<<x)-1] ;

...

case(contrOpCode)

 pushl: if(i == 0) serialReg[i] <= op ;

 else serialReg[i] <= serialReg[i-1];

 pushr: if (i == ((1<<x) - 1))

 serialReg[i] <= op;

 else serialReg[i] <= serialReg[i+1];

 ...

endcase

As a result of this upgrading we have obtained an increase in performance

by reducing the execution time for the matrix-vector multiplication from

O(NlogP) to O(N). Let us see how it worked. Our generic MapReduce structure

performs very efficiently the vector-vector multiplication. But, the sum involved

in the inner product and the composing of the resulting vector for matrix-vector

multiplication request an embarrassingly long sequence of operations, and more

than that the execution time depends logarithmically by P. Indeed, the loop that

would be written for the generic version looks as follows:

00 LB(6); cSTORE(5); RILOAD(63); // load next matrix line

01 cNOP; MULT(0); // multiply line with vector

02 cLOAD(5); IXLOAD; // acc <= ixCounter; acc[i]<=ixVector[i]

03 cNOP; CSUB; // acc[i] <= acc[i]-acc;

04 cNOP; WHEREZERO; // for reduction latency

05 cNOP; NOP; // for reduction latency if P > 16

06 cNOP; NOP; // for reduction latency if P > 64

 // ... if needed

07 cCLOAD(0); NOP; // acc <= reduceAdd

08 cNOP; CLOAD; // acc[i] <= acc;

09 cLOAD(5); STORE(1); // acc <= ixCounter; mem[i][1]<= acc[i]

10 cBRNZDEC(6); ENDWHERE; // test end of loop;

a). b)

.

All-pairs shortest path modified matrix-multiplication based algorithm for a one-chip (…) 107

Lines 01 to 07 provide in controller’s accumulator the scalar product of the

vector with a line of the matrix. Because the latency of the reduction network for

addition is 1+0.5logP, the above example is for an array of 256 cells. The

minimum length of the loop is of 9 cycles, for P = 16, because in the lines 02 to

04, in array is selected the cell which will receive the currently computed scalar

product. The time for this loop is: 7 + 0.5logP.

We were looking for an improvement to reduce this 7 + 0.5logP to the

smallest possible constant in order to obtain:

TmMMM  O(N2)

instead of the current:

TmMMM  O(N2logP)

(where mMMM stands for modified matrix-matrix multiplication)

This is what we obtained with the inclusion of the shift register in the design. We

were able to reduce the previous loop sequence to only two lines:

LB(6); cCPUSHL(0); RILOAD(63); //push redSum; load next matrix line

 cBRNZDEC(6); MULT(0); //test end; multiply line with vector

And so, the execution time for matrix-matrix multiplication using the previous

matrix-vector multiplication becomes:

TmMMM = (2N + 0.5log2P + c1)N + N2 + c2  O(N2)

Thus, both, the magnitude order and the constant is small, because, for big N,

TmMMM → 3N2.

6. Concluding Remarks

 The APSP matrix–multiplication based algorithm on a P-processor

hypercube architecture is evaluated as working in O(N2logP) cycles [11], where N

is the number of vertices and N ≤ P. Our architecture provides the same

theoretical time performance, but the advantages we offer is that our engine has

the size in O(P) compared with a hypercube organization with a size in O(PlogP).

 Another advantage of our solution is that the cells in our engine are

execution units, not processing units like in the hypercube engines. The program

in a distributed hypercube architecture is replicated P times in each of the P

processing units, while in our approach it is stored only in the Controller’s

program memory.

 The last but not the least advantage of our solution is that the hypercube

architecture supposes data multiplies many times in the processing cells' array,

108 Voichita Dragomir

while in our approach data is not multiplied in the array of the execution cells.

Also, the actual energy performance of our architecture is 7 pJ for 32-bit integer

operation, compared with the ~ 150 pJ per operation of the current many-cores.

Acknowledgment

This work has been funded by the Sectoral Operational Program Human

Resources Development 2007-2013 of the Ministry of European Funds through

the Financial Agreement POSDRU/159/1.5/S/132397.

R E F E R E N C E S

[1]. M. Hilbert, P. López, "The world’s technological capacity to store, communicate, and compute

information", Science vol. 332, no. 6025, April 2011, pp. 60–65.

[2]. G. Revesz, "Parallel Graph-Reduction With A Shared Memory Multiprocessor System", IEEE

Computer Languages, New Orleans, LA, March 1990, pp. 33-38.

[3]. M. Yasugi, T. Hiraishi, S. Umatani and T. Yuasa, "Dynamic Graph Traversals for Concurrent

Rewriting using Work-Stealing Frameworks for Multi-core Platforms", IEEE Conference on

Parallel and Distributed Systems (ICPADS), 16th edition, Dec 2010, pp. 406 – 414.

[4]. M. Cosulschi, A. Cuzzocrea and R. De Virgilio "Implementing BFS-based Traversals of RDF

Graphs over MapReduce Efficiently", IEEE Conference on Cluster, Cloud and Grid Computing

(CCGrid), Delft, May 2013, pp. 569 – 574.

[5]. Q. Lianghong, F. Lei and L. Jianhua, "Implementing Quasi-Parallel Breadth-First Search in

MapReduce for Large-Scale Social Network Mining", IEEE Conference on Computational

Aspects of Social Networks (CASoN), Fifth International Conference, 2013, pp. 7 – 14.

[6]. A. Papagiannis, D.S. Nikolopoulos, "MapReduce for the Single-Chip Cloud Architecture"

ACACES Journal - Seventh International Summer School on Advanced Computer Architecture

and Compilation for High-Performance and Embedded Systems, Fiuggi, Italy, 2011.

[7]. A. Tripathy, A. Patra, S. Mohan and R. Mahapatra, "Distributed Collaborative Filtering on a

Single Chip Cloud Computer", IEEE Conference on Cloud Engineering (IC2E), 2013, pp. 140 -

145.

[8]. G. Stefan, "One-Chip TeraArchitecture", Proceedings of the 8th Applications and Principles of

Information Science Conference, Okinawa, Japan, 2009.

[9]. C. Bira, R. Hobincu, L. Petrica, V. Codreanu, S.Cotofana, "Energy - Efficient Computation of L1

and L2 Norms on a FPGA SIMD Accelerator, with Applications to Visual Search", Proceedings

of the 18th International Conference on Computers (part of CSCC ’14), Advances in Information

Science and Applications – vol. II, Santorini, Greece, 2014, pp. 432-437.

[10]. A.Gheolbanoiu, D.Mocanu, R.Hobincu, L.Petrica, "Cellular Automaton pRNG with a Global

Loop for Non-Uniform Rule Control", Proceedings of the 18th International Conference on

Computers (part of CSCC ’14), Advances in Information Science and Applications – vol. II,

Santorini, Greece, 2014, pp. 415-420.

[11]. V. Kumar, A. Grama, A. Gupta and G. Karypis, Introduction to Parallel Computing: Design and

Analysis of Algorithms, The Benjamin/Cummings Publishing Company, 1994.

[12]. K. Asanovic, R. Bodik, B.C. Catanzaro, J.J. Gebis, P. Husbands, K. Keutzer, D.A. Patterson, W.L.

Plishker, J. Shalf, S.W. Williams, K.A. Yelick, "The landscape of parallel computing research: A

view from Berkeley", Technical Report No. UCB/EECS-2006-183, December 18, 2006.
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-

183.pdf

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf

