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COMPARATIVE ANALYSIS OF ORTHOTROPIC PLATES  

Iuliana SPRINŢU1, Ion FUIOREA2 

In this article are proposed some new analytical solutions for solving plate   
displacements problem and corresponding modal analysis for thin orthotropic 
rectangular plates, having clamped edges. The considered reasons for the solutions 
were to exactly satisfy the boundary conditions and are compared to those found in 
the literature. Also, a complex comparative study for analytical, numerical and 
experimental results is performed, aiming to validate the proposed analytical 
solutions. 
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1. Introduction 

Thin-walled structures are frequently found in engineering practice due  to 
technical and economic advantages that they have. In these structures are found 
flat thin plates or with very small curvatures. Such plates are subjected to 
mechanical stress differently in different directions, which explains the 
importance of the study of composite materials. In the particular case, orthotropic 
plates are created with different stiffness in two directions, their use improved  
ratio between stiffness and weight. 

Given the complexity of design of fiber-reinforced materials and 
heterogeneous character, modeling of their mechanical response under different 
external stress is particularly difficult to deal in the absence of simplifying 
assumptions. In the literature there are many papers that propose different models 
with varying degrees of approximation [1], [2], [3]. 

There are also numerical approaches of applications involving composites, 
especially regarding impact problems by SPH [5].  

However, analytical models and solutions remain a prospective tool, even 
they are obtained generally for quite simple or particular cases of geometries 
and/or loadings. They are still very useful to validate a numerical solution, they 
are less expensive in time and calculation volume than the numerical ones, they 
can emphasize how the solution depends on data, etc. 
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Thus, this article proposed new analytical solutions that consider both 
solving the problem in displacements and modal analysis of orthotropic thin 
rectangular plates with clamped edges. 

The considered reasons for the solutions were to exactly satisfy the 
boundary conditions and to verify as close as possible the differential equation of 
the plate. The weighted residue method was considered to optimise the chosen 
analytical solutions. Interesting evaluations were performed for different types of 
functions, especially with respect to the orthotropic answer of the plate. The 
purposed solutions were compared with those obtained by Reddy in [2]. Finally, 
the solutions were critically analysed considering a FEM solution and 
experimental data.  

Thorough comparison between analytical solutions, numerical results and 
experimental data reveals a good agreement of the results. 

2. Assumptions 

The following assumptions are used in the analysis of thin plate model: 
i) The constitutive law is orthotropic elasticity. 
ii) Strain-displacement relation is linear, i.e. geometrical linearity. 
The classical laminated plate theory is applied considering Kirchhoff-Love  

hyphotheses:  
iii) The inextensibility of normal is imposed, implying that during 

deformation the normal to the median of the plate remain straight, i.e.the 
transverse displacement is independent of the transverse (thickness) coordinate.  

iv) During deformation the plate thickness remains constant, equivalent 
with 0.zε =  

v) During deformation the transverse normals remain perpendicular to the 
midsurface, i.e. 0, 0xz yzε ε= = . 

 
3. Orthotropic plate equations  

 
For an orthotropic elastic thin rectangular plate subjected to an uniform 

distributed pressure p on the bottom face, plate with thickness h, lenghth a and 
width b, the orthotropic elastic constitutive equations is: 

[ ] [ ]Qσ ε= ⋅ ,  

where ( )Q R Qθ= ⋅ ,  ( ) ( )6 4R Mθ ×∈ , is the matrix that defines the 

rotation angle fibers θ  to the axis Ox , ( )11 22 12 66, , , TQ Q Q Q Q=  and    
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where 1 2,E E  are elasticity moduli in the longitudinal and transversal 
directions, respectively, 12G  is the shear modulus in the plane of the ply, and 12ν  
is the Poisson coefficient. 

Replacing constitutive equation in the equilibrium equation and according 
to the hypothesis (i)-(v) it is obtained the partial differential equation for w (the 
displacement on Oz direction): 

( )
4 4 4__

11 22 12 664 4 2 2

4 4
26 163 3 3

2 2

124 4 .

w w wQ Q Q Q
x y x y

w w pQ Q
x y x y h

∂ ∂ ∂
⋅ + ⋅ + ⋅ + ⋅ ⋅ +
∂ ∂ ∂ ∂

∂ ∂ ⋅
+ ⋅ ⋅ + ⋅ ⋅ =

∂ ∂ ∂ ∂
                                                 

(1) 

In particular case, when Ox-axis is oriented along the fiber direction, 
0θ = , equation (1) becomes: 

( )
4 4 4

11 22 12 124 4 2 2 3
122 2 .w w w pQ Q Q G

x y x y h
∂ ∂ ∂ ⋅
⋅ + ⋅ + ⋅ + ⋅ ⋅ =
∂ ∂ ∂ ∂

  (2) 

 
For modal analysis, in orthotropic plate equations as a uniformly 

distributed load  p is considered inertial force, resulting equation corresponding 
free vibrations: 

 
3 2

2 0
12
h wAw h

t
ρ ∂

⋅ + ⋅ ⋅ =
∂

,                                                           (3) 

where ( )
4 4 4
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 for 0θ =  and  
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0 .θ ≠  
 

 4. Analytical solutions 
For a rectangular orthotropic plate with clamped edges, must be solved 

equations (2) for 0θ = , respectively (1), for 0θ ≠ , with boundary conditions:

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0, , 0, 0, ,
.

,0 , 0, ,0 , 0

w ww y w a y y a y
x x

w ww x w x b x x b
y y

∂ ∂⎧ = = =⎪ ∂ ∂⎪
⎨ ∂ ∂⎪ = = = =

∂ ∂⎪⎩

    (4)    
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Let us mention that Reddy proposes solution for equation (2) with 
boundary conditions (4) as [2], [4], [7]: 

    ( )
1 1 2 2

1 1
, 1 1 .

i jm n
ij

i j

x y x yw x y c
a b a b

+ +

= =

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ⋅ ⋅ ⋅ − ⋅ −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
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∑∑                     (5)  

For this solution is observed that the terms corresponding to the plate 
edges x a=  and y b=  are not included in the sum. 

In this article, using Ritz method and compared to Reddy's solution, it is 
proposed solution [6], [7]: 

( )
1 1 1 1

1 1
, 1 1 .

i j i jm n
ij

i j

x y x yw x y c
a b a b

+ + + +

= =
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The coefficients ( ) ,ij i j
c  will be determined using the weighted residue 

method.  
According to this method, the following linear system is solved:  

____ ____

3
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D
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,  

are weighting functions (Galerkin method) and D is the domain of the 
composite plate.  

For a comparative analysis between solutions (5) and (6), it is considered a 
thin rectangular plate with 300mma = , 200mmb = , 1.45mmh = , 

1 22051MPaE = , 2 18512MPaE = , 12 8642 MPaG = , 12 0.071ν = , subjected to a 
uniform pressure 0.00419MPap = , using Maple we get the maximum value of 

the deflection , 3.053mm
2 2
a bw⎛ ⎞

⎜ ⎟
⎝ ⎠

, using  both solutions, (5) and (6). 

Note that in particular, for an isotropic thin plate, of 300 300 1.45× ×  with 
22051MPaE = , 0.071ν = , subjected to a uniform pressure 0.00419 MPap = , the 

maximum value of the deflection using the new solution (6), is 
4

, 0.0012653
2 2
a b p aw

D
⋅⎛ ⎞ = ⋅⎜ ⎟

⎝ ⎠
, where

( )
3

212 1

E hD
ν

⋅
=

⋅ −
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This result is high close of the exact solution obtained by Timoshenko and 

Woinowsky,  
4

, 0.00126 .
2 2
a b p aw

D
⋅⎛ ⎞ = ⋅⎜ ⎟
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In the same time, using Reddy’s solution, it result  
4

, 0.00133 .
2 2
a b p aw

D
⋅⎛ ⎞ = ⋅⎜ ⎟

⎝ ⎠
 

Note that a good agreement between the two solutions (5) and (6), but a 
faster convergence is obtained using solution (6). 

In case for angle ( )0θ ≠   must be solved equation (1) with boundary 

conditions (4). 
In this article it is proposed a solution of form: 

( ) ( ) ( ) ( )0
1 1

, , , ,
r s

ij i j
i j

w x y w x y k f x g yθ θ
= =

= + ⋅ ⋅∑∑
                    

(7) 

where 0w  is  the proposed solution (6), and the last terms have been added 
to provide asymmetric solution and to verify boundary conditions. 

 For 1r s= = , 
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For the same orthotropic plate, with 20θ = , subjected to a uniform 

pressure 0.00419 MPap = , using Maple we get , 3.0138 mm
2 2
a bw⎛ ⎞ =⎜ ⎟

⎝ ⎠
. 

The proposed analytical solution (7), for orthotropic rectangular plate with 

clamped edges, when ( )0θ ≠ , has the same theory as presented in [7], except 

that it starts from the solution (6), not from  (5) proposed by Reddy in [2]. 
Note that both new solutions, (6) and (7), were critically analysed 

considering a FEM solution (SHELL63) and experimental data, using an 
experimental device.  

Taking into account the necessity of several sets of measurements of 
orthotropic plate deflection, under the imposed boundary conditions as mentioned 
previously, it is chosen to apply the uniform distributed pressure perpendicular on 
the bottom face of the plate, a pressurized air chamber. This technical solution 
allows repeated measurements and application of pressure change in a convenient 
way. To measure the deformed plate deflection, an inductive displacement 
transducer is used.  
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In fig. 1 it is presented the comparative results between the experimental 
measurements, numerical and analytical results, for the orthotropic plate of 
mentioned dimension, having clamped edges, for 0θ = , subjected to the uniform 
pressure 0.00419 MPap = .  

Fig. 1 Comparative results for orthotropic plate, when 0θ = , for 95mmy =  
 
In fig. 2 shows the comparative results for the orthotropic plate, having 

clamped edges, for 20θ = , subjected to the uniform pressure 0.00419 MPap = . 
 

 
Fig. 2 Comparative results for orthotropic plate, when 20θ = , for 95mmy =  

 
 Following the analysis of the results in fig. 1 and 2 is observed small 
differences ( )3%<  between theoretical and experimental values near the center of 
the plate, where deformations are maximum. Also, analyzing the results presented 
in Fig. 1 and 2, we can see the influence of the angle θ  on the results of plate 
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deformation. These differences are very small if the board is required pressures 
low enough so as to be verified assumptions mentioned above. 

To perform modal analysis, to solve equation (3) where differential 

operator is ( )
4 4 4

11 22 12 664 4 2 22 2A Q Q Q Q
x y x y
∂ ∂ ∂

= + + + ⋅
∂ ∂ ∂ ∂
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conditions (4), in this article it is considered a solution of form 

( )0
1 1

( , ) , sin sinnm
n m

n x m yw x y c w x y
a b
π π

≥ ≥

⎛ ⎞ ⎛ ⎞= ⋅ ⋅ ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑ , where 
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2 2 2 2

0 , 1 1x x y yw x y
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. 

For 1m n= =  it is result frequency 1, 1 149.99 Hzν = . 
In the same time, for 2, 1n m= = , results 2 246.465Hzν = , for 

1, 2n m= = , 3 367.395Hzν = , for 3, 1n m= = , 4 382.841Hzν =  and for 
2, 2n m= = , results 5 453.596 Hzν = . 

These results were critically analysed considering  FEM solution 
(SHELL63) and experimental data. To perform experimental modal analysis we 
used an electromagnetic excitator. 
 In table 1 are presented the comparative results on modal analysis, 
between the experimental measurements, numerical and analytical results, for the 
orthotropic plate of dimension mentioned, having clamped edges, with 0θ = . 
 

Table 1 
Frequence 1ν  2ν  3ν  4ν  5ν  
Analytic (a) 149.99Hz 246.465Hz 367.395Hz 382.841Hz 453.596Hz 
FEM (b) 153.59Hz 243.21Hz 369.50Hz 396.07Hz 447.71Hz 
Experim.    (c) 149Hz 226Hz 334Hz 379Hz 430Hz 
Diff.  (%) a)-b) -2.4 % 1.32 % -0.572 % -3.455 % 1.297 % 
Diff. (%) a)-c) 0.66 % 8.3 % 9.08  % 1.003 % 5.201 % 
 

To perform experimental measurements was used the device in [7],[9]. In 
this article, a comprehensive analysis on the influence of reinforcement fibers, 
( )θ , only one big orthotropic plate was manufactured at STRAERO SA, having a 
thickness of 1.45 mm, which was cut in two rectangular plates of size (200/300), 
one with an angle ( )0θ = , another with ( )20θ = .  
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5. Conclusions 

The analytical solutions approximates in a proper way the deformation of 
a composite plate having clamped edges. Small differences in results validate the 
proposed analytical solutions in this article.  

Is important to study the rectangular plates, their corresponding theory can 
be extended by a conform transformation to any surface. 
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