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A DELAY DIFFERENTIAL EQUATIONS MODEL FOR MAINTENANCE

THERAPY IN ACUTE LYMPHOBLASTIC LEUKEMIA

Irina Badralexi1, Andrei Halanay2, Ragheb Mghames3

We introduce a mathematical model which captures the cellular evolution
in the case of patients diagnosed with acute lymphoblastic leukemia and who are un-

der maintenance therapy. We develop the model using a system of delay-differential

equations. The main goal of this paper is to describe the complex biological model by
considering three different compartments for the processes of erythropoiesis, leukopoiesis

and lymphopoiesis. We discuss the existence and the stability of some equilibrium points.
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1. Introduction

1.1. Background on ALL

Hematopoiesis is the biological process by which blood cells are produced. This includes the
formation, development and differentiation of cells. All cellular blood components originate
from hematopoietic stem cells which are located in the bone marrow. Each stem cell will
go through either symmetric self-renewal, asymmetric division or symmetric differentiation.
Hematopoietic stem cells generate two major progenitors cell lineages: myeloid and lym-
phoid. While the Myeloid line contains cells such as granulocytes, monocytes, erythrocytes
or platelets, the lymphoid line is associated with the immune system. Lymphocytes include
natural killer cells, T-cells and B-cells. The role of the immune system is very important
when studying blood diseases and infections.

Cancer is a result of a sequence of molecular events that affect the normal character-
istics of cells. In cancer, normal cells are prevented from growth and must compete with
the malignant ones. Cancer cells usually result from mutations in the DNA. Consequently,
mutations begin to increase in the cell, causing further abnormalities in that cell and the
daughter cells. Some of these mutated cells die, but other may give the abnormal cell an
advantage to multiply much more rapidly than the normal cells.

Leukemia is a cancer of the blood and bone marrow distinguished by a large number
of disfunctional white blood cell.

Acute lymphoblastic leukemia (ALL), also called acute lymphocytic leukemia, is a
cancer that starts from the early version of lymphocyte cells, called lymphoblasts, in the
bone marrow. Leukemia cells usually invade the blood fairly quickly. They can then spread
to other parts of the body, including the lymph nodes, liver, spleen, central nervous system
(brain and spinal cord), and testicles (in males). Other types of cancer also can start in
these organs and then spread to the bone marrow, but these cancers are not leukemia.

The term ”acute” means that the leukemia can progress quickly, and if not treated,
would be fatal within a few months. Lymphocytic means it develops from early (immature)
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forms of lymphocytes, a type of white blood cell. This is different from acute myeloid
leukemia (AML), which develops in other white blood cell types found in the bone marrow.

In Acute lymphoblastic leukemia, too many stem cells become modified lymphoblasts.
These cells are called leukemia cells. These leukemia cells are not able to fight infection very
well. Also, as the number of leukemia cells increases in the blood and bone marrow, there is
less room for healthy white blood cells, red blood cells, and platelets. Mutant lymphoblasts,
precursors of B and T lymphocytes, proliferate uncontrollably and perturb the development
of other cell lines, mainly the erythrocytes and the leukocytes.

1.2. Treatment in ALL

Chemotherapy is a type of treatment that includes a medication to treat cancer. The aim
of chemotherapy is to stop or slow down the growth of cancerous cells, but it may affect the
whole body. Chemotherapy medications attack rapidly growing cancer cells and they can
also affect healthy cells that grow rapidly. The chemotherapy has serious side effects and
the study of a physiological model may lead to a reduced toxicity while preserving efficiency
([11]-[4]). After first phase chemotherapy, the treatment consists of an oral administration
of 6-MT (mercaptopurine). This is not biologically active but becomes so when converted
by the enzymes HGPRT and TPMT into 6-TGN. While TPMT converts 6-MT into MeMP
(metil-mercaptopurine), that has no effect on leukemic cells, HGPRT converts the rest into
the active substance. The quantity of TPMT depends heavily on each human genotype.
The patients with high rate of TPMT will receive a quantity of 6-TGN too small to be
effective, those with a lower TPMT activity, and these are the majority, are exposed to
higher toxicity, sometimes incompatible with life. This underpins the necessity of modeling
the whole process in order to find the optimal dose for each patient ([11],[12] and [8]).

2. The Mathematical Model

The DDE mathematical model will contain a compartment for erythropoiesis coupled with
the dynamics of 6-MP used in the maintenance therapy, a compartment for leukopoiesis
coupled with the dynamics of 6-MP and a compartment for lymphopoiesis.

When modeling the hematopoiesis, the three types of cell divisions mentioned above
will be considered. The treatment consists in oral administration of 6-MT (mercaptopurine).

2.1. A model of Erythropoiesis in ALL under treatment

Let us denote by z1, the stem-like short-term erythroid cells, z2 the erythrocytes, z3(t) =
E(t), the concentration of erythropoietin, z5 the amount of 6−MP in Gut, z6 the amount
of 6 −MP in plasma and z7 the concentration of 6 − TGN (tioguanine nucleotide) in red
blood cells (RBCs)(see [7], [8], [6], [1]).

The loss of stem cells is given by the function

h(t) =
γ0

1 + E(t)α
+

R̃mz7(t)

R̃50 + z7(t)
,

were R̃m = ERm and R̃50 = ECR50 from [8].

The loss during the cell cycle is given by

v(t) = e
−

t∫
t−τ

h(s)ds

,

and a new variable is introduced as z4 = v.
We work under the assumption of a constant dose administration of the drug.
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In what follows, the stem cell proliferation time, τe, will be denoted as τ1 and the
time necessary for the development of the erythrocytes, τRM = 6 (see [6]) as τ2.

2.1.1. The equations.

The model that takes into consideration the response of the treatment is:

ż = fi(z, zτj ), i = 1, 7, j = 1, 2 (1)

ż1 = − γ0
1 + zα3

z1 −
R̃mz7

R̃50 + z7
z1 − (η1e + η2e)ke(z3)z1 − (1− η1e − η2e)βe(z1, z3)z1

+2z4(1− η1e − η2e)βe(z1τ1 , z3τ1)z1τ1 + η1ez4ke(z3τe)z1τ1

ż2 = −γ2z2 + Ãeke(z3τ2)z1τ2

ż3 = −kz3 +
a1

1 + zr2

ż4 = z4

(
− γ0

1 + zα3
− R̃mz7

R̃50 + z7
+

γ0
1 + zα3τ1

+
R̃mz7τ1

R̃50 + z7τ1

)

ż5 = −kaz5 + d

ż6 = kaz5 − kelz6 −
kpt(1− erel)
Kt + z6

z6 −
kmerel
Km + z6

z6

ż7 =
vptkpt(1− erel)

Kt + z6
z6 − ktez7

Here

βe(z1, z3) = β0
1

1 + zm1l
1

z3
1 + z3

, β0 = β0lβ1e

ke(z3) = k0
z3

1 + z3
, k0 = k0lk1e

2.1.2. Positivity of solutions.

The state variables z are populations of cells and we cannot talk about negative densities
of cells. Therefore, the positivity of the solution corresponding to the system is a very
important characteristic for the original model (1) to have.

Proposition 2.1. Let τ = max{τi} j = 1, 2 and φ be the initial condition defined on
[−τ, 0]. If the initial condition φ of the system (1) is positive, then the solution z of the
system (1) is positive for all t > 0.

Proof. Suppose that the initial condition φ of system (1) is positive. Then, in order to have
a negative values, a solution has to cross through zero at a time t0 > 0. Since for t = t0 we
have z(t0) = 0 and zτj (t0) > 0, then it can be easily seen that

fi(0, zτj (t0)) ≥ 0 =⇒ ż(t0) ≥ 0
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with i = 1, 7, j = 1, 2. But then the components of the solution can not decrease to negative
values. This means that the solution of the system will always be positive for positive initial
values. �

2.1.3. The equilibrium points.

The equilibrium points are obtained by solving the following system:

fi(z, z) = 0, i = 1, 7.

After some calculations, we get:

[− γ0
1 + zα3

− R̃mz7

R̃50 + z7
− (η1e + η2e)ke(z3)− (1− η1e − η2e)βe(z1, z3)

+2z4(1− η1e − η2e)βe(z1, z3) + η1ez4ke(z3)]z1 = 0

−γ2z2 + Ãeke(z3)z1 = 0

z3 =
a1
k

1

1 + zr2

z4

(
− γ0

1 + zα3
− R̃mz7

R̃50 + z7
+

γ0
1 + zα3

+
R̃mz7τe
R̃50 + z7

)
= 0

z5 =
d

ka

kaz5 − kelz6 −
kpt(1− erel)
Kt + z6

z6 −
kmerel
Km + z6

z6 = 0

vptkpt(1− erel)
Kt + z6

z6 − ktez7 = 0

It follows that:

ẑ3 =
a1
k

1

1 + ẑr2

ẑ4 = e
−
(

γ0
1+ẑα3

+
R̃mẑ7
R̃50+ẑ7

)
τe
< 1

ẑ5 =
d

ka

ẑ7 =
1

kte

vptkpt(1− erel)ẑ6
Kt + ẑ6

,

where the value of ẑ6 can be calculated from:
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d(Kt + ẑ6)(Km + ẑ6)− kelẑ6(Kt + ẑ6)(Km + ẑ6)− kpt(1− erel)ẑ6(Km + ẑ6)

−kmerelẑ6(Kt + ẑ6) = 0

For ẑ1 = ẑ2 = 0, E = (0, 0, ẑ3, ẑ4, ẑ5, ẑ6, ẑ7) is an equilibrium point.

For different equilibrium points, we look for (ẑ1, ẑ2) 6= (0, 0), such that these points
must verify equations (2) and (3).

− γ0
1 + ẑα3

− R̃mẑ7

R̂50 + ẑ7
− (η1e + η2e)ke(ẑ3)− (1− η1e − η2e)βe(ẑ1, ẑ3)+

+2ẑ4(1− η1e − η2e)βe(ẑ1, ẑ3) + η1eẑ4ke(ẑ3) = 0

(2)

−γ2ẑ2 + Ãeke(ẑ3)ẑ1 = 0 (3)

Then,

ẑ2 =
Ãeke(ẑ3)ẑ1

γ2

In equation (2), consider A1 =
γ0

1 + ẑα3
+

R̃mẑ7

R̃50 + ẑ7
> 0. Thus, equation (2) becomes:

−A1 + ke(ẑ3)(η1eẑ4 − η1e − η2e)− (1− 2ẑ4)(1− η1e − η2e)βe(ẑ1, ẑ3) = 0

Since ẑ4 < 1, we know that

η1eẑ4 − η1e − η2e < 0.

For 2ẑ4 < 1 =⇒ @(ẑ1, ẑ2) 6= (0, 0) and for 2ẑ4 > 1 it is possible that ẑ1 > 0 exists. In
this case, we will also have ẑ2 > 0.

We conclude that the types of equilibrium points corresponding to the model of Ery-
thropoiesis in ALL under treatment are:
E1 = (0, 0, ẑ3, ẑ4, ẑ5, ẑ6, ẑ7), corresponds to the ”death of the patient” and
E2 = (ẑ1, ẑ2, ẑ3, ẑ4, ẑ5, ẑ6, ẑ7), corresponds to a ”chronic phase of the disease”.

In what follows, we will perform a linearization of system (1). The matrix of partial
derivatives calculated in equilibria, for the undelayed variables, is:

A =
∂f

∂z
= [aij ]

a11 = − γ0
1 + zα3

− R̃mz7

R̃50 + z7
− (η1e + η2e)ke(z3)− (1− η1e − η2e)

[
βe(z1, z3) + z1

∂βe
∂z1

(z1, z3)

]
a12 = 0

a13 =
γ0z1αz

α−1
3

(1 + zα3 )
2 − (η1e + η2e)z1k

′
e(z3)− (1− η1e − η2e)z1

∂βe
∂z3

(z1, z3)

a14 = 2(1− η1e − η2e)βe(z1, z3)z1 + η1eke(z3)z1
a15 = a16 = 0

a17 = −R̃mz1
R̃50(

R̃50 + z7

)2
a21 = 0, a22 = −γ2, a23 = · · · = a27 = 0

a31 = 0, a32 = − a1rz
r−1
2

(1 + zr2)
2 , a33 = −k, a34 = · · · = a37 = 0
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a41 = a42 = 0, a43 =
γ0αz4z

α−1
3

(1 + zα3 )2
, a44 = · · · = a46 = 0, a47 = − R̃mR̃50z4

(R̃50 + z7)2

a51 = a52 = a53 = a54 = 0, a55 = −ka, a56 = a57 = 0

a61 = · · · = a64 = 0, a65 = ka, a66 = −kel −
kpt(1− erel)Kt

(Kt + z6)
2 − kmerelKm

(Km + z6)
2

a67 = 0

a71 = · · · = a75 = 0, a76 =
vptkpt(1− erel)Kt

(Kt + z6)
2

a77 = −kte

The matrices of the partial derivatives with respect to the delayed variables are:

B =
∂f

∂zτ1
= [bij ]

b11 = 2z4(1− η1e − η2e)
[
βe(z1, z3) + z1

∂βe
∂z1

(z1, z3)

]
+ η1ez4ke(z3)

b12 = 0

b13 = 2(1− η1e − η2e)z4z1
∂βe
∂z3

(z1, z3) + η1ez4k
′
e(z3)z1

b14 = · · · = b37 = 0

b41 = b42 = 0, b43 = −γ0z4αz
α−1
3

(1 + zα3 )
2

b44 = b45 = b46 = 0, b47 =
R̃mR̃50z4(
R̃50 + z7

)2
b51 = · · · = b77 = 0

C =
∂f

∂zτ2
= [cij ]

c11 = · · · = c17 = 0
c21 = Ãeke(z3)

c22 = 0, c23 = Ãez1k
′
e(z3)

c24 = · · · = c77 = 0
The characteristic equation will be:

det(λI −A− e−λτ1B − e−λτ2C) = 0

It is easy to see that, for E1, a critical case of a zero root for the characteristic equation
must be analyzed.

2.2. The leukopoiesis model

Now x1 represents the concentration of short-term stem-like white blood cells precursors
and x2 the adult leukocytes. Treatment is present through

l1(x6) =
x6

L1S0+x6

(see [8]). Once again a non-constant rate of elimination of stem cells is encountered and this
leads to the consideration of a new variable:

x3(t) = e
−T1

∫ t
t−τ3

l1(s)ds
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2.2.1. The equations.

The model that takes into consideration the response of the treatment is:

ẋ = f̃i(x, xτj ), i = 1, 6, j = 3, 4 (4)

ẋ1 = −γ1lx1 − T1l1(x6)x1 − η1lkl(x2)x1 − η2lkl(x2)x1−

(1− η1l − η2l)βl(x1)x1 + 2e−γ1lτ3x3(1− η1l − η2l)βl(x1τ3)x1τ3+

+η1le
−γ1lτ3x3kl(x2τ3)x1τ3

ẋ2 = −γ2lx2 + Ãlkl(x2τ4)x1τ4

ẋ3 = x3T1[l1(x6τ3)− l1(x6)]

ẋ4 = −kax4 + d

ẋ5 = kax4 − kelx5 −
kpt(1− erel)
Kt + x5

x5 −
kmerel
Km + x5

x5

ẋ6 =
νptkpt(1− erel)

Kt + x5
x5 − ktlx6

where

βl(x1) = β0l
1

1 + xm1l
1

, kl(x2) = k0l
1

1 + xm2l
2

, Ãl = Al(2η1l + η2l)

2.2.2. The equilibrium points.

The equilibrium points of (4) are obtained solving the equations

f̃i(x, x) = 0, i = 1, 6.

So, we have:

[−γ1l − T1l1(x6)− η1lkl(x2)− η2lkl(x2)− (1− η1l − η2l)βl(x1)+

+2e−γ1lτ3x3(1− η1l − η2l)βl(x1) + η1le
−γ1lτ3x3kl(x2)]x1 = 0

−γ2lx2 + Ãlkl(x2)x1 = 0

x3T1[l1(x6)− l1(x6)] = 0

x4 =
d

ka

kax4 − kelx5 −
kpt(1− erel)
Kt + x5

x5 −
kmerel
Km + x5

x5 = 0

νptkpt(1− erel)
Kt + x5

x5 − ktlx6 = 0

From the above equations and the definition of x3, we obtain:

x̂3 = e−T1l1(x̂6)τ3
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x̂4 =
d

ka

x̂6 =
1

ktl

vptkpt(1− erel)
Kt + x̂5

x̂5,

where x̂5 can be calculated from:

d(Kt + x̂5)(Km + x̂5)− kelx̂5(Kt + x̂5)(Km + x̂5)− kpt(1− erel)x̂5(Km + x̂5)

−kmerelx̂5(Kt + x̂5) = 0

For x̂1 = x̂2 = 0, Ẽ = (0, 0, x̂3, x̂4, x̂5, x̂6) is an equilibrium point. For different
equilibrium points, we look for (x̂1, x̂2) 6= (0, 0) .

The following equations, (5) and (6), must be verified by these points.

−γ1l − T1l1(x6)− η1lkl(x2)− η2lkl(x2)− (1− η1l − η2l)βl(x1)+

+2e−γ1lτ3x3(1− η1l − η2l)βl(x1) + η1le
−γ1lτ3x3kl(x2) = 0

(5)

−γ2lx2 + Ãlkl(x2)x1 = 0 (6)

We conclude that the two types of equilibrium points corresponding to the model of
leukopoiesis are:

Ẽ1 = (0, 0, x̂3, x̂4, x̂5, x̂6)

Ẽ2 = (x̂1, x̂2, x̂3, x̂4, x̂5, x̂6)

When linearizing the system, we consider, as before, Ã, the matrix of partial deriva-
tives with respect to undelayed variables:
ã11 = −γ1l − T1l1(x̂6)− (η1l + η2l)kl(x̂2)− (1− η1l − η2l)βl(x̂1)− (1− η1l − η2l)β′l(x̂1)x̂1

ã12 = −(η1l + η2l)x̂1k
′
l(x̂2)

ã13 = e−γ1lτ3 [2(1− η1l − η2l)βl(x̂1) + η1lkl(x̂2)] x̂1
ã14 = · · · = ã15 = 0
ã16 = −x1T1l′1(x̂6)
ã21 = 0
ã22 = −γ2l
ã23 = · · · = ã26 = 0
ã31 = · · · = ã35 = 0
ã36 = −x̂3T1l′1(x̂6)
ã41 = · · · = ã43 = 0
ã44 = −ka
ã45 = ã46 = 0
ã51 = · · · = ã53 = 0
ã54 = ka

ã55 = −kel −
kpt(1− erel)Kt

(Kt + x̂5)
2 − kmerelKm

(Km + x̂5)
2

ã56 = 0
ã61 = · · · = ã64 = 0

ã65 =
νptkpt(1− erel)Kt

(Kt + x̂5)
2

ã66 = −ktl
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We consider B̃, the matrix of partial derivatives with respect to variables delayed by
τ3:
b̃11 = e−γ1lτ3 x̂3 [2(1− η1l − η2l)βl(x̂1) + 2(1− η1l − η2l)x̂1β′l(x̂1) + η1lkl(x̂2)]

b̃12 = η1le
−γ1lτ3 x̂3k

′
l(x̂2)x̂1

b̃13 = · · · = b̃16 = 0
b̃21 = · · · = b̃26 = 0
b̃31 = · · · = b̃35 = 0
b̃36 = x̂3T1l

′
1(x̂6)

b̃41 = · · · = b̃66 = 0

We consider C̃, the matrix of partial derivatives with respect to variables delayed by
τ4:
c̃11 = · · · = c̃16 = 0
c̃21 = Ãlkl(x̂2)

c̃22 = Ãlk
′
l(x̂2)x̂1

c̃23 = · · · = c̃66 = 0

The characteristic equation is given by:

det(λI − Ã− e−λτ3B̃ − e−λτ4C̃) = 0

We notice that zero is, again, a root of the characteristic equation in the particular
case of equilibrium point E1.

2.3. The lymphoblasts model

In [10], the authors prove that the curative action of the therapy in ALL is exerted by
induction of a higher rate of differentiation that ultimately results in the extinction of the
malignant clone.

Lymphopoiesis is present in an extended DDE model of hematopoiesis given in [2].

2.3.1. The equations.

The model for the evolution of ALL cell population will contain two delay differential equa-
tions, one for the Stem-Like progenitors, u1, and another for more mature cells, the lym-
phoblasts , u2. In the first compartment only asymmetric division and differentiation will
be considered.

The system of equations is:

u̇ = f̂i(u, uτjll), i = 1, 2, j = 1, 2 (7)

u̇1 = −γ1llu1 − (η1ll + η2ll)kll(u2)u1 + η1lle
−γ1llτ1llkll(u2τ1ll)u1τ1ll

u̇2 = −γ2llu2 +All(2η2ll + η1ll)kll(u2τ2ll)u1τ2ll

with kll(u) =
k0,ll

1 + um
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2.3.2. Equilibrium points.

We determine the equilibrium points by solving the following system of equations:

−γ1llu1 − (η1ll + η2ll)kll(u2)u1 + η1lle
−γ1llτ1llkll(u2)u1 = 0

−γ2llu2 +All(2η2ll + η1ll)kll(u2)u1 = 0

It is clear that Ê = (0, 0) is the only meaningful biological equilibrium point.

When linearizing the system (7), we denote by Â the matrix of partial derivatives for
the undelayed variables:

â11 = −γ1ll − (η1ll + η2ll)kll(u2)
â12 = −u1(η1ll + η2ll)k

′
ll(u2)

â21 = 0
â22 = −γ2ll

and the matrices of the partial derivatives with respect to the delayed variables are:

B̂ =
∂f

∂uτ1ll
= [b̂ij ]

b̂11 = η1lle
−γ1llτ1llkll(u2)

b̂12 = u1η1lle
−γ1llτ1llk′ll(u2)

b̂21 = 0
b̂22 = 0

Ĉ =
∂f

∂uτ2ll
= [ĉij ]

ĉ11 = 0
ĉ12 = 0
ĉ21 = All(2η2ll + η1ll)kll(u2)

ĉ22 = u1All(2η2ll + η1ll)k
′
ll(u2)

The characteristic equation has the general form:

det(λI − Â− e−λτ1llB̂ − e−λτ2llĈ) = 0

For the particular case of equilibrium point Ê = (0, 0), the characteristic equation is:(
λ− â11 − e−λτ1ll b̂11

)
(λ− â22) = 0

The equilibrium point is stable if the roots of the characteristic equation all have
negative real parts (see [9],[3]).

The characteristic equation decouples into

λ− â22 = 0 (8)

and

λ− â11 − e−λτ1ll b̂11 = 0 (9)

We notice that λ = â22 = −γ2ll < 0. Thus, we only need to study equation (9).

Proposition 2.2. The equation (9) is stable for τ1ll = 0 and remains stable for τ1ll > 0.
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Proof. We recall that, for the equilibrium point Ê we have:

â11 = −γ1ll − (η1ll + η2ll)k0,ll

b̂11 = η1lle
−γ1llτ1llk0,ll

For τ1ll = 0, equation (9) becomes:

λ+ γ1ll + (η1ll + η2ll)k0,ll − η1llk0,ll = 0

so

λ = −γ1ll − η2llk0,ll < 0

Since b̂11 > 0, according to ([3],[5]), the following conditions must hold for stability
when τ1ll > 0 :

1. â11 <
1
τ1ll

2. â11 + b̂11 < 0.

We notice that â11 < 0 < 1
τ1ll

, so the first condition holds. We compute:

â11 + b̂11 = −γ1ll − η2llk0,ll − η1llk0,ll (1− e−γ1llτ1ll) < 0

Thus, the second condition hold. �

In conclusion, the equilibrium point (0, 0) is locally asymptotically stable. So, the
model ensures the patient’s recovery when the leukemic burden is not very high.

3. Conclusion

A physiological model describing erythropoiesis, leukopoiesis and lymphopoiesis during the
maintenance therapy with 6-MP is developed using delay differential equations to account
for the cell cycle and amplification. It contains the three types of division of cells and allows
for a realistic prognosis of the leukemic lymphoblasts’ evolution, that means healing, if the
therapy is tolerated. The critical case for stability encountered as well as the stability of
chronic equilibria will be analyzed in future works.
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