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SEVERAL SELF-ADAPTIVE ALGORITHMS FOR SOLVING SPLIT

COMMON FIXED POINT PROBLEMS WITH MULTIPLE OUTPUT

SETS

Wenlong Sun1, Yuanfeng Jin2, Tzu-Chien Yin3

In this article, we study split common fixed point problems with multiple out-
put sets in real Hilbert spaces. In order to solve this problem, we present three new

self-adaptive algorithms. We establish weak and strong convergence theorems for them.

Using our methods, we can remove the assumptions imposed on the norms of the transfer
operators.
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1. Introduction

Let H1 and H2 be two real Hilbert spaces. Let C and Q be nonempty closed convex
subsets of H1 and H2, respectively. Let A : H1 −→ H2 be a bounded linear operator with
its adjoint A∗. Let T : H1 −→ H1 and S : H2 −→ H2 be two nonlinear operators. We
denote by Fix(T ) and Fix(S) the sets of fixed points of T and S, respectively.

First, let us recall the split common fixed point problem:

find u such that u ∈ Fix(T ) and Az ∈ Fix(S), (1)

which can be regarded as a generalization of the following split feasibility problem:

find u such that u ∈ C and Au ∈ Q. (2)

Problem (2) introduced by Censor and Elfving [4] in order to model certain inverse problems
plays an important role in medical image reconstruction and signal processing (see [2, 3, 6,
8, 12, 14, 16]). In [5], Censor and Segal introduced Problem (1) which can be regarded as
a generalization of Problem (2). Since then, several iterative algorithms for solving split
problems have been studied extensively (see [7, 9, 10, 13, 15, 17–25]).

Very recently, in 2022, Reich et al. [11] presented and studied the split common fixed
point problem with multiple output sets in Hilbert spaces:

find u† such that u† ∈
N⋂
i=1

Fix Ti and Aku
† ∈

Lk⋂
j=1

Fix Sk
j , k = 1, 2, . . . ,M. (3)
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After that, in 2023, Sun et al. [13] studied the Problem (3) and presented their algorithms
in which they handled more general quasinonexpansive operators.

Inspired by these works in the literature, the main purpose of this paper is to extend
Sun’s results from the quasinonexpansive operators to the demicontractive operators. Sub-
sequently, we construct three self-adaptive algorithms for solving the split common fixed
point problem with multiple output sets (3). Weak and strong convergence theorems are
given under some mild assumptions.

2. Preliminaries

In this section, we collect some definitions and lemmas which will be used to derive
our main results in the next section.

Definition 2.1. An operator T : C −→ C is said to be

(i) nonexpansive if ∥Tu− Tv∥ ≤ ∥u− v∥ for all u, v ∈ C.
(ii) quasinonexpansive if ∥Tu − u∗∥ ≤ ∥u − u∗∥ for all u ∈ C and u∗ ∈ Fix(T ), or

equivalently,

⟨u− Tu, u− u∗⟩ ≥ 1

2
∥u− Tu∥2

for all u ∈ C and u∗ ∈ Fix(T ).
(iii) ϱ-demicontractive if there exists a constant ϱ ∈ [0, 1) such that

∥Tu− u∗∥2 ≤ ∥u− u∗∥2 + ϱ∥Tu− u∥2,
or equivalently,

⟨u− Tu, u− u∗⟩ ≥ 1− ϱ

2
∥u− Tu∥2, (4)

for all u ∈ C and u∗ ∈ Fix(T ).

Definition 2.2. An operator T is said to be demiclosed at v if, for any sequence {un} which
weakly converges to u, and if Tun → v, then Tu = v.

Definition 2.3. A sequence {un} is called Fejér-monotone with respect to a given nonempty
set Ω if for every u ∈ Ω, the inequality ∥un+1 − u∥ ≤ ∥un − u∥ holds for all n ≥ 0.

In this paper, we denote by ProjC the projection from H onto C, and by ωw(un) the
set of cluster points in the weak topology, that is, ωw(un) = {u : ∃unj

⇀ u}.

Lemma 2.1 ([19]). Assume that {ϖn} is a sequence of nonnegative real numbers such that

ϖn+1 ≤ (1− αn)ϖn + αnδn, n ≥ 1,

where {αn} is a sequence in (0, 1) such that
∑∞

n=1 αn = ∞. Then lim supn→∞ δn ≥ 0.

Lemma 2.2 ([1]). Let C be a nonempty closed convex subset in H. If the sequence {un} is
Fejér-monotone with respect to Ω, then we have the following conclusions:

(i) un ⇀ u ∈ Ω iff ωw(un) ⊂ Ω;
(ii) the sequence {ProjΩun} converges strongly;
(iii) if un ⇀ u ∈ Ω, then u = limn→∞ ProjΩun.

Lemma 2.3 ([20]). Assume that {αn} is a sequence of nonnegative real numbers such that

αn+1 ≤ (1− γn)αn + δn, n ∈ N,

where {γn} is a sequence in (0, 1) and {δn} is a sequence such that

(i)
∑∞

n=1 γn = ∞;

(ii) lim supn→∞
δn
γn

≤ 0 or
∑∞

n=1 |δn| <∞.

Then limn→∞ αn = 0.
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3. Main results

Let H, Hk, k = 1, 2, . . . ,M, be real Hilbert spaces. Let Ti : H −→ H, i = 1, . . . , N,
Sk
j : Hk −→ Hk, k = 1, 2, . . . ,M, j = 1, 2, . . . , Lk, be ϱ-demicontractive operators. Let
Ak : H −→ Hk, k = 1, . . . ,M, be bounded linear operators with adjoints A∗

k. Let I−Ti, i =
1, . . . , N, I − Sk

j , k = 1, 2, . . . ,M, j = 1, 2, . . . , Lk, be demiclosed at zero. We denote by

Ω := {u ∈
⋂N

i=1 Fix Ti and Aku ∈
⋂Lk

j=1 Fix Sk
j , k = 1, 2, . . . ,M the solution set of the

problem (3).
Next, we propose several iterative algorithms for solving the problem (3).

Algorithm 3.1. Let u1 ∈ H and assume the current iterate {un} is known.

1: Compute ϕn = max{∥un − Tiun∥, i = 1, 2, . . . , N},
2: Φn = {i ∈ {1, 2, . . . , N} : ∥xn − Tiun∥ = ϕn},
3: ψn = max{∥Akun − Sk

jAkun∥ : k = 1, 2, . . . ,M, j = 1, 2, . . . , Lk},
4: and Ψn = {(k, j) ∈ {1, 2, . . . ,M} × {1, 2, . . . , Lk} : ∥Akun − Sk

jnAkun∥ = ψn}.
5: Compute Γn = max{ϕn, ψn}. If Γn = 0, then stop else if ϕn = Γn, choose in ∈ Φn,
6: and compute un+1 = un − θn(un − Tinun) else if ψn = Γn, choose (kn, jn) ∈ Ψn,

7: set τn =
θn∥Aknun−Skn

jn
Aknun∥2

∥A∗
kn

(Aknun−Skn
jn

Aknun)∥2
, θn ∈ [c, d] ⊂ (0, 1− ϱ),

8: and compute un+1 = un − τnA
∗
kn
(Akn

un − Skn
jn
Akn

un).
9: Set n := n+ 1 and go back to 1.

Remark 3.1. Obviously, when Γn = 0, xn is the solution of the problem (3).

Theorem 3.1. If Algorithm 3.1 does not stop in a finite number of iterations, and Ω ̸= ∅,
then the sequence {un} generated by Algorithm 1 3.1 converges weakly to a solution z†(=
limn→∞ ProjΩun) of the problem (3).

Proof. First, let z∗ ∈ Ω. If ϕn = Γn, then owing to (4) and the ϱ-demicontractivity of T ,
we obtain

∥un+1 − z∗∥2 = ∥un − z∗∥2 + θ2n∥un − Tinun∥2 − 2θn⟨un − z∗, un − Tinun⟩
≤ ∥un − z∗∥2 + θ2n∥un − Tinun∥2 − θn(1− ϱ)∥un − Tinun∥2

= ∥un − z∗∥2 − θn(1− ϱ− θn)∥(un − Tinun)∥2
(5)

and therefore, according to Algorithm 3.1, we get

∥un+1 − z∗∥2 ≤ ∥un − z∗∥2 − θn(1− ϱ− θn)ϕ
2
n = ∥un − z∗∥2 − θn(1− ϱ− θn)Γ

2
n.

Then, we have

Γ2
n ≤ 1

θn(1− ϱ− θn)
(∥un − z∗∥2 − ∥un+1 − z∗∥2). (6)

Otherwise, if ψn = Γn, then we choose (kn, jn) ∈ Ψn. Similar to (5), we deduce

∥un+1 − z∗∥2 = ∥un − z∗∥2 + τ2n∥A∗
kn
(Akn

un − Skn
jn
Akn

un)∥2

− 2τn⟨Aknun −Aknz
∗, Aknun − Skn

jn
Aknun⟩

≤ ∥un − z∗∥2 + τ2n∥A∗
kn
(Aknun − Skn

jn
Aknun)∥2

− τn(1− ϱ)∥Aknun − Skn
jn
Aknun∥2

= ∥un − z∗∥2 − θn(1− ϱ− θn)
∥Akn

un − Skn
jn
Akn

un∥4

∥A∗
kn
(Aknun − Skn

jn
Aknun)∥2

.

(7)

It follows from (5) and (7) that the sequence {un} is Fejér-monotone with respect to Ω and
hence it is bounded. Let L := supn,k {∥A∗

k(Akun − Sk
jAkun)∥}, and we have L < +∞. We
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see from (7) that

∥un+1 − z∗∥ ≤ ∥un − z∗∥2 − θn(1− ϱ− θn)
∥Akn

un − Skn
jn
Akn

un∥4

∥A∗
kn
(Akn

un − Skn
jn
Akn

un)∥2

≤ ∥un − z∗∥2 − θn(1− ϱ− θn)

L2
∥Akn

un − Skn
jn
Akn

un∥4

= ∥un − z∗∥2 − θn(1− ϱ− θn)

L2
ψ4
n

= ∥un − z∗∥2 − θn(1− ϱ− θn)

L2
Γ4
n.

Consequently,

Γ4
n ≤ L2

θn(1− ϱ− θn)
(∥un − z∗∥2 − ∥un+1 − z∗∥2). (8)

By the Fejér-monotonicity of the sequence {un}, we get

∥un − z∗∥2 − ∥un+1 − z∗∥2 → 0, as n→ ∞

and thereby, Γn → 0, due to (6) and (8). By the definition of Γn, we get that limn→∞ ∥un−
Tiun∥ = 0, i = 1, 2, . . . , N, limn→∞ ∥Akun−Sk

jAkun∥ = 0, k = 1, 2, . . . ,M, j = 1, 2, . . . , Lk.
Thanks to the hypothesis of the demiclosedness, we have ωw(un) ⊂ Ω. In the end,

applying Lemma 2.2, we obtain that un ⇀ z† = limn→∞ ProjΩun. The proof is completed.
□

Algorithm 3.2. Let u1 ∈ H and the current iterate un be known.

1: Compute ykjn = A∗
k(Akun − Sk

jAkun),

2: ψn = max{∥un − Tiun + ykjn∥ : i = 1, 2, . . . , N, k = 1, 2, . . . ,M, j = 1, 2, . . . , Lk},
3: Ψn = {(i, k, j) ∈ {1, 2, . . . , N} × {1, 2, . . . ,M} × {1, 2, . . . , Lk} : ∥un − Tiun + ykjn∥ =
ψn}.

4: If ψn = 0, then stop; else choose (in, kn, jn) ∈ Ψn,

5: and let τn = θn
∥un−Tinun∥2+∥Aknun−Skn

jn
Aknun∥2

∥un−Tinun+ykn
jnn∥2

, θn ∈ [c, d] ⊂ (0, 1− ϱ).

6: Compute un+1 = un − τn(un − Tinun + ykn
jnn

).
7: Set n := n+ 1 and go back to 1.

Remark 3.2. In Algorithm 3.2, the equality ψn = 0 holds if and only if un ∈ Ω.
It is obvious that if un ∈ Ω, then ψn = 0 holds. In the sequel, we show that un ∈ Ω

if ψn = 0. Owing to the ϱ-demicontractivity of Ti : H −→ H, i = 1, . . . , N, Sk
j : Hk −→

Hk, k = 1, 2, . . . ,M, j = 1, 2, . . . , Lk, for any z∗ ∈ Ω, we obtain

0 = ⟨un − Tiun + ykjn, un − z∗⟩

= ⟨un − Tiun +A∗
k(Akun − Sk

jAkun), un − z∗⟩

= ⟨un − Tiun, un − z∗⟩+ ⟨A∗
k(Akun − Sk

jAkun), un − z∗⟩

= ⟨un − Tiun, un − z∗⟩+ ⟨Akun − Sk
jAkun, Akun −Akz

∗⟩

≥ 1− ϱ

2
(∥un − Tiun∥2 + ∥Akun − Sk

jAkun∥2)

(9)

for all Ti : H −→ H, i = 1, . . . , N, Sk
j : Hk −→ Hk, k = 1, 2, . . . ,M, j = 1, 2, . . . , Lk, which

implies that

un ∈
N⋂
i=1

Fix Ti



split common fixed point problems 7

and

Akun ∈
Lk⋂
j=1

Fix Sk
j , k = 1, 2, . . . ,M.

So, un ∈ Ω.

Theorem 3.2. Assume that Algorithm 3.2 does not stop in a finite number of iterations,
and Ω ̸= ∅. Then the sequence {un} generated by Algorithm 3.2 converges weakly to a
solution z†(= limn→∞ ProjΩun) of the problem (3).

Proof. Let z∗ ∈ Ω. In the light of (9), we derive

∥un+1 − z∗∥2 = ∥un − τn(un − Tinun + ykn
jnn

)− z∗∥2

= ∥un − z∗∥2 + τ2n∥un − Tinun + ykn
jnn

∥2

− 2τn⟨un − z∗, un − Tinun + ykn
jnn

⟩

= ∥un − z∗∥2 − 2τn⟨A∗
kn
un −A∗

kn
z∗, Akn

un − Skn
jn
Akn

un⟩

+ τ2n∥un − Tinun + ykn
jnn

∥2 − 2τn⟨un − z∗, un − Tinun⟩

≤ ∥un − z∗∥2 + τ2n∥un − Tinun + ykn
jnn

∥2

− τn(1− ϱ)(∥un − Tinun∥2 + ∥Akn
un − Skn

jn
Akn

un∥2)

= ∥un − p∥2 − θn(1− ϱ− θn)
(∥un − Tinun∥2 + ∥Akn

un − Skn
jn
Akn

un∥2)2

∥un − Tinun + ykn
jnn

∥2
.

(10)

It follows from (10) that the sequence {un} is Fejér-monotone with respect to Ω. We also
see from (10) that

∥un − Tinun∥2 + ∥Akn
un − Skn

jn
Akn

un∥2

≤
∥un − Tinun + ykn

jnn
∥√

θn(1− ϱ− θn)

√
∥un − z∗∥2 − ∥un+1 − z∗∥2.

(11)

Setting

Γ := sup{
∥un − Tiun + ykjn∥√

θn(1− ϱ− θn)
: i = 1, 2, . . . , N, k = 1, 2, . . . ,M, j = 1, 2, . . . , Lk, n ∈ N+},

by (11), we have

∥un − Tinun∥2 + ∥Akn
un − Skn

jn
Akn

un∥2 ≤ Γ
√
∥un − z∗∥2 − ∥xn+1 − z∗∥2.

Therefore,

lim
n→∞

∥un − Tinun∥2 + ∥Aknun − Skn
jn
Aknun∥2 = 0

which yields that

lim
n→∞

∥un − Tinun∥ = 0 and lim
n→∞

∥Akn
un − Skn

jn
Akn

un∥ = 0. (12)

Observe that

∥un−Tinun+y
kn
jnn

∥ ≤ ∥un−Tinun∥+∥ykn
jnn

∥ ≤ ∥un−Tinun∥+∥Akn
∥×∥Akn

un−Skn
jn
Akn

un∥.
Defining Υ = max{∥Ak∥ : k = 1, 2, . . . ,M}, it follows from the inequality above that

ψn = ∥un − Tinun + ykn
jnn

∥ ≤ ∥un − Tinun∥+Υ∥Akn
un − Skn

jn
Akn

un∥.
Hence, by (12), we get that ψn → 0 as n→ ∞. In virtue of the definition of ψn, this implies
that

lim
n→∞

∥un − Tiun + ykjn∥ = 0, i = 1, 2, . . . , N, k = 1, 2, . . . ,M, j = 1, 2, . . . , Lk. (13)
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According to (9) and the boundedness of un, we deduce

D∥un − Tiun + ykjn∥ ≥ ⟨un − Tiun + ykjn, un − z∗⟩

≥ 1− ϱ

2
(∥un − Tiun∥2 + ∥Akun − Sk

jAkun∥2),

where D = sup{∥un − z∗∥ : n ∈ N+}. Therefore, we get from (13) that

lim
n→∞

∥un − Tiun∥ = 0 and lim
n→∞

∥Akun − Sk
jAkun∥ = 0

for all i = 1, 2, . . . , N, k = 1, 2, . . . ,M, j = 1, 2, . . . , Lk. Thanks to the hypothesis of the
demiclosedness, we have ωw(un) ⊂ Ω. In the end, applying Lemma 2.2, we obtain that
un ⇀ z† = limn→∞ ProjΩun. The proof is completed. □

Algorithm 3.3. Let u ∈ H and u1 ∈ H. Let the current iterate {un} be given.

1: Compute ϕn = max{∥un − Tiun∥, i = 1, 2, . . . , N},
2: Φn = {i ∈ {1, 2, . . . , N} : ∥xn − Tiun∥ = ϕn},
3: ψn = max{∥Akun − Sk

jnAkun∥ : k = 1, 2, . . . ,M, j = 1, 2, . . . , Lk},
4: and Ψn = {(k, j) ∈ {1, 2, . . . ,M} × {1, 2, . . . , Lk} : ∥Akun − Sk

jnAkun∥ = ψn}.
5: Compute Γn = max{ϕn, ψn}. If (Case 1) Γn = 0, then vn = un else if (Case 2)
ϕn = Γn, choose in ∈ Φn,

6: and compute vn = un−θn(un−Tinun) else if (Case 3) ψn = Γn, choose (kn, jn) ∈ Ψn,

7: and set τn =
θn∥Aknun−Skn

j Aknun∥2

∥A∗
kn

(Aknun−Skn
j Aknun)∥2

, θn ∈ [c, d] ⊂ (0, 1− ϱ),

8: and compute vn = un − τnA
∗
kn
(Akn

un − Skn
jn
Akn

un).

9: Compute un+1 = αnu+ (1− αn)vn where {αn} ⊂ (0, 1).
10: Set n := n+ 1 and go back to 1.

Theorem 3.3. If limn→+∞ αn = 0 and
∑∞

n=0 αn = +∞, then the sequence {un} generated
by Algorithm 3.3 converges strongly to the solution z†(= ProjΩu) of the problem (3).

Proof. Set z† = ProjΩu. In the light of (5) and (7), we can see

∥vn − z†∥ ≤ ∥un − z†∥.
Therefore, we obtain

∥un+1 − z†∥ = ∥αn(u− z†) + (1− αn)(vn − z†)∥

≤ αn∥u− z†∥+ (1− αn)∥vn − z†∥

≤ αn∥u− z†∥+ (1− αn)∥un − z†∥

≤ max{∥u− z†∥, ∥un − z†∥}.

By induction, we derive that ∥un+1 − z†∥ ≤ max{∥u − z†∥, ∥u0 − z†∥} and thereby, the
sequence {un} is bounded. It follows that from (5) and (7) that (Case 1)

∥un+1 − z†∥2 =∥αn(u− z†) + (1− αn)(un − z†)∥2

≤(1− αn)∥un − z†∥2 + 2αn⟨u− z†, un+1 − z†⟩,
(14)

and (Case 2)

∥un+1 − z†∥2 =∥αn(u− z†) + (1− αn)(vn − z†)∥2

≤(1− αn)∥vn − z†∥2 + 2αn⟨u− z†, un+1 − z†⟩

≤(1− αn)∥un − z†∥2 + αn[2⟨u− z†, un+1 − z†⟩

− θn(1− αn)(1− ϱ− θn)

αn
∥(un − Tinun)∥2],

(15)
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and (Case 3)

∥un+1 − z†∥2 =∥αn(u− z†) + (1− αn)(vn − z†)∥2

≤(1− αn)∥vn − z†∥2 + 2αn⟨u− z†, un+1 − z†⟩

≤(1− αn)∥un − z†∥2 + αn[2⟨u− z†, un+1 − z†⟩

− θn(1− αn)(1− ϱ− θn)

αn

∥Aknun − Skn
jn
Aknun∥4

∥A∗
kn
(Aknun − Skn

jn
Aknun)∥2

].

(16)

Next, we rewrite our results in (14), (15) and (16):

∥un+1 − z†∥2 ≤(1− αn)∥un − z†∥2 + αn[2⟨u− z†, un+1 − z†⟩

− θn(1− αn)(1− ϱ− θn)

αn
Dn],

(17)

where

Dn :=


0, Case 1,

∥(un − Tinun)∥2, Case 2,

∥Aknun − Skn
jn
Aknun∥4

∥A∗
kn
(Aknun − Skn

jn
Aknun)∥2

, Case 3,

Let

M := sup{∥A∗
k(Akun − Sk

jAkun)∥2 : k = 1, 2, . . . ,M, j = 1, 2, . . . , Lk, n ∈ N+},
and

J = min{1, 1

M
}.

Set

D̄n :=


0, Case 1,

∥(un − Tinun)∥2, Case 2,

∥Akn
un − Skn

jn
Akn

un∥4, Case 3.

In fact, we can see

D̄n =


Γn, Case 1,

Γ2
n, Case 2,

Γ4
n, Case 3,

It is obvious that Dn ≥ JD̄n. This together with (17) implies that

∥un+1 − z†∥2 ≤(1− αn)∥un − z†∥2 + αn[2⟨u− z†, un+1 − z†⟩

− θn(1− αn)(1− ϱ− θn)

αn
Dn]

≤(1− αn)∥un − z†∥2 + αn[2⟨u− z†, un+1 − z†⟩

− θn(1− αn)(1− ϱ− θn)

αn
JD̄n]

=(1− αn)∥un − z†∥2 + αn[2⟨u− z†, un+1 − z†⟩ − Fn

αn
],

(18)

where
Fn := θn(1− αn)(1− ϱ− θn)× JD̄n.

Set χn = ∥un − z†∥2 and

ϕn = 2⟨u− z†, un+1 − z†⟩ − Fn

αn
. (19)
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Then, we can rewrite the above inequality (18) as

χn+1 ≤ (1− αn)χn + αnϕn.

In view of (19), we see

ϕn ≤ 2⟨u− z†, un+1 − z†⟩ ≤ 2∥u− z†∥ × ∥un+1 − z†∥.

Hence, lim supn→∞ ϕn < +∞. Furthermore, from Lemma 2.1, we have that

lim sup
n→∞

ϕn ≥ 0.

So, there exists a subsequence {ns} such that

lim sup
n→∞

ϕn = lim
s→∞

ϕns
= 2⟨u− z†, uns+1 − z†⟩ − Fns

αns

.

Since ⟨u − z†, uns+1 − z†⟩ is bounded, without loss of generality, assume lims→∞⟨u −
z†, uns+1 − z†⟩ exists. Consequently, lims→∞

Fns

αns
exists. Hence,

lim
s→∞

Fns
= 0. (20)

So, by the definition of Fns , we get that

lim
s→∞

∥uns
− Tiuns

∥ = 0 and lim
s→∞

∥Akuns
− Sk

jAkuns
∥ = 0

for all i = 1, 2, . . . , N, k = 1, 2, . . . ,M, j = 1, 2, . . . , Lk. Thanks to the hypothesis of the
demiclosedness, we have ωw(uns

) ⊂ Ω. Note that

∥un+1 − un∥ =∥αn(u− un) + (1− αn)(vn − un)∥
≤αn∥u− un∥+ (1− αn)∥vn − un∥.

In virtue of (20), we can duduce easily that

lim
s→∞

∥uns+1 − uns
∥ = 0.

This implies that the weak cluster point set ωw(uns
) also belong to the set Ω. Without loss

of generality, we can assume that {uns} converges weakly to z∗ ⊂ Ω. Hence, in view of
z† = ProjΩu, we get

lim sup
n→∞

ϕn ≤ 2⟨u− z†, uns+1 − z†⟩ = 2⟨u− z†, z∗ − z†⟩ ≤ 0.

.

In the end, from Lemma 2.3, we obtain limn→∞ xn = z†. The proof is completed. □

4. Conclusion

In this paper, we study split common fixed point problems with multiple output
sets in real Hilbert spaces. In order to solve this problem, we present three new self-
adaptive algorithms. Weak and strong convergence theorems are established under some
mild assumptions.
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