U.P.B. Sci. Bull., Series C, Vol. 73, Iss. 2, 2011 ISSN 1454-234x

A WORKFLOW MANAGEMENT ENGINE FOR SCIENTIFIC
APPLICATIONS

Alexandru COSTAN?, Valentin CRISTEA?

Sistemele de management pentru fluxuri de activitati permit utilizatorilor sa
dezvolte aplicatii complexe la un nivel superior, prin orchestrarea de componente
functionale fara a necesita gestiunea detaliilor de implementare. Degsi o gama larga
de motoare de fluxuri de activitati au fost dezvoltate in medii comerciale, motoarele
open source disponibile pentru aplicatii stiintifice nu expun anumite functionalitati
sau sunt prea greu de utilizat pentru non-specialigti. Scopul acestei cercetari este de
a dezvolta o platformd de gestiune a fluxurilor de activitati pentru sisteme
distribuite, care ofera functii precum un mod intuitiv de a descrie fluxurile de lucru
si mecanisme eficiente si flexibile de tolerantd la defecte. In acest scop prezentam un
motor de fluxuri de activitati, bazat pe ActiveBPEL, care a fost extins cu un set
suplimentar de componente.

Workflow management systems allow users to develop complex applications
at a higher level, by orchestrating functional components without handling the
implementation details. Although a wide range of workflow engines are developed in
enterprise environments, the open source engines available for scientific
applications lack some functionalities or are too difficult to use for non-specialists.
Our purpose is to develop a workflow management platform for distributed systems
that provides features like an intuitive way to describe workflows, efficient data
handling mechanisms and flexible fault tolerance support. We introduce a workflow
engine, based on ActiveBPEL, which we extended with an additional set of
components.

Keywords: workflow management, fault tolerance, distributed systems,
autonomic behavior

1. Introduction

Distributed applications, both in the academic and enterprise
environments, are becoming more and more complex, requiring the orchestration
of multiple services or programs into workflows. Workflow systems are built in
order to assist the user in developing complex applications at a higher level, by
organizing the components and specifying the dependencies among them.

1 PhD student, Computer Science Department, University POLITEHNICA of Bucharest, Romania,
e-mails: alexandru.costan@cs.pub.ro

2 prof., Computer Science Department, University POLITEHNICA of Bucharest, Romania, e-
mail: valentin.cristea@cs.pub.ro

74 Alexandru Costan, Valentin Cristea

Nowadays, commercial workflow engines provide a wide range of features
suitable for enterprise applications. For scientific applications, even though a
number of open source workflow systems are available, many of them are too
difficult to use for non-specialists (some of them lack a graphical interface), or are
restricted to a specific type of applications or on a single middleware platform;
these problems have been impeding the adoption of workflow-based solutions in
the scientific community.

In this paper we present a workflow management engine for distributed
systems, targeted at scientific applications, providing solutions for several issues
in large scale distributed environments. We aim at a flexible workflow structure,
allowing the orchestration of services and also of plain executable programs (so
that users be able to introduce legacy applications in their workflows). Our
platform relies on efficient mechanisms for data handling, as scientific
applications usually produce significant amounts of data; the mechanisms are
based on the data replication services provided by the underlying middleware. We
enforce comprehensive fault tolerance support, with configurable policies. As
semantics and side effects vary from one application to another, we believe that
the users should be able to select from multiple fault tolerance approaches the one
that is the most suitable for a particular workflow. We augmented the platform
with an intuitive way to specify workflows, based on ontologies specific to the
application domains, allowing users to work with abstract components that hide
the implementation details.

The workflow management platform motivating this research (PEGAF) is
based on three layers of main components. A high-level module provides a user
interface for defining abstract workflows, by managing domain specific
ontologies. The middle-level layer has the role of a workflow engine, orchestrates
WS-BPEL based workflows and enforces the fault tolerance support. The low-
level module is responsible for scheduling the workflow activities and services
onto the distributed system's physical resources, relying upon the available
middleware.

Our focus in this work is on the middle-level module, the workflow
engine. We have started by studying the facilities offered by the most commonly
used workflow engines for scientific applications, from the point of view of the
requirements presented above. Although some workflow engines provide
advanced features for abstract workflows, data management or fault tolerance,
they lack functionality in what concerns the other aspects. As a consequence, we
consider the approach of starting from an existing open source workflow engine
and implementing additional functions that are required for the purposes of our
project. The engine we have studied is ActiveBPEL, one of the most widely used
engines for WS-BPEL, and we introduce here an architectural model of the

A workflow management engine for scientific applications 75

modified ActiveBPEL engine, augmented with a new set of modules that
implement the additional functions.

The remainder of this paper is organized as follows. Section 2, presents a
functional analysis of existing workflow engines and arguments our choice for
ActiveBPEL. Section 3 introduces the system design of our platform, while
Section 4 details the interface for abstract workflows specification. Section 5
presents the workflow engine with its support for failure Handling. Section 7
presents the performance evaluation results and Section 8 concludes this paper.

2. Related Work

In order to choose our underlying workflow engine, we surveyed several
existing solutions that are most frequently used in scientific applications. We were
interested by several aspects: programming paradigm for the workflow language,
the type of the orchestrated components (jobs or services), the standardization of
the used language, existing support for data management and fault tolerance.

Condor DAGMan Stork [1] was developed as a batch scheduler
specialized in data placement and data movement, which understands the
semantics and characteristics of data placement tasks and implements techniques
specific to queuing, scheduling, and optimization of these type of tasks. Stork acts
like an 1/O control system (IOCS) between the user applications and the
underlying protocols and data storage servers. It provides complete modularity
and extendibility. The users can add support for their favorite storage system, data
transport protocol, or middleware very easily. If the transfer protocol specified in
the job description file fails for some reason, Stork can automatically switch to
any alternative protocols available between the same source and destination hosts
and complete the transfer. Thus, Stork can interact with higher level planners and
workflow managers. Stork applies some of the traditional job scheduling
techniques common in computational job scheduling to the data placement jobs:
First Come First Served, Shortest Job First, Multilevel Queue Priority, Random
Scheduling and Auxiliary Scheduling of Data Transfer Jobs. These techniques are
applied to all data placement jobs regardless of the type. After this ordering, some
job types require additional scheduling for further optimization.

Pegasus [2] enables scientists to construct workflows in abstract terms
without worrying about the details of the underlying cyberinfrastructure or the
particulars of the low-level specifications required by the cyberinfrastructure
middleware. As part of the mapping, Pegasus automatically manages data
generated during workflow execution by staging them out to user-specified
locations, by registering them in data catalogs, and by capturing their provenance
information. Since Pegasus dynamically discovers the available resources and
their characteristics, and queries for the location of the data (potentially replicated
in the environment), it improves the performance of applications through: data

76 Alexandru Costan, Valentin Cristea

reuse to avoid duplicate computations and to provide reliability, workflow
restructuring to improve resource allocation, and automated task and data transfer
scheduling to improve overall workflow runtime. Pegasus also provides reliability
through dynamic workflow remapping when failures during execution are
detected. Currently, Pegasus schedules all the data movements in conjunction with
computations. However, as the new data placement services are being deployed
within the large-scale collaborations, workflow management systems such as
Pegasus need to be able to interface and efficiently interact with the new
capabilities.

Karajan [3] is flexible in terms of interoperability by supporting the use of
providers that allow middleware selection at runtime: GT2, GT3, GT4 or Condor

[4].

In Taverna [5] and ActiveBPEL [6], workflows are seen as web services.
The difficulty of implementation is hidden, users are presented a high-level
interface. Interoperability for Taverna is limited to MyGrid, while ActiveBPEL
can submit jobs to any middleware offering web services. Triana [7] is
middleware agnostic: supports P2P, web services and Grids. Triana's API for
accessing Grid services, is written in such a way that new modules can be added,
to achieve interoperability with different middleware platforms. Triana jobs do
not have web interfaces, communication is done only through the input/output
files, and submission is performed by a resource manager (GRAM1 or GRMS2)

[8].

We noticed a poor support for failure handling in most systems, usually
consisting in stopping process execution and reporting the failure. However,
manual resolution is not always applicable in large scale distributed environments;
therefore automatic failure handling is needed. We conclude that improvements
regarding the fault tolerant behavior that these systems provide are essential in
order to make workflow systems more accessible to people from a multitude of
scientific fields. On average, the fault tolerant performances of the above
mentioned systems are acceptable from a common applications' point of view but
they are unacceptable when it comes to long running, compute intensive
applications. Until now efforts have been concentrated on correctly specifying and
deploying such orchestration processes with the use of Web Services.

Many workflow engines work over a single type of middleware, besides
those that enable web service orchestration (using WS-BPEL, for example) and
should work with any middleware providing web services. This is another reason
for choosing ActiveBPEL as our underlying engine for the proposed platform.
The engine also comes with native failure handling and compensation support,
which facilitate checkpointing, essential for our targeted scientific applications. In
addition, ActiveBPEL is based on a modular architecture, which enables
extensibility, is open source and well documented.

A workflow management engine for scientific applications 77

3. System Design

As we have shown in the previous section, although several open source
workflow engines are available for executing scientific applications in distributed
environments, most of them lack important features concerning fault tolerance,
abstract workflows, data handling and user interface. We note however that some
of the existing engines are based on highly expressive languages and provide
advanced process management, transaction handling, database persistence and
other mechanisms. As a consequence, we chose the solution of starting from an
open source workflow engine and building additional modules to satisfy our
requirements.

The workflow engine we propose is ActiveBPEL, the most frequently
used open source BPEL engine, integrated in several research projects. We briefly
describe as follows the ActiveBPEL architecture and the extensions implemented
for our project. ActiveBPEL runs on top of the Apache Tomcat servlet container,
and uses an embedded version of Apache Axis for message communications. Fig.
1 presents the main components of ActiveBPEL (in blue) and our proposed
extensions (in green). Among the services used in ActiveBPEL for handling
processes, which are named Managers, the most important one is the Process
Manager. The Process Manager oversees the instantiation and execution of
processes and activities. When a process is deployed, the engine analyzes the
BPEL sources and generates an internal representation of the process; then, when
the user requires the execution of the process, a new instance is created by the
Process Manager. The Process Manager is also responsible with instantiating
activities and associating them with states (inactive, executing, finished, faulted
etc.) during their life cycle. The Queue Manager handles incoming messages and
events addressed to the process activities, by building a queue with the activities
that are waiting for messages. The Work Manager schedules asynchronous
operations, based on «work objects » which are a specialized alternative to
threads. We also mention the Time Manager, which provides support for timed
operations (like suspending or waiting), and the Transaction Manager, which
implements methods for working with transactions.

We introduced several new components in the ActiveBPEL engine: the
Concrete Workflow Generator transforms abstract workflows into concrete
workflows, the Service Finder maps service port types with sets of corresponding
available services, the Data Manager implements efficient data Handling
mechanisms and the Fault Tolerance Manager, which applies the policies
specified by the user for handling faults. The Service Finder component consists

78 Alexandru Costan, Valentin Cristea

[WORKFLOW SPECIFICATION COMPONENT

WORKFLOW ENGINE

Work Manager

Timer Manager

| aueuesnsansger |

‘ T

ns
lanager

W5 Container {Apache Axis)

‘ Events Manager

Servlet Container (Apache Tomcat)

[SCHEDULING COMPONENT

Fig. 1. The PEGAF platform architecture, based on ActiveBPEL

of work presented in [9] while the Data Management module implements the data
placement algorithms in [10]. Due to space constraints, we do not details these
components here, but refer the reader to the indicated papers. We detail these
components in the following sections.

4, The Concrete Workflow Generator

A good workflow specification and translation tool should be able to:
represent abstract and concrete workflows, allowing different degrees of
abstraction; provide means to express non functional requirements like adding
semantics to both service description and workflow structure; allow handling
dynamics; define parameters to describe Grid oriented services and workflows
without dependencies on specific models infrastructure. In this section we present
the Abstract Workflow Handler. This component manages all semantic aspects of
the client framework providing tools and APIs for managing ontologies and their
concepts. It enables users to access information dependent on the specific
application domain they are interested in, to compose the workflow using the task
templates available in the working domain or other user defined templates.

The process of generating a complete functional workflow is made up of
three stages: the Service Pre-fetch Stage, the Service Generation Stage and the
Workflow Generation Stage (Fig. 2) mapped to the main building blocks of the
semantic component: the Ontology Reader, the Service Builder and the three File
Generators. During the first two stages, the data flow is sequential, as each
functional block takes the raw data, performs the necessary operations and then
passes it to the next block. In the last stage, the data flow becomes parallel,
because at this moment, each component can be generated independently. We use
an ontology written in OWL-S [11] to annotate existing Web services with
semantic data. Basically, each Web service has an associated goal, representing

A workflow management engine for scientific applications 79

the type of action it is able to perform. Every time a user inserts a new goal, its
web service equivalent is searched within the ontology. When found, the data is
parsed and the relevant information is stored in a Java object. However, there are
cases when a goal is too complex to have only one associated web service. At this
moment, it is recursively broken into simpler sub-goals until a Web service has
been found for each generated sub-goal.

Ontology

Service
Prefetch 1

Slage Ontology Reader

Service Al
Generation
Stage Servica Builder

Workflow
Generation
Slage

Extension [Extension)
Manager Manager |

w ¥ ¥

Main

Fig. 2. The Concrete Workflow Generator modules

During the service pre-fetch stage, the Ontology Reader plays the role of a
service analyzer. It extracts minimal information about the service, which is
necessary in order to initialize data and then stores the number of user inputs and
whether the goal provided can be directly satisfied or it has to be broken into
several sub-goals. The output of this phase is always a list of services. If the
Ontology Reader finds a service which is tagged as simple, it means there is a
one-to-one relationship between the process (the workflow) and the service, or, in
other words, the process is made up of a single Web service. In this case, the list
built during the pre-fetch stage will contain a single element. Otherwise, if the
Ontology Reader finds a service which is tagged as complex, it means that there is
a one-to-many relationship between the process and the Web services involved.
This means that in order to build the workflows we will have to split this service
in its constituent components. In this case, a list with more than one element will
be constructed by the Ontology Reader.

80 Alexandru Costan, Valentin Cristea

Each file is generated in two phases. First, a generic template is created for
each kind of file by three specific initializers: the BPEL Initializer, the WSDL
Initializer and the Artifacts Initializer. After the completion of this preliminary
phase, an Extension Manager is called, which will fill the file's missing fields with
the appropriate information provided by the Service Builder. By analogy with the
previous phase, a specific Extension Manager has been defined for each type of
file. The generation of the .wsdl and the artifacts files, needed by the functional
workflow, is straightforward, as information is simply copied from the java
objects which were created during the Service Generation phase into the
corresponding files. The .bpel files however are more difficult to generate,
because the output of one service might represent the input for another one. This
leads to some very intricate patterns, making it more complicated to initialize the
variables before the call of a service. To solve this issue, a shift of point of view is
made. First, each assign section is separated from its corresponding invoke section
and they are both modeled as individual objects. As a consequence, the whole
sequence section can be represented as two lists: one for the assign objects and
one for the invoke objects. Secondly, each service is conscious about the assign
sections that it is linked to. This way, the same service can play two roles
depending on the circumstances: on one hand it can act as an output producer
while on the other, it can act as an input consumer.

Each invoke section has two associated assign sections: a pre- and a post-
assign. However, this is not enough if we want to model even more complex
situations. For example, the same service may act as an output producer for more
than one service. To solve this issue, we need more granularity when dealing with
assign blocks. This is why we have created the CopyBlock class. Objects of this
type act as building blocks for an assign object or, in other words, an assign block
is made up of multiple CopyBlocks. This way, the pre-assign block of any invoke
section may be initialized even if each parameter of the invoked method comes
from a different source. Hence, when the service acts as an output producer it fills
information in the pre-assign section of the service that he is linked to. When it
acts as an input consumer, it simply fills the assign section that precedes its
corresponding invoke section. In order to generate the whole sequence section, we
have to iterate through the list of services and allow each service to alternate its
two complementary roles.

5. Fault Tolerance Support for the Workflow Engine

Our Fault Tolerance component has to be capable of addressing all the
stages needed for a comprehensive management of faults. These stages refer to
distinctive levels at which different actions have to be taken in order to extract as
much information as possible about the errors and also provide a solution. The

A workflow management engine for scientific applications 81

stages that the Fault Tolerance component deals with are: detection, notification
and recovery.

Fault Detection. When a client invokes a BPEL process, the engine creates
a new instance of it and the BPEL process can be regarded as a Web Service. The
communication between the BPEL process and the Web Services it invokes
during its execution is done through the use of SOAP messages. SOAP messages
can include the name of the Web Service to be invoked, the targeted operations
and parameters. Apache Axis is the SOAP engine embedded in ActiveBPEL. It
manages all the incoming and outgoing SOAP messages. Therefore, any
communication between the local machine and the invoked services is intercepted
by the the Axis engine. The detectation phase was developed by means of a
listener hook within Axis whicih intercepts all the incoming messages, examines
them and triggers a set of actions upon detecting a meesage which indicates an
error. Moreover, we use information from the underlying monitoring services to
detect when an abnormal behavior of the machines hosting the web services
occurs.

Fault Notification.When talking about scientific applications, we should
always keep in mind the fact that these types of programs can run for days or even
weeks. Therefore, an important task that the Fault Tolerance component should be
providing is a notification mechanism. After a fault is detected and information is
saved in the database, the component should inform the user as soon as possible
about the error that occurred. The idea behind the notification mechanism is to
send out an email message, an RSS feed or an instant message to the client
informing about any erroneous behavior of the application. Before starting the
execution of a BPEL process the user can fill in a configuration file with his
contact details and the error patterns he is interested in in order to be alerted by
the system. The message that the user receives contains useful information about
the error that occurred so that he/she can easily identify the source of the problem.

The user has the possibility of specifying the execution of certain scripts
corresponding to different types of faults through the configuration file. This
functionality acts as user-defined exception handling and it is not supported by
many engines of its kind. As a general rule, the errors that occur at runtime can be
categorized in several broad classes. Taking this into consideration, the user has
the ability of specifying a particular action in case a certain error occurs.

For example, let us consider an application that is trying to determine the
inverse matrix. One of the Web Services involved in computing the inverse matrix
will have the task of calculating the determinant of the initial matrix. If the value
of the determinant is O, then the inverse matrix does not exist. In this case, the
application will throw a fault specifying a "Division by Zero" error. The user-
defined exception handling mechanism can now intervene and the scientist might
have anticipated that some of the matrices could not be inverted. Therefore, with

82 Alexandru Costan, Valentin Cristea

the help of the script he/she can define another input parameter for the workflow
and restart the workflow without loosing precious time. There are also many other
scenarios in which this mechanism can prove extremely efficient depending on
the particular functionality of the workflow. Though this functionality is pretty
flexible and efficient it has one major drawback. The user, in this case the scientist
has to write his own script that will be launched into execution by the Fault
Tolerance component. This is not a trivial task and may prove extremely difficult
in some situations. But, it also has the advantage that it can be used with any
operating system and can specify almost any type of action.

Fault Recovery. So far, the Fault Tolerance component has the ability of
detecting and notifying the user when an error occurs while executing a BPEL
process. Though this is a major step in providing a fault tolerant behavior, it is not
enough for a scientific application. The user can now determine the cause of the
fault, has real time information provided by the notification mechanism but the
only solution is to restart the workflow (Fig. 3). For a process taking up to four or
five days this is an unacceptable solution. Therefore, the Fault Tolerance
component has to provide an easier and efficient method of recovering from
faults. There is one condition that the system has to meet no matter how the
recovery is implemented: the partial data that might be correct has to be saved and
be accessible to the user in order to make any appropriate changes. In other words,
the system has to provide a checkpointing mechanism so that the computations
done so far would not be lost in case of an error. Also, the system has to be
capable of resuming the execution of the workflow just before the faulted service

invocation.
f
ActiveBPEL Engine
| Service invocation Web Service
SOAP
Process he Axis Service Response

Suspend Engine SOAP

v
\QQP fault detected

FT Component ——————Email notification——» [J
J
Store fault
i
u 0g file— sor dofined act ES

Execute scripts

Database|

Fig. 3. The architecture of the fault tolerant component along with its triggered actions

A workflow management engine for scientific applications 83

After a thorough analysis of the ActiveBPEL engine architecture, the
conclusion was that some changes have to be made in the way the engine treats
faults and the mechanisms that deal with such situations. BPEL has an in-build
feature which addresses the recovery stage of a faulted process called
compensation. Unfortunately, the implemented design of compensation in
languages such as BPEL can only conveniently be used to handle a subset of
errors. The specific implementation of compensation that BPEL uses is essentially
an extension of the usual exception-handling mechanisms seen in languages such
as C++ or Java. But using such a mechanism requires the user to have a strong
knowledge about writing BPEL processes and would definitely discourage a lot of
potential users from adopting this technology. Furthermore, the current
architecture of ActiveBPEL leads to the situation in which any BPEL process has
one single point of failure. By this, we understand that a workflow executing
different activities in parallel will fail if just one of its activities on any of its
branches fails. First of all, this is unacceptable because all the intermediary results
which could be valid cannot be reused for a later submission. Secondly, occurring
errors might have minor causes which could be easily dealt with, such as a Web
Service being down or a bottleneck on the network.

Therefore, our approach concerning this problem was to intervene in the
way ActiveBPEL deals with faults. The engine has the capability of changing the
state of a process from an execution state to a suspended state and we exploited
this functionality in order to deal with faults. The default behavior of the engine
when it receives a fault message is to terminate the process. We have modified
this behavior so that when the engine receives a fault it will suspend the process
with the possibility of reactivating it. Hence, when a fault is detected in the
system, the Fault Tolerance recovery mechanism has the task of suspending the
corresponding process and provide the user with the ability to intervene. The
suspended state is similar to a checkpoint state in which all information about the
process is available. It is very important to understand that this is a local
checkpoint, so no information about remote executing tasks is saved. In a SOA
architecture the majority of actions will involve service invocation and as a
consequence, the highest probability for a fault to appear will be during the
invocation sequence. The fact that the Fault Tolerance component provides access
to the parameters and the endpoints of the Web Services invoked gives the user a
better control over the entire process. If an error occurs during the invocation of
an Web Service then the corresponding process will be immediately suspended.
The user will have access to all the information that is directly linked to the last
invocation which failed.

A secondary goal to building and integrating a Fault Tolerance component
in an open-source BPEL engine was to implement this in a flexible and
maintainable way. That is why we decided to use the Aspect Oriented

84 Alexandru Costan, Valentin Cristea

Programming (AOP) [12] paradigm to explore a different approach to the problem
of software extension and concentrated on introducing the new functionality as
aspects of the base system. The Fault Tolerance component is made up of two
distinctive modules: the module responsible for detecting the faults and providing
the notifications and the module designed to recover the workflows without
loosing the computations done so far. The first module is implemented as an
extension of the Apache Axis engine in the traditional manner while the second
module is implemented using Aspect-Oriented Programming. AOP fosters the
goal of separation of concerns. The AOP technology emerged for modularizing
crosscutting concerns. Classical examples of crosscutting concerns are: logging,
security or exception handling. Crosscutting concerns are concerns (aspects) that
can not be encapsulated into single components. On the contrary, the
implementation of these concerns crosscut the software structure of a system.
Therefore, this paradigm is ideal for implementing our Fault Tolerance
component because it is much easier to develop and understand the necessary
modification that need to be integrated in the workflow engine.

6. Performance Evaluation

The main advantages which would come with the implementation of the
previously described distributed architecture are the increased potential for
scalability, greater fault tolerance, and the support for the abstract spécification of
workflows. To demonstrate the effectiveness of our approach, we considered
several scenarios, whose purpose is two-fold: to assess workflow generation times
and success rates. We conducted our tests on the NCIT Cluster [13] testbed, a
large-scale experimental grid platform, with advanced scheduling and control
capabilities, part of the national grid collaboration covering several sites
geographically distributed in Romania. For our experimental setup, we used 100
nodes belonging to the NCIT Cluster at University Politehnica of Bucharest. The
nodes are equipped with x86 64 CPUs running at 3.00 GHz, 2 GB of RAM, and
interconnected through a 10 Gigabit Ethernet network. We used the nodes to
deploy the web services needed by our testing scenarios.

A workflow management engine for scientific applications 85

Workflow generation times

3500 -

3000

¥
v
o
(=]

2000

Time
1500

Time (seconds)

1000

500

tl t2 3 4 t5
Services (orders of magnitude)

Fig. 4. Workflow generation times

We first evaluated the Concrete Workflow Generator module. In Fig. 4 a
graph showing the workflow generation times is depicted. Intervals t;, i = 1:5
represent a variation of the number of web services with an order of magnitude.
Thus, in interval t; we have less than 10 web services described in the ontology,
while ts shows results for nearly 100,000 service definitions. The services were
evenly distributed among the available computing nodes. There is a linear
relationship between the number of services and the time required to match and
compose an executable workflow. For a moderate number of definitions the time
required for building the workflows is almost imperceptible, with a value close to
0. However, as the number of definitions becomes significantly larger, the running
time can no longer be ignored. One reason for this is that our system requires the
storage of an exhaustive list of service definitions in order to be able to solve
intricate requests. As a consequence, the search within the ontology becomes
increasingly time consuming. Since the search method is already implemented in
a efficient way, one possible solution to this problem is to index the concepts
found in the ontology and then split them in sub-indexes. This way, the search can
be done in parallel by evenly distributing the computational workload on a cluster
of computers.

Regarding the success rate of our implementation, we have observed that it
is heavily dependent on the ontology dimension. Thus, having a relatively large
ontology that defines multiple Web services enables us to successfully generate
workflows requiring complex operation. If the ontology is not sufficiently large,
then some concepts may not be solved and thus the user requests cannot be
satisfied. However, in these cases the system can be used to assist the user as it
can make suggestions about the Web services that should be integrated in the
workflow based on what it has already found in the ontology. Further experiments
are currently being done to ascertain the range over which this results apply.

86 Alexandru Costan, Valentin Cristea

In order to demonstrate the capabilities of this Fault Tolerance component,
we have devised a scenario in which a computational intensive workflow is
executed with the help of web service orchestration. The testbed we used in our
experiments is represented by a set of 6 nodes within the NCIT Cluster. Two
nodes were used to run different versions of the ActiveBPEL workflow engine
(enhanced with the fault tolerance support, and without fault support), another
node hosts the Monitoring Repository, a node is used for the MonALISA Service,
while on the two remaining nodes we deployed the web services invoked by the
test workflow and the ApMon application that instruments the monitoring
information.

The structure of the test workflow is composed of two web services which
are responsable for executing different operation on matrixes. The first web
service executes a matrix multiplication and the second one normalizes the result
form the first web service. The main objective of the self-healing component is to
recover from faults while minimizing the time loss in case of an error occurrs in
the system. To evaluate the performance of the self-healing component we have
compared the execution time of the BPEL process during a normal operation
cycle with the execution time in case a fault occurs.

We devised three testing scenarios: in the first one the program will
function without any faults, in the second scenario we will inject a fault
(ServiceUnavailable or DivisionByZero) in the system and we will resubmit the
workflow from the beginning and in the third scenario we will make use of the
self-healing component in order to solve the fault that occurs. The second scenario
is equivalent to a typical retry policy in which the entire workflow is restarted. As
mentioned before, the most important parameter that we are interested in is the
gain in the makespan of the workflow, since this is a crucial indicator for
scientific applications.

12

10 1

|+ Completed without
fault
= Completed with fault
- tolerance
e -+ Completed with
; resubmission

oo

Time (minutes)
oy

s

ra

I ———

100 125 150 175 200 225
Number of elements

Fig. 5. Makespan depending on the matrix dimensions

.

A workflow management engine for scientific applications 87

We varied the dimension of the matrixes between 100 and 225 elements
per row; all tests have been undertaken with the same sets of data. As one can
notice from Fig. 5 the fault tolerance results are on average 45% faster than the
same tests conducted with resubmission. This gain in performance is due to the
fact that when the second web service throws a fault, the BPEL process is not
terminated and the partial data from the first web service multiplication is saved.
After the fault is treated, the BPEL process will not invoke the first web service
again, as it already has the result of the matrix multiplication. Therefore, no time
is lost with computing the multiplication and the second service is directly
invoked with the previously saved data. Hence, the performance penalty paid to
achieve high availability is comparatively small. On the other hand, the
resubmission process does not save any partial data and the first web service is
invoked twice. This is the main reason for the difference between the
resubmission and the recovery method.

7. Conclusions

Resource management in large scale distributed systems faces some major
challenges among which are: the heterogeneity and the autonomy of the local
sites, the high dynamism of distributed systems and the separation of
computational resources from data storage resources. In addition to these,
workflow management systems also have to cope with complex applications, that
contain large numbers of inter-dependent tasks. Taking these aspects into
consideration, in order to improve resource and workflow management platforms
it is essential to understand how they perform in « real world » conditions, in a
large scale distributed system.

In this paper we addressed these issues by building a workflow engine
targeted at scientific applications. Our solution provides an interface for abstract
workflow specification which translates an workflow description in the
application's semantics to BPEL and handles failures transparently. Our tests
proved better reaction times when executing the workflows with our enhanced
solutions. A future key interest will be developing a benchmark based method for
evaluating the performances of our workflow platform to similar ones.

REFERENCES

[1]J. Cappos, S. Baker, J. Plichta, D. Nyugen, J. Hardies, M. Borgard, J. Johnston, J.H. Hartman,
Stork: package management for distributed vm environments. In LISA’07: Proceedings of
the 21st conference on Large Installation System Administration Conference, 1-16,
Berkeley, CA, USA, 2007

[2] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi, G.B.
Berriman, J. Good, A. Laity, J.C. Jacob, D.S. Katz. Pegasus: A framework for mapping
complex scientific workflows onto distributed systems. Sci. Program., 13(3):219-237, 2005

88 Alexandru Costan, Valentin Cristea

[3] Java Commodity Grid (CoG) Kit. Web Page. Available from: http://www.cogkit.org

[4] Ja. Frey, T. Tannenbaum, M. Livny, I Foster, S. Tuecke, Condor-g: A computation
management agent for multiinstitutional grids. Cluster Computing, 5(3):237-246, 2002

[5] K. Belhajjame, K. Wolstencroft, O. Corcho, T. Oinn, F. Tanoh, A. William, C. Goble, Metadata
management in the Taverna workflow system, In CCGRID ’08: Proceedings of the 2008
Eighth IEEE International Symposium on Cluster Computing and the Grid, pages 651-656,
Washington, DC, USA, 2008. IEEE Computer Society

[6] The ActiveBPEL Web Page. Available from: http://www.activevos.com/products.php

[7]1 A. Harrison, 1. Taylor, 1. Wang, M. Shields, Ws-rf workflow in Triana. Int. J. High Perform.
Comput. Appl., 22(3):268-283, 2008

[8] W. Tan, P. Missier, LFoster, R. Madduri, D.D. Roure, C. Goble. A comparison of using
taverna and bpel in building scientific workflows: the case Exper., 22(9):1098-1117, 2010.

[9] M. Ion, F. Pop, C. Dobre, V. Cristea. Dynamic resources allocation in grid enviroments. In
SYNASC ’09: Proceedings of the 2009 11th International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing, pages 213-220, Washington, DC, USA,
2009. IEEE Computer Society

[10] C. Stratan, A. losup, D.H.J. Epema. A performance study of grid workflow engines. In GRID
’08: Proceedings of the 2008 9th IEEE/ACM International Conference on Grid Computing,
pages 25-32, Washington, DC, USA, 2008. IEEE Computer Society

[11] B. Cuenca Grau, I. Horrocks, B. Motik, B. Parsia, P. Patel-Schneider, U. Sattler, Owl 2: The
next step for owl, Web Semant, 6(4):309-322, 2008

[12] F. Steimann. The paradoxical success of aspect-oriented programming. In OOPSLA ’06:
Proceedings of the 21st annual ACM SIGPLAN conference on Object-oriented
programming systems, languages, and applications, pages 481-497, New York, NY, USA,
2006. ACM.

[13] The NCIT Cluster. Available from: http://cluster.grid.pub.ro/

