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A WORKFLOW MANAGEMENT ENGINE FOR SCIENTIFIC 
APPLICATIONS 

Alexandru COSTAN1, Valentin CRISTEA2 

Sistemele de management pentru fluxuri de activităţi permit utilizatorilor să 
dezvolte aplicaţii complexe la un nivel superior, prin orchestrarea de componente 
funcţionale fără a necesita gestiunea detaliilor de implementare. Deşi o gamă largă 
de motoare de fluxuri de activităţi au fost dezvoltate în medii comerciale, motoarele 
open source disponibile pentru aplicaţii ştiinţifice nu expun anumite funcţionalităţi 
sau sunt prea greu de utilizat pentru non-specialişti. Scopul acestei cercetări este de 
a dezvolta o platformă de gestiune a fluxurilor de activităţi pentru sisteme 
distribuite, care oferă funcţii precum un mod intuitiv de a descrie fluxurile de lucru 
şi mecanisme eficiente şi flexibile de toleranţă la defecte. In acest scop prezentăm un 
motor de fluxuri de activităţi, bazat pe ActiveBPEL, care a fost extins cu un set 
suplimentar de componente. 

 
Workflow management systems allow users to develop complex applications 

at a higher level, by orchestrating functional components without handling the 
implementation details. Although a wide range of workflow engines are developed in 
enterprise environments, the open source engines available for scientific 
applications lack some functionalities or are too difficult to use for non-specialists. 
Our purpose is to develop a workflow management platform for distributed systems 
that provides features like an intuitive way to describe workflows, efficient data 
handling mechanisms and flexible fault tolerance support. We introduce a workflow 
engine, based on ActiveBPEL, which we extended with an additional set of 
components. 
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1. Introduction 

Distributed applications, both in the academic and enterprise 
environments, are becoming more and more complex, requiring the orchestration 
of multiple services or programs into workflows. Workflow systems are built in 
order to assist the user in developing complex applications at a higher level, by 
organizing the components and specifying the dependencies among them.  
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Nowadays, commercial workflow engines provide a wide range of features 
suitable for enterprise applications. For scientific applications, even though a 
number of open source workflow systems are available, many of them are too 
difficult to use for non-specialists (some of them lack a graphical interface), or are 
restricted to a specific type of applications or on a single middleware platform; 
these problems have been impeding the adoption of workflow-based solutions in 
the scientific community. 

In this paper we present a workflow management engine for distributed 
systems, targeted at scientific applications, providing solutions for several issues 
in large scale distributed environments. We aim at a flexible workflow structure, 
allowing the orchestration of services and also of plain executable programs (so 
that users be able to introduce legacy applications in their workflows). Our 
platform relies on efficient mechanisms for data handling, as scientific 
applications usually produce significant amounts of data; the mechanisms are 
based on the data replication services provided by the underlying middleware. We 
enforce comprehensive fault tolerance support, with configurable policies. As 
semantics and side effects vary from one application to another, we believe that 
the users should be able to select from multiple fault tolerance approaches the one 
that is the most suitable for a particular workflow. We augmented the platform 
with an intuitive way to specify workflows, based on ontologies specific to the 
application domains, allowing users to work with abstract components that hide 
the implementation details.  

The workflow management platform motivating this research (PEGAF) is 
based on three layers of main components.  A high-level module provides a user 
interface for defining abstract workflows, by managing domain specific 
ontologies. The middle-level layer has the role of a workflow engine, orchestrates 
WS-BPEL based workflows and enforces the fault tolerance support. The low-
level module is responsible for scheduling the workflow activities and services 
onto the distributed system's physical resources, relying upon the available 
middleware.  

Our focus in this work is on the middle-level module, the workflow 
engine. We have started by studying the facilities offered by the most commonly 
used workflow engines for scientific applications, from the point of view of the 
requirements presented above. Although some workflow engines provide 
advanced features for abstract workflows, data management or fault tolerance, 
they lack functionality in what concerns the other aspects. As a consequence, we 
consider the approach of starting from an existing open source workflow engine 
and implementing additional functions that are required for the purposes of our 
project. The engine we have studied is ActiveBPEL, one of the most widely used 
engines for WS-BPEL, and we introduce here an architectural model of the 
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modified ActiveBPEL engine, augmented with a new set of modules that 
implement the additional functions.  

The remainder of this paper is organized as follows. Section 2, presents a 
functional analysis of existing workflow engines and arguments our choice for 
ActiveBPEL. Section 3 introduces the system design of our platform, while 
Section 4 details the interface for abstract workflows specification. Section 5 
presents the workflow engine with its support for failure Handling. Section 7 
presents the performance evaluation results and Section 8 concludes this paper. 

2. Related Work 

In order to choose our underlying workflow engine, we surveyed several 
existing solutions that are most frequently used in scientific applications. We were 
interested by several aspects:  programming paradigm for the workflow language, 
the type of the orchestrated components (jobs or services), the standardization of 
the used language, existing support for data management and fault tolerance.  

Condor DAGMan Stork [1] was developed as a batch scheduler 
specialized in data placement and data movement, which understands the 
semantics and characteristics of data placement tasks and implements techniques 
specific to queuing, scheduling, and optimization of these type of tasks. Stork acts 
like an I/O control system (IOCS) between the user applications and the 
underlying protocols and data storage servers. It provides complete modularity 
and extendibility. The users can add support for their favorite storage system, data 
transport protocol, or middleware very easily. If the transfer protocol specified in 
the job description file fails for some reason, Stork can automatically switch to 
any alternative protocols available between the same source and destination hosts 
and complete the transfer. Thus, Stork can interact with higher level planners and 
workflow managers. Stork applies some of the traditional job scheduling 
techniques common in computational job scheduling to the data placement jobs: 
First Come First Served, Shortest Job First, Multilevel Queue Priority, Random 
Scheduling and Auxiliary Scheduling of Data Transfer Jobs. These techniques are 
applied to all data placement jobs regardless of the type. After this ordering, some 
job types require additional scheduling for further optimization. 

Pegasus [2] enables scientists to construct workflows in abstract terms 
without worrying about the details of the underlying cyberinfrastructure or the 
particulars of the low-level specifications required by the cyberinfrastructure 
middleware. As part of the mapping, Pegasus automatically manages data 
generated during workflow execution by staging them out to user-specified 
locations, by registering them in data catalogs, and by capturing their provenance 
information. Since Pegasus dynamically discovers the available resources and 
their characteristics, and queries for the location of the data (potentially replicated 
in the environment), it improves the performance of applications through: data 
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reuse to avoid duplicate computations and to provide reliability, workflow 
restructuring to improve resource allocation, and automated task and data transfer 
scheduling to improve overall workflow runtime. Pegasus also provides reliability 
through dynamic workflow remapping when failures during execution are 
detected. Currently, Pegasus schedules all the data movements in conjunction with 
computations. However, as the new data placement services are being deployed 
within the large-scale collaborations, workflow management systems such as 
Pegasus need to be able to interface and efficiently interact with the new 
capabilities.  

Karajan [3] is flexible in terms of interoperability by supporting the use of 
providers that allow middleware selection at runtime: GT2, GT3, GT4 or Condor 
[4]. 

In Taverna [5] and ActiveBPEL [6], workflows are seen as web services. 
The difficulty of implementation is hidden, users are presented a high-level 
interface. Interoperability for Taverna is limited to MyGrid, while ActiveBPEL 
can submit jobs to any middleware offering web services. Triana [7] is 
middleware agnostic: supports P2P, web services and Grids. Triana's API for 
accessing Grid services, is written in such a way that new modules can be added, 
to achieve interoperability with different middleware platforms. Triana jobs do 
not have web interfaces, communication is done only through the input/output 
files, and submission is performed by a resource manager (GRAM1 or GRMS2) 
[8].  

We noticed a poor support for failure handling in most systems, usually 
consisting in stopping process execution and reporting the failure. However, 
manual resolution is not always applicable in large scale distributed environments; 
therefore automatic failure handling is needed. We conclude that improvements 
regarding the fault tolerant behavior that these systems provide are essential in 
order to make workflow systems more accessible to people from a multitude of 
scientific fields. On average, the fault tolerant performances of the above 
mentioned systems are acceptable from a common applications' point of view but 
they are unacceptable when it comes to long running, compute intensive 
applications. Until now efforts have been concentrated on correctly specifying and 
deploying such orchestration processes with the use of Web Services.  

Many workflow engines work over a single type of middleware, besides 
those that enable web service orchestration (using WS-BPEL, for example) and 
should work with any middleware providing web services. This is another reason 
for choosing ActiveBPEL as our underlying engine for the proposed platform. 
The engine also comes with native failure handling and compensation support, 
which facilitate checkpointing, essential for our targeted scientific applications. In 
addition, ActiveBPEL is based on a modular architecture, which enables 
extensibility, is open source and well documented. 
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3. System Design 

As we have shown in the previous section, although several open source 
workflow engines are available for executing scientific applications in distributed 
environments, most of them lack important features concerning fault tolerance, 
abstract workflows, data handling and user interface. We note however that some 
of the existing engines are based on highly expressive languages and provide 
advanced process management, transaction handling, database persistence and 
other mechanisms. As a consequence, we chose the solution of starting from an 
open source workflow engine and building additional modules to satisfy our 
requirements.  

The workflow engine we propose is ActiveBPEL, the most frequently 
used open source BPEL engine, integrated in several research projects. We briefly 
describe as follows the ActiveBPEL architecture and the extensions implemented 
for our project. ActiveBPEL runs on top of the Apache Tomcat servlet container, 
and uses an embedded version of Apache Axis for message communications. Fig. 
1 presents the main components of ActiveBPEL (in blue) and our proposed 
extensions (in green). Among the services used in ActiveBPEL for handling 
processes, which are named Managers, the most important one is the Process 
Manager. The Process Manager oversees the instantiation and execution of 
processes and activities. When a process is deployed, the engine analyzes the 
BPEL sources and generates an internal representation of the process; then, when 
the user requires the execution of the process, a new instance is created by the 
Process Manager. The Process Manager is also responsible with instantiating 
activities and associating them with states (inactive, executing, finished, faulted 
etc.) during their life cycle. The Queue Manager handles incoming messages and 
events addressed to the process activities, by building a queue with the activities 
that are waiting for messages. The Work Manager schedules asynchronous 
operations, based on « work objects » which are a specialized alternative to 
threads. We also mention the Time Manager, which provides support for timed 
operations (like suspending or waiting), and the Transaction Manager, which 
implements methods for working with transactions.  

We introduced several new components in the ActiveBPEL engine: the 
Concrete Workflow Generator transforms abstract workflows into concrete 
workflows, the Service Finder maps service port types with sets of corresponding 
available services, the Data Manager implements efficient data Handling 
mechanisms and the Fault Tolerance Manager, which applies the policies 
specified by the user for handling faults. The Service Finder component consists 
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Fig. 1. The PEGAF platform architecture, based on ActiveBPEL 

 
of work presented in [9] while the Data Management module implements the data 
placement algorithms in [10]. Due to space constraints, we do not details these 
components here, but refer the reader to the indicated papers. We detail these 
components in the following sections. 

4. The Concrete Workflow Generator 

A good workflow specification and translation tool should be able to: 
represent abstract and concrete workflows, allowing different degrees of 
abstraction; provide means to express non functional requirements like adding 
semantics to both service description and workflow structure; allow handling 
dynamics; define parameters to describe Grid oriented services and workflows 
without dependencies on specific models infrastructure. In this section we present 
the Abstract Workflow Handler. This component manages all semantic aspects of 
the client framework providing tools and APIs for managing ontologies and their 
concepts. It enables users to access information dependent on the specific 
application domain they are interested in, to compose the workflow using the task 
templates available in the working domain or other user defined templates. 

The process of generating a complete functional workflow is made up of 
three stages: the Service Pre-fetch Stage, the Service Generation Stage and the 
Workflow Generation Stage (Fig. 2) mapped to the main building blocks of the 
semantic component: the Ontology Reader, the Service Builder and the three File 
Generators. During the first two stages, the data flow is sequential, as each 
functional block takes the raw data, performs the necessary operations and then 
passes it to the next block. In the last stage, the data flow becomes parallel, 
because at this moment, each component can be generated independently. We use 
an ontology written in OWL-S [11] to annotate existing Web services with 
semantic data. Basically, each Web service has an associated goal, representing 
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the type of action it is able to perform. Every time a user inserts a new goal, its 
web service equivalent is searched within the ontology. When found, the data is 
parsed and the relevant information is stored in a Java object. However, there are 
cases when a goal is too complex to have only one associated web service. At this 
moment, it is recursively broken into simpler sub-goals until a Web service has 
been found for each generated sub-goal.  

 
 

 
Fig. 2. The Concrete Workflow Generator modules 

 
During the service pre-fetch stage, the Ontology Reader plays the role of a 

service analyzer. It extracts minimal information about the service, which is 
necessary in order to initialize data and then stores the number of user inputs and 
whether the goal provided can be directly satisfied or it has to be broken into 
several sub-goals. The output of this phase is always a list of services. If the 
Ontology Reader finds a service which is tagged as simple, it means there is a 
one-to-one relationship between the process (the workflow) and the service, or, in 
other words, the process is made up of a single Web service. In this case, the list 
built during the pre-fetch stage will contain a single element. Otherwise, if the 
Ontology Reader finds a service which is tagged as complex, it means that there is 
a one-to-many relationship between the process and the Web services involved. 
This means that in order to build the workflows we will have to split this service 
in its constituent components. In this case, a list with more than one element will 
be constructed by the Ontology Reader. 
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Each file is generated in two phases. First, a generic template is created for 
each kind of file by three specific initializers: the BPEL Initializer, the WSDL 
Initializer and the Artifacts Initializer. After the completion of this preliminary 
phase, an Extension Manager is called, which will fill the file's missing fields with 
the appropriate information provided by the Service Builder. By analogy with the 
previous phase, a specific Extension Manager has been defined for each type of 
file. The generation of the .wsdl and the artifacts files, needed by the functional 
workflow, is straightforward, as information is simply copied from the java 
objects which were created during the Service Generation phase into the 
corresponding files. The .bpel files however are more difficult to generate, 
because the output of one service might represent the input for another one. This 
leads to some very intricate patterns, making it more complicated to initialize the 
variables before the call of a service. To solve this issue, a shift of point of view is 
made. First, each assign section is separated from its corresponding invoke section 
and they are both modeled as individual objects. As a consequence, the whole 
sequence section can be represented as two lists: one for the assign objects and 
one for the invoke objects. Secondly, each service is conscious about the assign 
sections that it is linked to. This way, the same service can play two roles 
depending on the circumstances: on one hand it can act as an output producer 
while on the other, it can act as an input consumer.  

Each invoke section has two associated assign sections: a pre- and a post- 
assign. However, this is not enough if we want to model even more complex 
situations. For example, the same service may act as an output producer for more 
than one service. To solve this issue, we need more granularity when dealing with 
assign blocks. This is why we have created the CopyBlock class. Objects of this 
type act as building blocks for an assign object or, in other words, an assign block 
is made up of multiple CopyBlocks. This way, the pre-assign block of any invoke 
section may be initialized even if each parameter of the invoked method comes 
from a different source. Hence, when the service acts as an output producer it fills 
information in the pre-assign section of the service that he is linked to. When it 
acts as an input consumer, it simply fills the assign section that precedes its 
corresponding invoke section. In order to generate the whole sequence section, we 
have to iterate through the list of services and allow each service to alternate its 
two complementary roles. 

5. Fault Tolerance Support for the Workflow Engine 

Our Fault Tolerance component has to be capable of addressing all the 
stages needed for a comprehensive management of faults. These stages refer to 
distinctive levels at which different actions have to be taken in order to extract as 
much information as possible about the errors and also provide a solution. The 
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stages that the Fault Tolerance component deals with are: detection, notification 
and recovery.  

Fault Detection. When a client invokes a BPEL process, the engine creates 
a new instance of it and the BPEL process can be regarded as a Web Service. The 
communication between the BPEL process and the Web Services it invokes 
during its execution is done through the use of SOAP messages. SOAP messages 
can include the name of the Web Service to be invoked, the targeted operations 
and parameters. Apache Axis is the SOAP engine embedded in ActiveBPEL. It 
manages all the incoming and outgoing SOAP messages. Therefore, any 
communication between the local machine and the invoked services is intercepted 
by the the Axis engine. The detectation phase was developed by means of a 
listener hook within Axis whicih intercepts all the incoming messages, examines 
them and triggers a set of actions upon detecting a meesage which indicates an 
error. Moreover, we use information from the underlying monitoring services to 
detect when an abnormal behavior of the machines hosting the web services 
occurs. 

Fault Notification.When talking about scientific applications, we should 
always keep in mind the fact that these types of programs can run for days or even 
weeks. Therefore, an important task that the Fault Tolerance component should be 
providing is a notification mechanism. After a fault is detected and information is 
saved in the database, the component should inform the user as soon as possible 
about the error that occurred. The idea behind the notification mechanism is to 
send out an email message, an RSS feed or an instant message to the client 
informing about any erroneous behavior of the application. Before starting the 
execution of a BPEL process the user can fill in a configuration file with his 
contact details and the error patterns he is interested in in order to be alerted by 
the system. The message that the user receives contains useful information about 
the error that occurred so that he/she can easily identify the source of the problem.  

The user has the possibility of specifying the execution of certain scripts 
corresponding to different types of faults through the configuration file. This 
functionality acts as user-defined exception handling and it is not supported by 
many engines of its kind. As a general rule, the errors that occur at runtime can be 
categorized in several broad classes. Taking this into consideration, the user has 
the ability of specifying a particular action in case a certain error occurs.   

For example, let us consider an application that is trying to determine the 
inverse matrix. One of the Web Services involved in computing the inverse matrix 
will have the task of calculating the determinant of the initial matrix. If the value 
of the determinant is 0, then the inverse matrix does not exist. In this case, the 
application will throw a fault specifying a "Division by Zero" error. The user-
defined exception handling mechanism can now intervene and the scientist might 
have anticipated that some of the matrices could not be inverted. Therefore, with 
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the help of the script he/she can define another input parameter for the workflow 
and restart the workflow without loosing precious time. There are also many other 
scenarios in which this mechanism can prove extremely efficient depending on 
the particular functionality of the workflow. Though this functionality is pretty 
flexible and efficient it has one major drawback. The user, in this case the scientist 
has to write his own script that will be launched into execution by the Fault 
Tolerance component. This is not a trivial task and may prove extremely difficult 
in some situations. But, it also has the advantage that it can be used with any 
operating system and can specify almost any type of action.   

Fault Recovery. So far, the Fault Tolerance component has the ability of 
detecting and notifying the user when an error occurs while executing a BPEL 
process. Though this is a major step in providing a fault tolerant behavior, it is not 
enough for a scientific application. The user can now determine the cause of the 
fault, has real time information provided by the notification mechanism but the 
only solution is to restart the workflow (Fig. 3). For a process taking up to four or 
five days this is an unacceptable solution. Therefore, the Fault Tolerance 
component has to provide an easier and efficient method of recovering from 
faults. There is one condition that the system has to meet no matter how the 
recovery is implemented: the partial data that might be correct has to be saved and 
be accessible to the user in order to make any appropriate changes. In other words, 
the system has to provide a checkpointing mechanism so that the computations 
done so far would not be lost in case of an error. Also, the system has to be 
capable of resuming the execution of the workflow just before the faulted service 
invocation. 

 

 
Fig. 3. The architecture of the fault tolerant component along with its triggered actions 
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After a thorough analysis of the ActiveBPEL engine architecture, the 
conclusion was that some changes have to be made in the way the engine treats 
faults and the mechanisms that deal with such situations. BPEL has an in-build 
feature which addresses the recovery stage of a faulted process called 
compensation. Unfortunately, the implemented design of compensation in 
languages such as BPEL can only conveniently be used to handle a subset of 
errors. The specific implementation of compensation that BPEL uses is essentially 
an extension of the usual exception-handling mechanisms seen in languages such 
as C++ or Java. But using such a mechanism requires the user to have a strong 
knowledge about writing BPEL processes and would definitely discourage a lot of 
potential users from adopting this technology. Furthermore, the current 
architecture of ActiveBPEL leads to the situation in which any BPEL process has 
one single point  of failure. By this, we understand that a workflow executing 
different activities in parallel will fail if just one of its activities on any of its 
branches fails. First of all, this is unacceptable because all the intermediary results 
which could be valid cannot be reused for a later submission. Secondly, occurring 
errors might have minor causes which could be easily dealt with, such as a Web 
Service being down or a bottleneck on the network.  

Therefore, our approach concerning this problem was to intervene in the 
way ActiveBPEL deals with faults. The engine has the capability of changing the 
state of a process from an execution state to a suspended state and we exploited 
this functionality in order to deal with faults. The default behavior of the engine 
when it receives a fault message is to terminate the process. We have modified 
this behavior so that when the engine receives a fault it will suspend the process 
with the possibility of reactivating it. Hence, when a fault is detected in the 
system, the Fault Tolerance recovery mechanism has the task of suspending the 
corresponding process and provide the user with the ability to intervene. The 
suspended state is similar to a checkpoint state in which all information about the 
process is available. It is very important to understand that this is a local 
checkpoint, so no information about remote executing tasks is saved. In a SOA 
architecture the majority of actions will involve service invocation and as a 
consequence, the highest probability for a fault to appear will be during the 
invocation sequence. The fact that the Fault Tolerance component provides access 
to the parameters and the endpoints of the Web Services invoked gives the user a 
better control over the entire process. If an error occurs during the invocation of 
an Web Service then the corresponding process will be immediately suspended. 
The user will have access to all the information that is directly linked to the last 
invocation which failed.  

A secondary goal to building and integrating a Fault Tolerance component 
in an open-source BPEL engine was to implement this in a flexible and 
maintainable way. That is why we decided to use the Aspect Oriented 
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Programming (AOP) [12] paradigm to explore a different approach to the problem 
of software extension and concentrated on introducing the new functionality as 
aspects of the base system. The Fault Tolerance component is made up of two 
distinctive modules: the module responsible for detecting the faults and providing 
the notifications and the module designed to recover the workflows without 
loosing the computations done so far. The first module is implemented as an 
extension of the Apache Axis engine in the traditional manner while the second 
module is implemented using Aspect-Oriented Programming. AOP fosters the 
goal of separation of concerns. The AOP technology emerged for modularizing 
crosscutting concerns. Classical examples of crosscutting concerns are: logging, 
security or exception handling. Crosscutting concerns are concerns (aspects) that 
can not be encapsulated into single components. On the contrary, the 
implementation of these concerns crosscut the software structure of a system. 
Therefore, this paradigm is ideal for implementing our Fault Tolerance 
component because it is much easier to develop and understand the necessary 
modification that need to be integrated in the workflow engine. 

6. Performance Evaluation 

The main advantages which would come with the implementation of the 
previously described distributed architecture are the increased potential for 
scalability, greater fault tolerance, and the support for the abstract spécification of 
workflows. To demonstrate the effectiveness of our approach, we considered 
several scenarios, whose purpose is two-fold: to assess workflow generation times 
and success rates. We conducted our tests on the NCIT Cluster [13] testbed, a 
large-scale experimental grid platform, with advanced scheduling and control 
capabilities, part of the national grid collaboration covering several sites 
geographically distributed in Romania. For our experimental setup, we used 100 
nodes belonging to the NCIT Cluster at University Politehnica of Bucharest. The 
nodes are equipped with x86 64 CPUs running at 3.00 GHz, 2 GB of RAM, and 
interconnected through a 10 Gigabit Ethernet network. We used the nodes to 
deploy the web services needed by our testing scenarios. 
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Fig. 4. Workflow generation times 

 
We first evaluated the Concrete Workflow Generator module. In Fig. 4 a 

graph showing the workflow generation times is depicted. Intervals ti, i = 1:5 
represent a variation of the number of web services with an order of magnitude. 
Thus, in interval t1 we have less than 10 web services described in the ontology, 
while t5 shows results for nearly 100,000 service definitions. The services were 
evenly distributed among the available computing nodes. There is a linear 
relationship between the number of services and the time required to match and 
compose an executable workflow. For a moderate number of definitions the time 
required for building the workflows is almost imperceptible, with a value close to 
0. However, as the number of definitions becomes significantly larger, the running 
time can no longer be ignored. One reason for this is that our system requires the 
storage of an exhaustive list of service definitions in order to be able to solve 
intricate requests. As a consequence, the search within the ontology becomes 
increasingly time consuming. Since the search method is already implemented in 
a efficient way, one possible solution to this problem is to index the concepts 
found in the ontology and then split them in sub-indexes. This way, the search can 
be done in parallel by evenly distributing the computational workload on a cluster 
of computers.  

Regarding the success rate of our implementation, we have observed that it 
is heavily dependent on the ontology dimension. Thus, having a relatively large 
ontology that defines multiple Web services enables us to successfully generate 
workflows requiring complex operation. If the ontology is not sufficiently large, 
then some concepts may not be solved and thus the user requests cannot be 
satisfied. However, in these cases the system can be used to assist the user as it 
can make suggestions about the Web services that should be integrated in the 
workflow based on what it has already found in the ontology. Further experiments 
are currently being done to ascertain the range over which this results apply. 
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In order to demonstrate the capabilities of this Fault Tolerance component, 
we have devised a scenario in which a computational intensive workflow is 
executed with the help of web service orchestration. The testbed we used in our 
experiments is represented by a set of 6 nodes within the NCIT Cluster. Two 
nodes were used to run different versions of the ActiveBPEL workflow engine 
(enhanced with the fault tolerance support, and without fault support), another 
node hosts the Monitoring Repository, a node is used for the MonALISA Service, 
while on the two remaining nodes we deployed the web services invoked by the 
test workflow and the ApMon application that instruments the monitoring 
information. 

The structure of the test workflow is composed of two web services which 
are responsable for executing different operation on matrixes. The first web 
service executes a matrix multiplication and the second one normalizes the result 
form the first web service. The main objective of the self-healing component is to 
recover from faults while minimizing the time loss in case of an error occurrs in 
the system. To evaluate the performance of the self-healing component we have 
compared the execution time of the BPEL process during a normal operation 
cycle with the execution time in case a fault occurs.   

We devised three testing scenarios: in the first one the program will 
function without any faults, in the second scenario we will inject a fault 
(ServiceUnavailable or DivisionByZero) in the system and we will resubmit the 
workflow from the beginning and in the third scenario we will make use of the 
self-healing component in order to solve the fault that occurs. The second scenario 
is equivalent to a typical retry policy in which the entire workflow is restarted. As 
mentioned before, the most important parameter that we are interested in is the 
gain in the makespan of the workflow, since this is a crucial indicator for 
scientific applications.  

 

 
Fig. 5. Makespan depending on the matrix dimensions 
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We varied the dimension of the matrixes between 100 and 225 elements 
per row; all tests have been undertaken with the same sets of data. As one can 
notice from Fig. 5 the fault tolerance results are on average 45% faster than the 
same tests conducted with resubmission. This gain in performance is due to the 
fact that when the second web service throws a fault, the BPEL process is not 
terminated and the partial data from the first web service multiplication is saved. 
After the fault is treated, the BPEL process will not invoke the first web service 
again, as it already has the result of the matrix multiplication. Therefore, no time 
is lost with computing the multiplication and the second service is directly 
invoked with the previously saved data. Hence, the performance penalty paid to 
achieve high availability is comparatively small. On the other hand, the 
resubmission process does not save any partial data and the first web service is 
invoked twice. This is the main reason for the difference between the 
resubmission and the recovery method. 

7. Conclusions 

Resource management in large scale distributed systems faces some major 
challenges among which are: the heterogeneity and the autonomy of the local 
sites, the high dynamism of distributed systems and the separation of 
computational resources from data storage resources. In addition to these, 
workflow management systems also have to cope with complex applications, that 
contain large numbers of inter-dependent tasks. Taking these aspects into 
consideration, in order to improve resource and workflow management platforms 
it is essential to understand how they perform in « real world » conditions, in a 
large scale distributed system.  

In this paper we addressed these issues by building a workflow engine 
targeted at scientific applications. Our solution provides an interface for abstract 
workflow specification which translates an workflow description in the 
application's semantics to BPEL and handles failures transparently. Our tests 
proved better reaction times when executing the workflows with our enhanced 
solutions. A future key interest will be developing a benchmark based method for 
evaluating the performances of our workflow platform to similar ones. 
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