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A LYAPUNOV-KRASOVSKII FUNCTIONAL FOR A
COMPLEX SYSTEM OF DELAY-DIFFERENTIAL
EQUATIONS

Irina Badralexi', Andrei Halanay?, Ileana Rodica Radulescu?®

This paper introduces a complex model that describes the competition
between the populations of healthy and leukemic cells and the influence of the
T-lymphocytes on the evolution of leukemia. The system consists of 5 delay
differential equations derived from a Mackey-Glass approach. The main
results of this work center around sufficient linear stability conditions for a
nontriwvial equilibrium point. These conditions arise from the construction
of a Lyapunov-Krasovskii functional.
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1. Introduction

Leukemia is a cancer of the blood and bone marrow, characterized by
large and uncontrolled growth of white blood cells. The most studied type of
leukemia, Chronic myelogenous leukemia (CML), involves granular leukocyte
precursors, namely the myelocyte line. The trigger of CML is a chromosomal
abnormality, called the Philadelphia chromosome (denoted Ph). The product
of this chromosome is the formation of the Ber—Abl fusion protein which is
thought to be responsible for the dysfunctional regulation of myelocyte pro-
liferation. The standard treatment of CML in recent years is Imatinib, a
molecular targeted drug ([1]) that binds with Ber-Abl and thus removes the
proliferative advantage it provides to cancer cells ([1], [2]). Unfortunately some
cells develop resistance to imatinib, so the treatment becomes inefficient ([3]).

Nowadays, it is well known that the immune system plays a fundamental
role in tumor progression [4]. Clinical and experimental studies have docu-
mented the immune responses to leukemia. In CML, the biological literature
reveals that T cells may play an important role in stemming the expansion
of leukemic cells. The response of the immune system to leukemia is similar
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to the response to any other foreign substance that enter the body: the im-
mune system reacts first through the activation of local Antigen-Presenting
Cells (APCs). APCs (such as Dendritic cells, Macrophages, B-lymphocytes)
are specialized blood cells that help fight off foreign substances ([5]). Ma-
ture APCs do not fight the leukemic cells directly, but they trigger the naive
(CD4+ and CD8+) T cells. CD44 T cells differentiate into T-helpers which,
among other things, help to boost the activation of the CD8+ T cells. These
differentiate into T-cytotoxic cells (CTL) which fight the leukemic cells.

In the paper [6], the authors found that leukemia-specific effectors CTLs
were able to eliminate LSCs in vitro and in vivo in a setting with minimal
leukemia load. The role of CD4+ T cells in leukemia is less clear, although in
[7] the authors ascertained that some CML patients under imatinib-induced
remission develop an anti-leukemia immune response involving both CD4+
and CD8+ T cells. Therefore, there is ample evidence that antigen-specific
immune responses toward CML are elicited. Hence, our goal in this paper is
to capture in a mathematical model the underlying dynamics of this disease
by considering the evolution of healthy and leukemic cell populations along
with one of the most important component of the cellular immune response to
CML, namely T cell response.

Although a variety of mathematical papers have applied a range of mod-
eling approaches to study tumor-immune interactions in general (see, for exam-
ple the recent review [8]), only a few described the specific leukemia-immune
interaction. Leukemia-immune models have been formulated using mostly or-
dinary differential equations (ODE) ([9], [10]) or delay differential equations
(DDE) ([11], [12], [13], [14], [15], [16], [17]). Some models that specifically
study the immune response to CML are [13], [11], [18] and [9]. In [13], Kim et
al. analyzed a high order DDE model to account for the role of anti-leukemia
specific response in CML dynamics. The authors concluded that the anti-
leukemia T cell response may help maintain remission under Imatinib therapy
and they proposed a treatment strategy involving vaccination. In [11], the au-
thors analyzed a two-dimensional DDE model for the dynamics of CML cells
and effectors T cells considering Imatinib therapy and immunotherapy. The
focus in the paper [18] is on analyzing a DDE model in order to elucidate the
transition of leukemia from the stable chronic phase to the unstable accelerated
and acute phases and in [9], Moore and Li devise an ODE model and examine
which model parameters are the most important in the success or failure of
cancer remission.

However, none of the above papers have considered competition between
healthy and leukemic cell populations, which is an important factor in CML
dynamics. In the present work, we analyze the stability properties of certain
equilibria of the CML competition model ([19]) with the immune interaction
as a first step of a complex study.
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2. The model

In this paper, we consider a mathematical model that aims to capture
the dynamics of the healthy and leukemic stem-like short-term and mature
leukocytes in CML (see [20], [21]) while taking into account the competition
for resources (between the healthy and leukemic cells) and the action of the
immune system in response to the disease. The model consists of 5 delay
differential equations (DDEs) with 5 delays. Two of the state variables are
stem-like cell populations, i.e. cell populations with self-renewal ability. These
cell populations are supposed to spend a relatively short period in the resting
phase and will be termed as short-term hematopoietic stem cells (ST-HSC).
The state variables are: x; and x3- the healthy and leukemic ST-HSC, x4
and x4 - mature healthy and leukemic leukocytes and x5 - the concentration
of active anti-leukemia T-cells. The time evolution of the state variables is
described by the following DDEs system:

@y = —yinrr — (M + n2n)kn(r2 + 24)z1 — (1 — 11 — n2n) B (21 + 23) 701+
+2e7 (L — i — M2n) Br(T1ry, + T3r, )T1r, +
ek (Tor, + Tar )T1n

Ty = —YonTo + An(202n + Min)kn(Tor, + Tar,) 21,

T3 = —vyurs — (Nu + n)ki(ve + 2x4)xs — (1 — 1y — n2) Bi(@1 + 23) T3+
+2e7 (1 — 0y — 120) Bi(T 17y + T3y ) T3m,+
FNue Mk (ory 4 Tary ) Tar, — bi2szsli (T3 + 24)

Ty = —yus + Ai(2n2a + nu)ki(Tor, + Tz, )T3r, — bowawsly (23 + 24)

.7.)5 = a1 — x5 — (l3$5l2(l’4) + 2"1a4x57512(x475)

The healthy and leukemic cell populations are seen in competition for
resources and this is reflected in the fact that both feedback laws for self-
renewal and differentiation depend on the sum of healthy and leukemia cells.
Following [20] and [21], the rate of self-renewal is

m
elaa

07171&“ + (l‘l + Jig)mo‘

6@(‘7;1 + I3) = 6004 ) a = h7l

(h for healthy and [ for leukemia) with [y, the maximal rate of self-renewal
and 60, half of the maximal value, and the rate of differentiation is

O
Qgg + (ZL‘Q + .174)71“’
where ko, is the maximal rate of differentiation and 6, is half of the maximal

value. For more details about the competition modeling between healthy and
CML cell populations, please see [19].

ka(l‘Q + 1’4) = k'()a o = ]’L, [.
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Asin [22] and [19], it is assumed that a fraction ny,, @ = h, [, of ST-HSC is
susceptible to asymmetric division: one daughter cell proceeds to differentiate
and the other re-enters the stem cell compartment. A fraction 17s,, a = h, [, is
susceptible to differentiate symmetrically with both cells that result following
a phase of maturation and the fraction 1 — 7y, — 124, @ = h, [, is susceptible to
self-renewal so both cells that results after mitosis are stem-like cells (see [23],
[24]).

The immune system inhibits CML cells and leukemic cells stimulate the
immune system for a certain range of leukemic concentration, called ”optimal
load zone” (for details, see [13]). As the immune system is not stimulated
for too low or too high CML cell concentration, we choose the following feed-
back functions to model the interaction between the leukemic and the T cell

populations:
1 x

M@*@+x’M@*m+ﬂ

The duration of the cell cycle for healthy and leukemic ST-HSC cells, inde-
pendent of the type of division, is represented through the delays 4 and 73.
The time required for differentiation into mature leukocytes for healthy and,
respectively, leukemia cells is reflected through the delays 75 and 74 . The delay
75 is the time necessary for the activation of anti-leukemia T cells.

The term 1., = h,l is the natural apoptosis. A, is an amplification
factor and m,, n, control the sensitivity of respectively 8, and k, to changes
in the size of stem-like and respectively mature populations.

3. Linear stability analysis

By making the right hand terms in the system equal to zero, we can
determine the following types of equilibria:

E, =(0,0,0,0,x%) Ey = (27,25,0,0, z%)
E; =1(0,0,23,24,%5) Ey= (1, T2, T3, T4, Ts5)

Equilibria F; is usually associated with the death of the patient. The
second type of equilibria, FE5, represents healthy states, since there are no
leukemic cells. In E3 the leukemic cells have completely replaced the healthy
cells and E, corresponds to the chronic phase of the disease.

The first step in linear stability analysis of equilibrium points is the
study of their characteristic equation which, for delay-differential equations, is
a transcedental equation. It is known (see [25],[26], [27]) that, in order for the
equilibrium point to be stable, the roots of the characteristic equation must
all have negative real parts.

To determine the characteristic equation for an equilibrium point, we
must first linearize the system around that equilibrium point. Let A = (ay); J=T5
be the matrix of the derivatives of the system with respect to x1, z9, x3, 4 and
x5 calculated in an equilibrium point. For a certain equilibrium point, we also
consider the following matrices:
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e B, = (bij); j—15 containing the derivatives with respect to

L1715 X27y 5 L37y 5 Ly THry
e (., = (ci5); j—15 containing the derivatives with respect to

L1y X2795 L3795 Ldryy L7y
e D., = (dij); ;—15 containing the derivatives with respect to

ZU17—3, x2’7’37 x37’37 x47’3» x57’3
o E. = (eij); j—15 containing the derivatives with respect to

.',C17-47 x27'47 m3T4a .1'47—4, ZE57-4
e I = (fij);;—15 containing the derivatives with respect to

L175y L2755 L3755 Ldrs s Ty
The characteristic equation has the general form:

det()J;, —_A— Brl e*)\Tl _ 07_267)\7'2 _ DT?)ef)\Tg o ET467/\T4 o F~,-5€7)\T5) -0

For equilibrium points F; and Es the characteristic equations decouple
nicely and can be studied through the methods presented in [28], [29] and [30].

Unfortunately, for F5 and Ej4 the characteristic equation does not de-
couple. Usually, in the event of multiple delays and for nontrivial equilibrium
points, the characteristic equation proves too complex for stability conditions
to be found from investigating it. The alternative is constructing a Lyapunov-
Krasovskii functional.

In what follows we are going to give sufficient conditions for linear sta-
bility using a Lyapunov-Krasovskii functional.

We perform a translation to zero and consider:

Yyi =i —Ti, 1 =1,5
We thus obtain the system:
g1 =" =71 +21) = (i + 12n)knl(y2 + £2) + (ya + 24)) (91 + 21)—
—(1 = mn —n2n) Bul(yr + 21) + (y3 + 3)](y1 + 21)+
+2e7 (L = 1 — M2n) Brl(Yir, + 1) + (Y3r + 23)](Y1ry + 21)+
+1ne M kp[(Yor, + B2) + (Yar, + 24)] (Y17, + 21)
U2 = —Yon(y2 + T2) + An(202n + min)kn[(Yor, + T2) + (Yar, + T4)](Y1r, + 1)

Y3 = —yu(ys +23) — (M + na)ki[(y2 + T2) + (ya + T4)](y3 + 23)—
—(1=nu —n)Bil(y1 + 1) + (ys + 23)|(ys + T3)+
+2e7 (1 = ny — 12) Bil(Yrrs + 21) + (Yary + 23)](Ysrs + 23)+
+nue Bk [(Yary + T2) + (Yary + T4)|(Y3ry + 23)—
—01(ys + @3)(ys + @5) 11 ((y3 + T3) + (ya + 24))

Us = —Ya(ya + T4) + A2 + nu)ki[(Yor, + T2) + (Yar, + 24)] (Y37, + T3)—
—bo(ys + T4)(ys + 25) 11 ((y3 + 23) + (ya + 24))

Us = a1 — ax(ys + 25) — as(ys + T5)lo(ys + Ta) + 2" as(Ysry + T5)l2(Yars + 24)
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Consider the following type of Lyapunov-Krasovskii functional:

t

5 5 ¢
VeSante 3 n [ e Y as [ s
i=1 =1

—Tj i#] t—T7j

with a; > 0,8; > 0,Vi =1,5,5 = 1,5 and d;; > 0 for i # j
As we know from [31], a Lyapunov-Krasovskii functional needs to be

positively defined and % < 0.

dV 5 5
— =D 20+ 3B [0 —yi (= )] + D6y ) — v ()]
i=1 j=1 i#j

Let 1; = g;,4 = 1,5. As we are working in the framework of stability in
the first approximation (see [31]), we have:

% = ZQaiyifi(y) + Z@j [y?(t) - ygz(t - Tj)} + Z(Sij [y?(t) —yi(t - Tj)}

j=1 i

where

5 .
A =% 00

Oy,

. 99i .
OTEDDP eI

We obtain sufficient stability conditions by forcing ’r to be negative.

The functions fi, fs, f3, f+ and f5 are :
fiy) = {—=nn — (mn + nen)kn(@s +27) — (1= nup — non) [Bu(@] + 23)+ .

+B8, (27 + x3)t] Fyr + [—(mn + nan)ky, (23 + 23] yot
+ [=(1 = nun = man) By (@ + 28)xt] ys + [~ (mn + mon)ky, (23 + 23) 2t ] yat
-+ {26_71“1 (1 —m1p — m2n) [[5’h(:1:’{ + 23) + 6h(az’{ + :z:g)a:ﬂ +
+nine M k(b + ) yir, + (e, (a3 + ) 2] yor, +
+ [2e7MTH(1 = i, — mon) By, (2 + 3) 2] Y3, +
+ [mne Tk (25 + 22| yar,
fo(y) = —vany2 + [An(2n2n + min)kn (23 + 23)] y1r,+
+ [An(2n2n +mn)ky, (3 + 23 at] yor, +
+ [An(2n2n + mn)ky, (25 + )2t ] Yar,
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fs() = A=vu— O+ na)ka(@s + 23) — (L= nu — n2) [Bi(2] + 25)+
+B£ (] + x:’g)azg] — bzt [ll(m’g +a3) + 15 (23 + :L’Z):U§] } Y3+
+ [= (1= nu — n20) B (=} + x3)x5) y1 + [—(nu + n2)ky (25 + 3) 23] yat
+ [= O+ m2) Ky (23 + @) as — biagasl (af + 23)] yat
+ [=b1@sl (@3 + 2] ys + {2e73 (1 — ny — na) [Bi(2] + 25)+
+B(w1 + aB)a] +nue k(@ + 25) } s, +
+ [2e77173(1 — myy — o) By (2} + 25)35] Yirs+
+ [nue " ky (a5 + @) ah] yar, + [nue k) (25 + o) 2] Yar,
fay) = {—ya — boat [l (25 + x) + 1y (25 + x5)a}] | yat
+ [=baxially (25 + 23)] ys + [~bawili (25 + 23)] s
(A (202 + mu)ky (25 + 25) 23] yar,+
+ [Ai (2020 + mu)ki(25 + 23)] y3r, +
+ [Ai(2n + nu)ky (23 + 23) 25 ] yar,
fs(y) = [—as — asla(2})] ys + [~asadly(2])] ya + [27 asadly(2])] yar+
+ 2" ayla(7})] y5rs
To simplify the calculations, we introduce special notations for the coef-

ficients in f1, fo, f3, f4+ and f5 as follows:

fily) = cuyr + cay2 + c13ys + C12ya + Crayin + C15Y2n + C16Ysn + C15Yan

fo(y) = caya + caoliry + C23Y2r, + C23Yar,

f3(y) = c31y3 + 3201 + 332 + CaaYs + C35Y5 + C36Y3rs T C37Y1r; + C3sYors + C38Yar,
fa(y) = carya + caoys + casys + Caalar, + CaaYor, + CasYsr,

f5(y) = cs1ys + CsaYa + C53Ysrs + C5alars

The construction will be exemplified considering only the terms from V'
that come from fi(y) and those from the other equations that combine with
them, since all the other ones are handled in a similar manner.

Sufficient stability conditions arise from:

2a1¢11YF + 2a1¢12y1Y2 + 201 ¢13Y1Y3 + 2001 C1ay1Ya + 201c14Y1Y1 + 201C15Y1Y2r, +

+201 1601 Y3 + 200C15Y1Yar + B1YT — Byt — 6213y, — 631Y5,, — 041Yiy, <O

We create perfect squares by adding and substracting terms, such as:

ac? a’c? o1C14 2 1 a2e?
20 yy7—5y27+114y2—“42/2:—(—?;— ﬁyT)Jr—““y2
TN TAIn g g \/311 \/_111 B

and

200 Crat1 Y + YT — eyt + Y3 — v = — (a1ciy — y2)2 +|afehyyr |+
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The term y3 will be taken into account in the conditions that come from

studying fa(y).
In doing so with every problematic term in the derivative of the Lyapunov-
Krasovskii functional, we restrict the coefficient of 4? as follows:

2 2 2 2
€14 | C15 016+015

3, E 31 Bar + 2C%2 + C%g OZ% + 2c1101 + (51 + 612 + 013 + 1) <0

We denote the coefficient of a2 by py, the coefficient of oy by ¢, and the
free term by r; and we consider the following equation:

1ot + qrog +1r1 =0

with p; > 0 and r; > 0.

This second degree equation has real roots if | ¢ — 4p;r; > 0.

r
As the product of the roots is positive P = —1, the roots have the same

P1
sign. In order for the roots to be positive, the sum of the roots must be positive:

s=% 2[5 <0

b1

Let «1; and «i5 be the roots of the equation. Since p; > 0, then
ay € (a1, a2) | for pra? + qrag + 1 < 0.

The same calculations are made for y;, « = 2,5 and we obtain:

-2 2 2

C C C

23y 22 23] a3 + 2co1an + (B2 + 691 + Ga3 + G24 +2) < 0
B2 012 Oa2

2 2 2 2
C C C C
36 4 3T 4 38 4 38 4 B+ cds+ c3y 35| af + 2c31a3 + (B3 + 031 + G934 +2) <0
| B3 O13 23 da3

-2 2 2

C C C

e —544 + —545 + CZQ} a2 + 2cq104 + (B + 041 + 842 + 643 + 045 + 3) < 0
| B4 24 034

) 2
C C
i s L cgz} ag + 2c5105+ (B +2) <0
| B5  dus

We ultimately give the following sufficient stability conditions:

g} —4pir1 >0, 1 <0, a1 € (1,012

@3 —4dpors >0, q2 <0, a2 € (ag1, a2

a3 —4pars >0, @ <0, aq€

( )
( )
g3 —4psr3 >0, q3 <0, a3 € (a3, m3)
(1, u2)
( )

g2 —4psrs >0, g5 <0, a5 € (as1, a5
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4. Conclusions

In this paper we have introduced a model that tries to capture the dy-
namics of the competition between healthy and leukemic cells and the response
of immune system in CML.

Four types of equilibria were found for this system. The stability of the
first two (F; and E3) can be studied through their characteristic equation and
will be studied in further work.

For the other two (E3 and Ej), sufficient linear stability conditions were
found using a Lyapunov-Krasovskii functional.

Also in further work, the effect of treatment on the populations of leukemic
cells will be introduced in the model.
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