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NEW FACTOR PAIRS FOR FACTORIZATIONS OF

LAMBERT SERIES GENERATING FUNCTIONS

Mircea Merca1, Maxie D. Schmidt2

We prove several new variants of the Lambert series factorization theorem es-

tablished in the first article “Generating special arithmetic functions by Lambert series

factorizations” by Merca and Schmidt (2017). Several characteristic examples of our
new results are presented in the article to motivate the formulations of the general-

ized factorization theorems. Applications of these new factorization results include new

identities involving the Euler partition function and the generalized sum-of-divisors func-
tions, the Möbius function, Euler’s totient function, the Liouville lambda function, von

Mangoldt’s lambda function, and the Jordan totient function.
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1. Introduction.

We consider recurrence relations and matrix equations related to Lambert series ex-
pansions of the form [5, §27.7] [1, §17.10]∑

n≥1

an q
n

1− qn
=
∑
m≥1

bm qm, |q| < 1, (1)

for prescribed arithmetic functions a : Z+ → C and b : Z+ → C where bm =
∑

d|m ad. As in

[3], we are interested in so-termed Lambert series factorizations of the form∑
n≥1

an q
n

1− qn
=

1

C(q)

∑
n≥1

(
n∑

k=1

sn,k ak

)
qn, (2)

for arbitrary {an}n≥1 and where specifying one of the sequences, cn := [qn]1/C(q) or sn,k
with C(0) := 1, uniquely determines the form of the other. In effect, we have “factorization
pairs” in the expansions of (2). The special case of(

C(q), sn,k
)
≡
(
(q; q)∞, so(n, k)− se(n, k)

)
,

where so(n, k) and se(n, k) are respectively the number of k’s in all partitions of n into an
odd (even) number of distinct parts is considered in the references [3, 4, 7]. We generalize
this result in two key new ways in the next sections.

Central to the definition of our factorization pairs in (2) is the next matrix identity
providing a factorized representation of special arithmetic functions generated by Lambert
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series expansions where

An := (si,j)1≤i,j≤n and A−1
n :=

(
s
(−1)
i,j

)
1≤i,j≤n

,

and the one-dimensional sequence of {Bm}m≥0 depends on the arithmetic function, bn,
implicit to the expansion of (1) and the factorization pair, (C(q), sn,k). Thus in order to
construct a valid factorization pair we require that both the fundamental factorization result
in (2) hold, and that the corresponding construction provides an identity of the form

a1
a2
...
an

 = A−1
n


B0

B1

...
Bn−1

 (3)

for an application-dependent, suitable choice of the sequence, Bm (see below).

Significance of our new results. In the article we prove several variants and properties of
the Lambert series factorization theorem defined by (2). Namely, in Section 2 and Section 3
we prove Theorem 2.1, Theorem 2.2, and then Theorem 3.1 and Theorem 3.2 which provide
interesting generalized variations of the first two factorization theorem results. Each of
these factorization theorems suggest new relations between sums of an arbitrary sequence
{an}n≥1 over the divisors of an integer n as in (1) and more additive identities involving
the same sequence. Our results proved in the article relate the two branches of additive and
multiplicative number theory in many interesting new ways. Moreover, our new theorems
connect several famous special multiplicative functions with divisor sums over partitions
which are additive in nature.

Even though there are a number of important results connection the theory of divisors
with that of partitions and special classical partition functions, these results are more or
less scattered in their approach. We propose to continue the study of the relationships
between divisors and partitions with the goal of identifying common threads between these
connections by the means of our unified factorization theorems of Lambert series generating
functions. On the multiplicative number theory side, we connect the Euler partition function
p(n) with other important number theoretic functions including Euler’s totient function, the
Möbius function, Liouville’s lambda function, von Mangoldt’s lambda function, the Jordan
totient functions, and the generalized sum-of-divisors functions by extending the results first
proved in [3, 4, 7].

2. Natural generalizations of the factor pairs

Theorem 2.1. Suppose that C(q) in (2) is fixed. Then for all integers n, k ≥ 1, we have
that

sn,k =

⌊n/k⌋∑
i=1

[qn−i·k]C(q), (i)

i.e., so that we have a generating function for the general case of sn,k in the form of

sn,k = [qn]
qk

1− qk
C(q). (ii)

Proof. We rewrite (2) as

C(q)

∞∑
k=1

qk

1− qk
ak =

∞∑
k=1

( ∞∑
n=1

sn,k q
n

)
ak.
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Equating the coefficient of ak in this identity, gives

∞∑
n=1

sn,k q
n =

qk

1− qk
C(q).

Rewriting this relation
∞∑

n=1

sn,k q
n = C(q)

∞∑
n=1

qk·n,

we derived the first claimed relation, which we note easily implies the second, where we have
invoked the Cauchy multiplication of two power series. □

Remark 2.1. We remark that the general factorization in (2) can be easily derived consid-
ering the following identity

n∑
k=1

∑
d|k

ad

 [qn−k]C(q) =

n∑
k=1

∑
i≥1

[qn−i·k]C(q)

 ak.

The case of C(q) ≡ (q; q)∞ in Theorem 2.1 can be rewritten considering Euler’s pentagonal
number theorem, i.e.,

(q; q)∞ =

∞∑
j=0

(−1)⌈j/2⌉ qGj ,

where the exponent

Gj =
1

2

⌈
j

2

⌉⌈
3j + 1

2

⌉
, j ≥ 0,

is the jth generalized pentagonal number. In particular, for n, k > 0 we have that

so(n, k)− se(n, k) =
∑

k|n−Gj

(−1)⌈j/2⌉,

where the sum runs over all positive multiple of k of the form n−Gj.

Theorem 2.1 allows us to give another very interesting special case of (2) considered
in [3, 4].

Corollary 2.1. For arbitrary {an}n≥1,∑
n≥1

an q
n

1− qn
= (q; q)∞

∑
n≥1

n∑
k=1

sn,k ak q
n,

where sn,k is the number of k’s in all unrestricted partitions of n.

Proof. We take into account the fact that

qk

1− qk
· 1

(q; q)∞

is the generating function for the number of k’s in all unrestricted partitions of n. This
generating function implies our result. □

Example 2.1 (Applications of the Corollary). The result in Corollary 2.1 allows us to de-
rive many special case identities involving Euler’s partition function and various arithmetic
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functions. More precisely, by the well-known famous special cases Lambert series identities
expanded in the introduction to [3], for n ≥ 1 we have that

n∑
k=1

σx(k) p(n− k) =

n∑
k=1

kxsn,k,

p(n− 1) =

n∑
k=1

µ(k) sn,k,

n∑
k=1

k p(n− k) =

n∑
k=1

ϕ(k) sn,k,

∑
k≥1

p(n− k2) =

n∑
k=1

λ(k) sn,k,

n∑
k=1

Λ(k) p(n− k) =

n∑
k=1

log(k) sn,k,

n∑
k=1

2ω(k) p(n− k) =

n∑
k=1

|µ(k)| sn,k,

n∑
k=1

kt p(n− k) =

n∑
k=1

Jt(k) sn,k,

where sn,k is the number of k’s in all unrestricted partitions of n. Moreover, in the case
where an ≡ 1 in the corollary, for n > 0 we have that

∞∑
k=−∞

(−1)k S
(
n− k(3k + 1)/2

)
= σ0(n),

and that

n∑
k=1

σ0(k) p(n− k) = S(n),

where S(n) is number of parts in all partitions of n (also, sum of largest parts of all partitions
of n). Similarly, in the special case where an := n, for n ≥ 1 we have that

∞∑
k=−∞

(−1)k
(
n− k(3k + 1)/2

)
p
(
n− k(3k + 1)/2

)
= σ1(n),

where

n∑
k=1

σ1(k) p(n− k) = n p(n).

Corollary 2.2 (A Known Factorization). For arbitrary {an}n≥1, we have that

∑
n≥1

an q
n

1− qn
= (q2; q)∞

∑
n≥1

(
p(n− 1) a1 +

n∑
k=2

s′n,k ak

)
qn,

where s′n,k is the number of k’s in all unrestricted partitions of n that do not contain 1 as a
part.
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Proof. We consider (2) with C(q) = (q2; q)−1
∞ . According to Theorem 2.1, the generating

function of s′n,1 is given by

q

1− q
· 1

(q2; q)∞
=

q

(q; q)∞
=

∞∑
n=1

p(n− 1) qn.

For k > 1, we see that the generating function of s′n,k is given by

qk

1− qk
· 1

(q2; q)∞
=

qk

1− qk
· 1− q

(q; q)∞
,

which is the generating function for the number of k’s in all partitions of n that do not
contain 1 as a part. □

Example 2.2 (More Applications of the Corollary). We denote by p1(n) the number of
partition of n that do not contain 1 as a part. For n ≥ 1 and fixed x ∈ C, we have that

n∑
k=1

σx(k) p1(n− k) = p(n− 1) +

n∑
k=2

kx s′n,k,

− p(n− 2) =

n∑
k=2

µ(k) s′n,k,

n∑
k=1

k p1(n− k) = p(n− 1) +

n∑
k=2

ϕ(k) s′n,k,

∑
k≥1

p1(n− k2) = p(n− 1) +

n∑
k=2

λ(k) s′n,k,

n∑
k=1

Λ(k) p1(n− k) =

n∑
k=2

log(k) s′n,k,

n∑
k=1

2ω(k) p1(n− k) = p(n− 1) +

n∑
k=2

|µ(k)| s′n,k,

n∑
k=1

kt p1(n− k) = p(n− 1) +

n∑
k=2

Jt(k) s
′
n,k,

where s′n,k is the number of k’s in all partitions of n that do not contain 1 as a part.

Corollary 2.3 (Another Known Factorization). For arbitrary {an}n≥1, we have that∑
n≥1

an q
n

1− qn
= (q3; q)∞

∑
n≥1

(
p2(n− 1) a1 + p1(n− 2) a2 +

n∑
k=3

s′′n,k ak

)
qn,

where pk(n) is the number of partition of n that do not contain k as a part and s′′n,k is the
number of k’s in all unrestricted partitions of n that do not contain 1 or 2 as a part.

Proof. We consider (2) with C(q) = (q3; q)−1
∞ . According to Theorem 2.1, the generating

function of s′′n,1 is given by

q

1− q
· 1

(q3; q)∞
=

q(1− q2)

(q; q)∞
=

∞∑
n=1

p2(n− 1) qn.

The generating function for s′′n,2 is

q2

1− q2
· 1

(q3; q)∞
=

q2

(q2; q)∞
=

∞∑
n=1

p1(n− 2) qn.
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For k > 2, we see that the generating function of s′′n,k is given by

qk

1− qk
· 1

(q3; q)∞
=

qk

1− qk
· (1− q)(1− q2)

(q; q)∞
,

which is the generating function for the number of k’s in all partitions of n that do not
contain 1 or 2 as a part. □

Corollary 2.4 (A Generalization of the Known Factorizations). For integers m ≥ 1 and
arbitrary {an}n≥1, we have a Lambert series factorization given by

∑
n≥1

an q
n

1− qn
=
∑
n≥1

m−1∑
i=1

⌊n/i⌋∑
j=1

pm−1(n− i · j) ai +
n∑

k=m

s
(m−1)
n,k ak

 qn,

where pm(n) denotes the number of partitions of n that do not contain 1, 2, . . . ,m as a part

and where s
(m)
n,k denotes the number of k’s in all unrestricted partitions that do not contain

1, 2, . . . ,m as a part.

Proof. The proof of Corollary 2.3 is the starting point for proving this generalized result. In
particular, for the factorization pair determined by C(q) := (qm; q)−1

∞ in (2), we have that
for 1 ≤ i < m the coefficient on the right-hand-side of the factorization is given by

qi

1− qi
(1− q)(1− q2) · · · (1− qm−1)

(q; q)∞
=
∑
n≥1

⌊n/i⌋∑
j=1

pm−1(n− ij) qn.

Similarly, by Theorem 2.1 for k ≥ m we see that the right-hand-side coefficient of ak satisfies
the following generating function over n:

qk

1− qk
· 1

(qm; q)∞
=

qk

1− qk
· (1− q)(1− q2) · · · (1− qm−1)

(q; q)∞
. □

Theorem 2.2 (Generalized Factorization Theorem Identities). Suppose that the factoriza-
tion pair (cn, sn,k) in (2) is fixed where cn := [qn]1/C(q). Then for all integers n, k ≥ 1 and
m ≥ 0 with 1 ≤ k ≤ n, we have that

s
(−1)
n,k =

∑
d|n

cd−k µ(n/d) (i)

cn−k =
∑
d|n

s
(−1)
n,k (ii)

Bm = bm+1 +

m∑
k=1

[qk]C(q) bm+1−k. (iii)

Proof of (i) and (ii). This result is equivalent to showing that

cn−k =
∑
d|n

s
(−1)
d,k ,

which we do below by mimicking the proof from the reference [3, §3]. In particular, we

consider the Lambert series over the sequence of s
(−1)
n,k for a fixed integer k ≥ 1 and note its

factorization from (2) in the form of∑
d|n

s
(−1)
d,k =

n∑
m=0

δn−k,m cm = cn−k. □
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Proof of (iii). By the matrix representation of our factorization theorem given in (3), we
see by a generating function argument starting from (2) that

Bn−1 =

n∑
k=1

sn,k ak = [qn]C(q)
∑
m≥1

bm qm = bn +

n∑
k=1

[qk]C(q) bn−k,

when C(0) ≡ 1 as in the factorization theorem stated in the introduction. □

Note that (i) in the proposition implies the following closed-form generating function
for the Lambert series over the inverse matrix sequences by Möbius inversion:∑

n≥1

s
(−1)
n,k qn

1− qn
=

qk

C(q)
.

We have additional formulas that relate the sequences implicit to the choice of a fixed
factorization pair in the form of (2). Namely, we see that for m ≥ 1

bm =
∑
d|m

ad =

m∑
j=0

j∑
k=1

sj,k ak cm−j .

We also have the following determinant-based recurrence relations proved as in the reference

[3, §2] between the sequences, sn,k and s
(−1)
n,k , which are symmetric in that these identities

still hold if one sequence is interchanged with the other:

s
(−1)
n,j = −

n−j∑
k=1

s
(−1)
n,n+1−k sn+1−k,j + δn,j (4)

= −
n−j∑
k=1

sn,n−k s
(−1)
n−k,j + δn,j = −

n∑
k=1

sn,k−1 s
(−1)
k−1,j + δn,j .

3. Variations of the factorization theorems

One topic suggested by the first author as we considered generalizations of the factor-
ization theorems both in this article and in our first article [3] is to consider what happens
in the form of Theorem 2.2 part (i) when the Möbius function is replaced by any other
special multiplicative function, γ(n), such as Euler’s totient function, ϕ(n), or for example
by von Mangoldt’s function, Λ(n). In its direct form, the factorization theorem in (2) does
not accommodate a transformation of this form. However, if we change our specification
of the fundamental factorization in the theorems from the previous section to allow the
instance of ak in the left-hand-side sums of (2) to be a function, ãk, depending on γ(n)
and the Lambert series sequence, an, we obtain several interesting new results. The next
examples where

(
C(q), γ(n)

)
:=
(
(q; q)∞, ϕ(n)

)
,
(
(q; q)∞, nα

)
for some fixed α ∈ C provide

the motivation for the statement of the more general theorem given in this section.

Example 3.1 (Convolutions with the Euler Totient Function). Suppose that for an arbitrary
sequence, {am}m≥1, we define the factorization of the Lambert series over an to be∑

n≥1

an q
n

1− qn
=

1

(q; q)∞

∑
n≥1

n∑
k=1

sn,k(ϕ) ãk(ϕ) q
n,

where we define sn,k(ϕ) in terms of its corresponding inverse sequence through (4) given by
the divisor sum

s
(−1)
n,k (ϕ) :=

∑
d|n

p(d− k)ϕ(n/d).
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Then we have an exact formula given in the following form where we note that n =
∑

d|n ϕ(d):

ãk(ϕ) =
∑
d|k

ad · (k/d) = k ·
∑
d|k

ad
d
.

The next theorem makes precise a generalized form of the factorization theorem vari-
ant suggested by the last two examples in the previous subsection.

Theorem 3.1 (Generalized Factorization Theorem I). Suppose that the sequence {an}n≥1

is taken to be arbitrary and that the functions, C(q) and γ(n), are fixed. Then we have a
generalized Lambert series factorization theorem expanded in the form of∑

n≥1

an q
n

1− qn
=

1

C(q)

∑
n≥1

n∑
k=1

sn,k(γ) ãk q
n,

where sn,k(γ) is defined through its inverse sequence by (4) according to the formula

s
(−1)
n,k (γ) :=

∑
d|n

[qd−k]
1

C(q)
γ(n/d),

and where for γ̃(n) :=
∑

d|n γ(d) we have that

ãk(γ) =
∑
d|k

ad γ̃(n/d).

Proof. By the same argument justifying the matrix equation in (3) from the factorization
in (2), we see that

ãn =

n∑
k=1

s
(−1)
n,k × [qk]

k∑
d=1

ad q
d

1− qd
C(q).

Thus for fixed n ≥ 1 and each 1 ≤ d ≤ n we have that

[ad]ãn =

n∑
k=1

s
(−1)
n,k × [qk]

qd

1− qd
C(q)︸ ︷︷ ︸

:=tk,d

=

n∑
k=d

∑
r|n

p(r − k) γ(n/r)tk,d

=
∑
r|n

(
p(r − d) td,d + p(r − d− 1) td+1,d + · · ·+ p(0) tr,d

)
γ(n/r)

=
∑
r|n

r∑
i=d

p(r − i) ti,d γ(n/r). (i)

If we can show that the inner sum is one when d|r where d|n and zero otherwise, we have
completed the proof of our result. We note that for d ≥ 1 and i ≥ d − 1 we have that
ti,d = [qi−d]C(q). Then we continue expanding the inner sum in (i) as1

r∑
i=d

p(r − t) ti,d =

r−d∑
i=0

p(r − d− i) ti+d,d +

d−1∑
i=0

p(r − i) [qi−d]
C(q)

1− qd
(ii)

= [qr−d]
1

���C(q)

qd

1− qd�
��C(q) = [d|r where r|n]δ .

1Notation: Iverson’s convention compactly specifies boolean-valued conditions and is equivalent to the
Kronecker delta function, δi,j , as [n = k]δ ≡ δn,k. Similarly, [cond = True]δ ≡ δcond,True in the remainder of

the article.
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Hence, we have from (i) and (ii) that for 1 ≤ d ≤ n

[ad]ãn =

{
γ̃(n/d) =

∑
r|nd

γ
(

n
dr

)
, if d|n;

0, if d ̸ |n,

which implies our formula for ãn stated in the theorem. Here, we notice that it is apparent
from the factorization given in the first equation of the theorem that ãn =

∑n
d=1 γn,d ad for

some coefficients, γn,d, which we have just proved a formula for in the previous equation. □

Example 3.2 (New Convolution Identities from the Matrix Factorizations). The corre-
sponding matrix factorization representation from (3) resulting from the theorem provides
that for all n ≥ 1 and fixed factorization pair parameter C(q) we have that

ãn =

n∑
k=1

s
(−1)
n,k Bk−1, (5)

where ãn, s
(−1)
n,k , and Bm are respectively defined as in Theorem 3.1 and Theorem 2.2. One

corollary of this result (among many) provides an exact expression for the coefficients of the
Lambert series over the generalized sum-of-divisors function, σα(n), for any fixed α ∈ C:

[qn]
∑
m≥1

σα(m) qm

1− qm
=
∑
d|n

σα(d)

=

n∑
k=1

∑
d|n

p(d− k)(n/d)α


σ0(k) +

∑
s=±1

⌊√
24k+1−s

6

⌋∑
j=1

σ0

(
k − j(3j + s)

2

) .

Similarly, by setting an := nβ and γ(n) := nα for some fixed α, β ∈ C, we obtain the identity

∑
d|n

dβ σα(n/d) =

n∑
k=1

∑
d|n

p(d− k)(n/d)α


σβ(k) +

∑
s=±1

⌊√
24k+1−s

6

⌋∑
j=1

σβ

(
k − j(3j + s)

2

) .

If we set
(
an, γ(n)

)
:=
(
nβ , ϕ(n)

)
for a fixed β, we obtain the following related identity:

nσβ−1(n) =

n∑
k=1

∑
d|n

p(d− k)ϕ(n/d)


σβ(k) +

∑
s=±1

⌊√
24k+1−s

6

⌋∑
j=1

σβ

(
k − j(3j + s)

2

) .

We note that these identities implicitly involving the Euler partition function p(n) correspond
to the choice of the factorization pair parameter C(q) := (q; q)∞. We could just as easily
re-phrase these expansions in terms of the partition function q(n) where C(q) = 1/(−q; q)∞,
or in terms of any number of other special sequences with a reciprocal generating function
of C(q).

Example 3.3 (A Second Variation of the Theorem). Let the sequence {an}n≥1 be fixed and
suppose that the functions, C(q) := (q; q)∞ and γ(n) := ϕ(n). Then we have another con-
struction of a generalized Lambert series factorization theorem for these parameters expanded
in the form of ∑

n≥1

ã′n q
n

1− qn
=

1

(q; q)∞

∑
n≥1

n∑
k=1

sn,k(ϕ) ak q
n,
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where sn,k(ϕ) is defined through its inverse sequence by (4)according to the formula

s
(−1)
n,k (ϕ) :=

∑
d|n

p(d− k)ϕ(n/d).

We generalize the results in the preceding example by the next theorem.

Theorem 3.2 (Generalized Factorization Theorem II). Suppose that the sequence {an}n≥1

is taken to be arbitrary and that the functions, C(q) and γ(n), are fixed. Then we have a
generalized Lambert series factorization theorem expanded in the form of∑

n≥1

ã′n q
n

1− qn
=

1

C(q)

∑
n≥1

n∑
k=1

sn,k(γ) ak q
n,

where sn,k(γ) is defined through its inverse sequence by (4) according to the formula

s
(−1)
n,k (γ) :=

∑
d|n

[qd−k]
1

C(q)
γ(n/d),

and where we have that for all m ≥ 1

∑
d|m

ã′d(γ) =

m∑
i=1

m+1−i∑
j=1

ai sm+1−j,i [q
j−1]

1

C(q)
.

Proof. We equate the left-hand-side to the right-hand-side of the theorem statement to
obtain the expansions

∑
d|n

ã′d = [qn]
∑
n≥1

ã′n q
n

1− qn
=

n∑
j=0

n−j∑
k=1

sn−j,k ak [q
j ]

1

C(q)

=

n∑
k=1

n∑
j=0

sn−j,k ak [q
j ]

1

C(q)
=

n∑
k=1

n−k∑
j=0

sn−j,k ak [q
j ]

1

C(q)
,

since sn−j,k is zero-valued for n− j < k which requires that for sn,k to be potentially non-
zero we must have that n− j ≥ k, or equivalently that n− k ≥ j as the upper bound of the
inner sum with respect to j. Shifting the index of summation in the inner sum by one then
leads to the identity for these Lambert series coefficients over powers of qn. Hence we have
proved the theorem. □

4. Conclusions

In Section 2 and Section 3 we proved several new forms of the Lambert series factor-
ization theorem in (2) which is defined by the dependent factor pair parameters, C(q) and
sn,k. The interpretation of these theorems provides a corresponding matrix factorization
which effectively generalizes the known result in (3) from [3, 7]. The first theorems proved
in Section 2 also lead to a number of new summation identities connecting partition func-
tions such as p(n) with sums over special multiplicative functions with well-known Lambert
series expansions found in the literature [3, cf. §1, §3]. The generalizations of the first pair of
theorems we proved later in the variations of Section 3 provide yet additional interpretations
and identities between sums of the functions implicit to (1), generalized partition functions,
and other special multiplicative functions of importance in number theory.

More general forms of the factorization theorems can be established as follows.
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Expansions of generalized Lambert series. We seek to generalize the factorization
theorem result in (2) to a corresponding form for the following generalized Lambert series
expansions for fixed constants c, d, α, β, γ, δ ∈ C defined such that the series converges:

La(c, d;α, β, γ, δ) :=
∑
n≥1

an c
n qαn+β

1− d qγn+δ
. (6)

It is not difficult to show that the series coefficients of qn in the previous Lambert series
expansion are given in closed-form according to the special case formula

[qn]La(c, d;α, γ, α, γ) =
∑

αm+γ
m≥α+γ

cm am d
n

αm+γ −1.

Applications of a corresponding factorization result include new identities for the generalized
Lambert series generating the sum-of-squares function, r2(n), in the form of [1, §17.10]

∑
m≥1

r2(m) qm = 4
∑
n≥1

(−1)n+1 q2n+1

1− q2n+1
.

For example, we may formulate a generalized variant of the factorization theorems in this
article as

∑
n≥1

an c
n q2n+1

1− d q2n+1
=

1

C(q)

∑
n≥1

n∑
k=1

sn,k(d) c
k ak q

n,

where for an arbitrary sequence, {an}n≥1, we have that the series coefficients of the left-
hand-side Lambert series in the previous equation are given by

[qn]L(c, d; 2, 1, 2, 1) =
∑

2m+1|n
m>1

cm am d
n

2m+1−1.

The expansions of the generalized Lambert series in (6) also allow us to approach new
identities for the Lambert series generating the logarithmic derivatives of the Jacobi theta
functions in the forms of [5, §20.5(ii)]

ϑ′
1(z, q)

ϑ1(z, q)
= 4

∑
n≥1

sin(2nz) q2n

1− q2n
+ cot(z)

ϑ′
2(z, q)

ϑ2(z, q)
= 4

∑
n≥1

(−1)n sin(2nz) q2n

1− q2n
− tan(z)

ϑ′
3(z, q)

ϑ3(z, q)
= 4

∑
n≥1

(−1)n sin(2nz) qn

1− q2n

ϑ′
4(z, q)

ϑ4(z, q)
= 4

∑
n≥1

sin(2nz) qn

1− q2n
.

Similarly, by considering derivatives of the generalized Lambert series as in [6], we can
generate higher-order cases of the derivatives of the Jacobi theta functions, including the
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following identities [5, §20.4(ii)]:

ϑ′′′
1 (0, q)

ϑ′
1(0, q)

= −1 + 24
∑
n≥1

q2n

(1− q2n)2

ϑ′′
2(0, q)

ϑ2(0, q)
= −1− 8

∑
n≥1

q2n

(1 + q2n)2

ϑ′′
3(0, q)

ϑ3(0, q)
= −8

∑
n≥1

q2n−1

(1 + q2n−1)2

ϑ′′
4(0, q)

ϑ4(0, q)
= 8

∑
n≥1

q2n−1

(1− q2n−1)2
.

Transformations of Lambert series. One possible transformation providing an applica-
tion of the generalized factorization theorems we have already proved within this article is
given by

∞∑
n=1

an q
n

1 + qn
=

∞∑
n=1

an q
n

1− qn
− 2

∞∑
n=1

an q
2n

1− q2n
=

∞∑
n=1

bn q
n

1− qn
,

where

bn =

{
an, for n odd,

an − 2an/2 for n even.

Likewise, the terms of the more general Lambert series
∞∑

n=1

an c
n qn

1± qn
, max(|cq|, |q|) < 1,

follow from the earlier factorization theorems by substituting ak 7→ ckak.

Topics for future research and investigation. The generalizations to the factorization
theorems we have proved in this article suggested in this section comprise a new avenue
of future research based on our new results. We anticipate that the investigation of these
topics will be a fruitful source of new identities and insights to other special multiplicative
functions enumerated by Lambert series generating functions of the forms defined by (6).
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