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HOMOGENIZATION RESULTS FOR A NONLINEAR WAVE
EQUATION IN A PERFORATED DOMAIN

Claudia TIMOFTE!

Scopul acestei lucrari il constituie studiul comportamentului asimptotic al
solutiei unei ecuatii a undelor intr-un mediu periodic perforat. Vom considera, la

adecvate. Ne vom concentra atentia asupra cazului in care perforatiile au o
dimensiune critica §i vom demonstra ca solutia acestei probleme converge, cdand
parametrul mic ce caracterizeaza mdrimea perforatiilor tinde cdtre zero, cdtre
solutia unei noi probleme, care contine termeni suplimentari. Rezultatele prezentate
sunt generalizd ale unor rezultate obtinute in [3], prin considerarea unor surse
neliniare.

The effective behavior of the solution of a nonlinear wave equation in a
periodic perforated domain is analyzed. We consider, at the microscale, a wave
equation, with nonlinear sources and suitable initial and boundary conditions. We
focus on the case in which the perforations are of the so-called critical size and we
prove that the solution of this problem converges, as the small parameter
characterizing the size of the holes tends to zero, to the solution of a new problem,
containing extra zero order terms. Our paper generalizes some of the results
contained in [3], by considering nonlinear sources.
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1. Introduction

The aim of this paper is to study the homogenization of a nonlinear wave
equation in a periodically perforated medium. Such problems arise, for instance,
in the modeling of vibrating membranes. Let O be an open fixed bounded set in

R” and let us perforate it by holes. As a result, we obtain an open set Q°, which

will be referred to as being the perforated domain; € represents a small parameter
related to the characteristic size of the perforations. We shall deal with the case in
which the perforations are identical and periodically distributed and they are of
the so-called critical size (see Chapter 2). If we denote by (0,7") the time interval

of interest, we shall consider, at the microscale, the following wave equation:
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g —DypAug +Bug)=f in QF x(0,T),

u. =0 on Q% x(0,7T),

(1)
.0 ! I &
us(0)=uz, ug(0)=u, i Q°.
We shall take D r> 0 and we shall assume that
ul e H)(QF), ul e 12(Q%)
and
ﬁf —>u® weakly in H(l)(Q),
(2)

il >u' weakly in L*(Q).

Moreover, we assume that f eI? 0,7 ;L2 (Q)) and the function A in (1) is
continuous, monotonously non-decreasing and such that £(0)=0. As particular

important examples of such nonlinear functions, we can consider, for instance,
Freundlich or Michaelis-Menten kinetics (see [5] and [7]).

The existence and uniqueness of a weak solution of (1) can be settled by
using the classical theory of semilinear monotone problems (see [2], [3] and [5]).
As a result, we know that there exists a unique weak solution

uz € CO[0,T; HY Q) N C ([0, T]; L7 (QF)).

Using an homogenization procedure, we shall prove that the solution u,,
properly extended to the whole of (2, converges weakly to the unique solution of
the following homogenized problem:

u —=DpAu+Dyuu+ fu)=f in Qx(0,7),

u=0 on 0Qx(0,7),. (3)

w©=u", u©=u' in Q
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where the distribution g (see Chapter 3) is generated by the special size of the
perforations.

Hence, the solution of the boundary-value problem (1) converges to the
solution of a new problem, associated to an operator which is the sum of a
standard homogenized one and extra zero order terms coming from the geometry
and the nonlinearity of the problem.

The approach we used has its origin in the famous work of D. Cioranescu
and F. Murat [4]. The same technique was then used by D. Cioranescu, P. Donato,
F. Murat and E. Zuazua for the case of the wave equation (see [3]). Both papers
deal with the linear case. We shall generalize some of the results in [3], by
considering the nonlinear term given by the function . Let us mention that we
can also treat the case of an heterogeneous medium, for which the operator — A is
replaced by a strongly elliptic operator with highly oscillating coefficients. For
details in the elliptic case, see [1] and [6]. Also, we can treat in the same manner
the case in which we have also a damping term in (1).

The structure of our paper is as follows: first, let us mention that we shall
just focus on the casen >3, which will be treated explicitly. The case n=2 is
similar and we shall omit to treat it here. In Chapter 2, we introduce some useful
notations and assumptions and we give the main result. In Chapter 3, we give the
proof of the main convergence result of this paper.

2. Setting of the problem and the main result

Let Q be a smooth bounded connected open subset of R”, for n >3, and

let F be another open bounded subset of R”, with a smooth boundary 0F (of

class C2). We shall refer to F as being the elementary hole. We assume that 0
belongs to ' and that F is star-shaped with respect to 0. Since F is bounded,
: : - 11",
without loss of generality, we shall assume that ' — ¥, where Y = (—E,Ej is
the representative cell inR”. Let & be a real parameter taking values in a
sequence of positive numbers converging to zero and let us assume that the

characteristic size of the perforations, 7., is of the order of £"'"=2) For each &

. - n .
and for any integer vectori € Z~, we consider

P
F” =¢l+r(e)F.

Also, let us denote by F¢ the set of all the holes contained inQ, i.e.
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F8=U{Fig FigCQ,ieZ”}.

Set
Q% =Q\F*.
Hence, Q¢ is a periodically perforated domain with holes of the size 7(¢). All of

them have the same shape, the distance between two adjacent holes is of order &

and they do not overlap. We shall denote by S? their boundary. Also, let us
remark that the holes do not intersect the fixed boundary 6Q2 . Moreover, for an

arbitrary functiony e I’ (Q%), we shall denote by 7 its extension by zero inside

the holes.
Finally, we assume that the function £ in (1) is continuous, monotonously

non-decreasing and such that #(0)=0. Also, we suppose that there exist a
constant C > 0 and an exponent g such that

1B s CA+7). @
As already mentioned, we can deal also with the case in which the function f
depends in a nonlinear way of the solution u.

The main result of this paper is the following one:

Theorem 2.1. Under our previous hypotheses, the extension by zero to the
whole of Q of the unique solution u, of the microscopic problem (1) converges

weakly * in L*(0,T;H (1) @)N w e (0,T; I? (Q)) to the unique solution
ueC® ([0,7;7)N c! ([o, T];L2 (Q)) of the homogenized problem (3).
3. Preliminaries and proof of the main result

Following [3], we know that for this geometry there exist a sequence of
auxiliary functions w, and a distribution g such that the following hypotheses

are satisfied:

(H.0) 0<w®<lae. in Q

H1)  weH'(Q)
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(H.2) w® =0 on the holes F¥;
(H.3) w® -1 weakly in H'(Q);
(H.4) uew ().

Moreover, we know that for every sequence v®such that v =0 on F?,

satisfyingv® — v weakly in H}(Q), with ve H}(Q), we have

g &
(H.5) <—Aw ,V >H“(Q),H§,(Q) —></1,V>H—1(Q),H(1)(Q).

Also, under our hypotheses, we know from [3] and [5] that

2pdx,

</u9 ¢> = glg)no JQ ‘ng (5)

forany @ € D(Q) = Cy’ (Q).

Proof of Theorem 2.1. Under our previous hypotheses, it is not difficult to
prove (see [3] for details) that the extension by zero of the solution of (1) to the

whole of Q is bounded in L”(0,T;Hy(Q)NW"™(0,T;L*()). Taking a
subsequence, still denoted by &, we have:

i, >u weakly * in L*(0,T; H}(Q)), (6)

i, >u weakly * in L*(0,T;L%(Q)),
where

uec(o,T1;,yNC ([0, T1; L2 (), -

V= Hy(QN L (Qdu).
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Taking, in the variational formulation of problem (1), the test function
#(t) p(x)w? (x), with ¢ € D((0,T)) and ¢ € D(QY), we get:

Jgj . u8¢”¢)w€dxdt +Dy J‘(?J. . Vu, Vi’ o pdxdt +

T & T & (8)
ijoj Vu Vow ¢dxdt+j0j B )pow dxdt =

jOTj fhow’ dxdr.

Extending u® by zero to the whole of Q and using our hypotheses, we
can pass to the limit, with & — 0, in all the linear terms in (8). Indeed, due to

Fubini’s theorem and an integration by parts, we have

& ¢T n_ T
J.ngw (IO 1/ ugdt)dx+D.f<—Awg,¢jO u‘9¢dt>Q -
& T _ & T - 9)
ijQvW Vgo(jo u5¢dt)dx+Df-JQw vw(jo i€ gdt)dx +

+j0TjQﬂ(ﬁg)¢¢w8dxdt - J()TIQf¢¢w8dxdt.

Therefore, it follows immediately that

J‘OTJ-Qg u5¢”¢w8dxdt - jOT¢”(J.Quqodx)dt, (10)

Dy <— Aw5,¢J.()T ué ¢dt>Q - Dy J.()T(é(jgu pdu)dt, (11)

Dy jQ WEWV(IOT;,& di)dx — D jOT¢(ijuV¢dx)dt, 12)
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j(f [,/ pow” dxdt - jOT¢ (o, f ot 13

So, it remains to show how to pass to the limit in the term containing the
nonlinear function f. To this end, let us remember a result in [5]. More precisely,

assuming (4), one can prove that for any sequence z, which converges weakly in

H(l) (Q) to z, we have

B(z,)— P(z) strongly in L9 (Q),

where
_ 2n
7= gn—-2)+n '
Therefore, we have
Jo# Uoye Bl it > [ ([, By oy )

Finally, putting together (10)-(14), we obtain

I()T¢"(Jgu¢dx)dt + DfJ.OT¢ (J.Qu od u)dt +

! dx)d ! dx)dt = ! dx)d o
D[ ¢ (| Vuvodadi+ | ¢ (| purgdvrdi=| ¢ ([ fodvd.
Since ¢ € D((0,7)) is arbitrary, it follows immediately that
_[Qu gadx+ijQu ¢dy+ijQVuV¢dx+
(16)

jQﬂ(u)qodx = ijgodx Y g e D(Q).
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By the density of D(Q) in V, (16) holds true for any ¢ V. So, we

obtained exactly the variational formulation of the limit problem (3).
Since, exactly like in [3], we can pass to the limit, with & — 0, in the

initial conditions, we have
u(0)= uO, u'(O) =ul.
As the solution u of the limit problem (3) is uniquely determined (see

[3]), the whole sequence u, converges to u and this completes the proof of
Theorem 2.1.

4. Conclusions

The general question which made the object of this paper was the
homogenization of a semilinear wave equation in a periodically perforated
domain. In the case of a critical size of the perforations, the limit problem is given
by a new operator, which contains two zero-order terms, coming from the special
geometry and the nonlinearity of the problem.
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