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 HOMOGENIZATION RESULTS FOR A NONLINEAR WAVE 
EQUATION IN A PERFORATED DOMAIN 

Claudia TIMOFTE1 

Scopul acestei lucrări îl constituie studiul comportamentului asimptotic al 
soluţiei unei ecuaţii a undelor într-un mediu periodic perforat. Vom considera, la 
microscară, o ecuaţie a undelor, cu surse neliniare şi condiţii iniţiale şi la frontiera 
adecvate. Ne vom concentra atenţia asupra cazului în care perforaţiile au o 
dimensiune critică şi vom demonstra că soluţia acestei probleme converge, când 
parametrul mic ce caracterizează mărimea perforaţiilor tinde către zero, către 
soluţia unei noi probleme, care conţine termeni suplimentari. Rezultatele prezentate 
sunt generaliză ale unor rezultate obtinute în [3], prin considerarea unor surse 
neliniare. 

The effective behavior of the solution of a nonlinear wave equation in a 
periodic perforated domain is analyzed. We consider, at the microscale, a wave 
equation, with nonlinear sources and suitable initial and boundary conditions. We 
focus on the case in which the perforations are of the so-called critical size and we 
prove that the solution of this problem converges, as the small parameter 
characterizing the size of the holes tends to zero, to the solution of a new problem, 
containing extra zero order terms. Our paper generalizes some of the results 
contained in [3], by considering nonlinear sources. 

Keywords: homogenization, wave equation, critical holes. 

1. Introduction 

The aim of this paper is to study the homogenization of a nonlinear wave 
equation in a periodically perforated medium. Such problems arise, for instance, 
in the modeling of vibrating membranes. Let Ω be an open fixed bounded set in 

nR  and let us perforate it by holes. As a result, we obtain an open set ,εΩ  which 
will be referred to as being the perforated domain; ε represents a small parameter 
related to the characteristic size of the perforations. We shall deal with the case in 
which the perforations are identical and periodically distributed and they are of 
the so-called critical size (see Chapter 2). If we denote by ),0( T  the time interval 
of interest, we shall consider, at the microscale, the following wave equation: 
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Moreover, we assume that ))(;,0( 22 Ω∈ LTLf  and the function β  in (1) is 
continuous, monotonously non-decreasing and such that .0)0( =β  As particular 
important examples of such nonlinear functions, we can consider, for instance, 
Freundlich or Michaelis-Menten kinetics (see [5] and [7]).  

The existence and uniqueness of a weak solution of (1) can be settled by 
using the classical theory of semilinear monotone problems (see [2], [3] and [5]). 
As a result, we know that there exists a unique weak solution  
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Using an homogenization procedure, we shall prove that the solution εu , 

properly extended to the whole of ,Ω  converges weakly to the unique solution of 
the following homogenized problem: 
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where the distribution μ  (see Chapter 3) is generated by the special size of the 
perforations.  

Hence, the solution of the boundary-value problem (1) converges to the 
solution of a new problem, associated to an operator which is the sum of a 
standard homogenized one and extra zero order terms coming from the geometry 
and the nonlinearity of the problem.  

The approach we used has its origin in the famous work of D. Cioranescu 
and F. Murat [4]. The same technique was then used by D. Cioranescu, P. Donato, 
F. Murat and E. Zuazua for the case of the wave equation (see [3]). Both papers 
deal with the linear case. We shall generalize some of the results in [3], by 
considering the nonlinear term given by the function β . Let us mention that we 
can also treat the case of an heterogeneous medium, for which the operator Δ−  is 
replaced by a strongly elliptic operator with highly oscillating coefficients. For 
details in the elliptic case, see [1] and [6]. Also, we can treat in the same manner 
the case in which we have also a damping term in (1). 

The structure of our paper is as follows: first, let us mention that we shall 
just focus on the case 3≥n , which will be treated explicitly. The case 2=n  is 
similar and we shall omit to treat it here. In Chapter 2, we introduce some useful 
notations and assumptions and we give the main result. In Chapter 3, we give the 
proof of the main convergence result of this paper.  

2. Setting of the problem and the main result 

Let Ω  be a smooth bounded connected open subset of nR , for ,3≥n  and 

let F  be another open bounded subset of nR , with a smooth boundary F∂  (of 
class 2C ). We shall refer to F as being the elementary hole. We assume that 0  
belongs to F   and that F  is star-shaped with respect to 0. Since F  is bounded, 

without loss of generality, we shall assume that YF ⊂ , where 
n
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2
1 is 

the representative cell in nR . Let ε  be a real parameter taking values in a 
sequence of positive numbers converging to zero and let us assume that the 
characteristic size of the perforations, ,εr  is of the order of )2/( −nnε . For each ε  

and for any integer vector nZi∈ , we consider 
  

         .) Fr(F εεε += ii       
 

Also, let us denote by εF  the set of all the holes contained inΩ , i.e. 
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Set 

         .\ εε FΩ=Ω       
 

Hence, εΩ  is a periodically perforated domain with holes of the size ).(εr  All of 
them have the same shape, the distance between two adjacent holes is of order ε  
and they do not overlap. We shall denote by εS  their boundary. Also, let us 
remark that the holes do not intersect the fixed boundary Ω∂ . Moreover, for an 
arbitrary function )(2 εψ Ω∈ L , we shall denote by ψ~  its extension by zero inside 
the holes.  

Finally, we assume that the function β  in (1) is continuous, monotonously 
non-decreasing and such that .0)0( =β  Also, we suppose that there exist a 
constant 0≥C and an exponent q such that 

       ).1()( qvCv +≤β            
   (4) 

As already mentioned, we can deal also with the case in which the function f  
depends in a nonlinear way of the solution .εu  
             
            The main result of this paper is the following one: 

 
Theorem 2.1.  Under our previous hypotheses, the extension by zero to the 

whole of Ω  of the unique solution εu  of the microscopic problem (1) converges 

weakly ∗  in ))(;,0())(;,0( 2,11
0 ΩΩ ∞∞ LTWHTL ∩  to the unique solution 

))(];,0([)];,0([ 210 Ω∈ LTCVTCu ∩  of the homogenized problem (3). 

3. Preliminaries and proof of the main result 

Following [3], we know that for this geometry there exist a sequence of 
auxiliary functions εw  and a distribution μ  such that the following hypotheses 
are satisfied: 
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Also, under our hypotheses, we know from [3] and [5] that  
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          Proof of Theorem 2.1. Under our previous hypotheses, it is not difficult to 
prove (see [3] for details) that the extension by zero of the solution of (1) to the 
whole of Ω  is bounded in )).(;,0())(;,0( 2,11

0 ΩΩ ∞∞ LTWHTL ∩  Taking a 
subsequence, still denoted by ,ε  we have: 
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Taking, in the variational formulation of problem (1), the test function 
),()()( xwxt εϕφ  with )),0(( TD∈φ and ),(Ω∈Dϕ  we get: 
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Extending εu  by zero to the whole of Ω  and using our hypotheses, we 

can pass to the limit, with ,0→ε  in all the linear terms in (8). Indeed, due to 
Fubini’s theorem and an integration by parts, we have 
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Therefore, it follows immediately that  
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So, it remains to show how to pass to the limit in the term containing the 
nonlinear function .β  To this end, let us remember a result in [5]. More precisely, 
assuming (4), one can prove that for any sequence εz  which converges weakly in 
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Finally, putting together (10)-(14), we obtain  
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Since )),0(( TD∈φ  is arbitrary, it follows immediately that  
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By the density of )(ΩD  in ,V  (16) holds true for any .V∈ϕ  So, we 

obtained exactly the variational formulation of the limit problem (3). 
Since, exactly like in [3], we can pass to the limit, with ,0→ε  in the 

initial conditions, we have 
         .)0(,)0( 1'0 uuuu ==      

  
As the solution u  of the limit problem (3) is uniquely determined (see 

[3]), the whole sequence εu~  converges to u  and this completes the proof of 
Theorem 2.1.  

4. Conclusions 

The general question which made the object of this paper was the 
homogenization of a semilinear wave equation in a periodically perforated 
domain. In the case of a critical size of the perforations, the limit problem is given 
by a new operator, which contains two zero-order terms, coming from the special 
geometry and the nonlinearity of the problem. 
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