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SIGNAL COMPACTION BY MAXIMUM VERISIMILITUDE

Dan STEFANOIU?, Janetta CULITA?

De reguld, datele esantionate furnizate de un proces sunt afectate de
perturbatii. Desi inainte de prelucrarea datelor este necesara deparazitarea lor,
zgomotele perturbatoare pot ingloba o parte a informatiei dorite. In acest caz, este
adecvata o deparazitare partiald, ca etapd preliminard a procedurii de prelucrare.
O altd cerinta frecvent intdlnitd in pre-procesarea datelor o constituie compresia
informatiei utile intr-un numdr mai mic de date, care impreund cu deparazitarea
partiald descriu conceptul de “compactare de semnal”. Articolul prezintd o metoda
originald de obtinere a datelor preliminare compactate, bazatd pe conceptul de
“verosimilitate”, nefiind necesar un semnal de sincronizare care insoteste datele
achizitionate.

Sampled data provided by a process are usually corrupted by various noises.
Although data are required to be denoised before applying any further processing,
the corrupting noises could encode a part of desired information. A partial
denoising is suitable in this case, as part of pre-processing procedure. Another
requirement frequently used in data pre-processing is to compress the useful
information in a smaller number of data. Partial denoising and compression are
gathered in the concept of “signal compaction”. The paper introduces an original
method for providing compacted preliminary data, relied on the concept of
“verisimilitude” and requiring no synchronization signal accompanying the
acquired data.

Keywords: time domain synchronous averaging, maximum verisimilitude

1. Introduction

An interesting problem of signal pre-processing (spp) is to extract a
“useful” signal from noise-corrupted acquired data. The “usefulness” is regarded
here from two points of view. Firstly, a part of noise should be attenuated such
that the information carried by the initial signal is mostly encoded by the extracted
signal as well. One refers to this operation as denoising. Secondly, some
applications (like e.g. image interpretation or fault diagnosis and detection)
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require redundant data. For other applications (such as speech or image coding),
on the contrary, the less redundant the data, the better the performance.
Redundancy is usually quantified by the compression ratio, coarsely computed as
the ratio between the extracted signal and the original signal sizes. In general, pre-
processed signals are not required to be maximally compressed, but to preserve
some redundancy in a smaller number of samples. By definition, one refers to
partial denoising together with partial compression as (signal) compaction.

The first difficulty in constructing a compacted signal arises from the fact
that the rule of combination between the true (deterministic) data and the
(stochastic) noise is unknown. (The noise is often considered as white Gaussian,
with null statistical mean, as consequence of Central Limit Theorem). A second
difficulty is concerned with the separation between the deterministic and the
stochastic components of data. Even in case of signal-noise superposition, it is
extremely difficult, if not impossible, to draw a fine line between the two
components. Therefore, the compacted signal may contain a part of noise,
whereas the removed signal may include some useful information that should not
have been removed. The quality of the resulted separation strongly depends upon
the denoising method and is assessed by means of Signal-to-Noise Ratio (SNR).

Depending on the SNR and on the subsequent purpose of pre-processed
data, one can identify three main classes of signal extraction methods, based on
models in time, in frequency oOr in time-frequency. In time domain, the oldest
approach is perhaps based on interpolation techniques, mostly coming from early
works of classical Mathematics. The interpolation model includes in general the
most part of initial noise, because the model is maximally fitted to data. Another
approach using parametric models is to find the waveform which matches the data
the best, according to a given criterion, usually Least Squares (LS) based. The
waveform results by means of a system identification recipe [1]. In general, the
identification methods are however quite complex. Within the spp stage, simpler
methods are usually preferred.

A very practical approach in time domain is concerned with averaging and
non-parametric models. The average is however a very coarse estimation of data
provider behavior. In spite of such a limitation, when cleverly used, the average
could outperform other more sophisticated models in simplicity and effectiveness.
In [2] has been devised a technique known as Time Domain Synchronous
Averaging (TDSA). A combination between TDSA and Lagrange interpolation
techniques is introduced in [3]. Nowadays, TDSA is employed in numerous
applications where data are collected from rotating machinery, despite the fact it
requires 2 data sets: the main one and the synchronization impulses.

In frequency domain, the basic methods of compaction during spp are
based upon spectral estimation techniques. A good description of these techniques
can be found in [4] or [5] and they aim to provide a smoother spectrum than the
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original one. Smoothing the spectrum implies noise attenuation and a more
accurate estimation of compacted signal spectrum. The frequency approaches
operate within the hypothesis that the measured data are quasi-stationary, i.e. their
spectrum is quasi-constant in time. But, in general, the most systems provide data
which are more or less non-stationary. Therefore, an approach in joint time-
frequency domain iS more suitable when operating with large sets of non-
stationary data. A quasi complete description of time-frequency analysis methods
can be found in [6]. In spp, the time-frequency methods are seldom employed
because of their complexity.

The Frequency Averaging Method (FAM) described hereafter belongs to
the frequency domain approaches. To the best of our knowledge, the method is
genuine, i.e. it has not been devised by other scientists. The article is organized as
follows. Into the next section the TDSA method is succinctly overviewed. Section
3 is concerned with basic hypotheses regarding the noises and the presentation of
Maximum Verisimilitude Method as theoretical basic tool. Within the Section 4,
the FAM is described. Simulation examples using artificial and real measured data
(bearing vibrations) are given in Section 5. Some interesting insights about
method effectiveness are also revealed.

2.0n TDSA

The principle of TDSA originates from the early works in Signal
Processing. A clear evidence of time domain averaging is reported for example in
[7] — the Welch method. But the TDSA technique has been devised by McFadden
in [2]. The main idea is to perform the signal compaction in case the measured
data are provided by a harmonic system with the output y described as follows:

y@)=x@)+v(t), VteR, (1)

where x is the main harmonic signal with a known period 7. and v is an

unknown noise. For example, such signals are returned by rotating machineries,
where 7 is the rotation period, usually known or measurable. No assumptions are
made regarding the noise v in [2], but, obviously, its average has been considered
null. The problem is to extract x from y, i.e. to provide an estimation of signal
x . The compacted signal is then constructed by restricting x to one period length.

The solution of this problem is devised in 2 steps. Firstly, x is estimated
by the averaged signal below:
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aN(t):%NZ_ly(l+nT,), VteR, (2)

n=0

where N >1 is the number of periods on which the average should be computed.
Obviously, a, can be expressed as the output of a comb filter c, [4], [5],

inputted by y, with selectivity controlled by N . There are two main drawbacks
of this approach: the period 7. must accurately be known and «, is not

necessarily periodic, as the sum in (2) is finite. Thus, the input signal should be
measured over an infinite horizon of time, albeit the average sum in (2) is finite.
In the second step, y is sampled with a period 7,. The measuring horizon of time

is finite and included into [0, N7.] interval. Then the sampling operation can be

simulated in continuous time by multiplying the data y with an infinite train of
equally spaced Dirac impulses:

s(t) 25 —kT)), VteR. (3)

keZ

If data are restricted to some measuring horizon by window w, (usually
rectangular on [0, N7 ]), the average signal approximating the main harmonic x
can be defined as follows (by accounting equation (3)):

N()—S(t)WN(t)Z t+nT,), VteR. (4)

In definition (4), the comb filter has been used again. Unlike in definition
(2), the time range of signal a, in (4) has to be restricted to one period:

t €[0,T.), due to windowing. The signal could extend beyond this interval, but its

values are less accurate. In definition (4), one can operate with finite data sets
(because of windowing), which improves the definition (2). However, in this case,
a,, 1s not necessarily periodic as well, because definitions (2) and (4) are based on
the same averaging technique. Unfortunately, the control over the filter selectivity
is lost: increasing N does not necessarily improve a, accuracy. Also, the main
period 7. still has to be known in advance. This is the major restriction of TDSA.

Nonetheless, TDSA is very appealing in applications due to its simplicity,
albeit, in practice, not only 7. cannot accurately be known, but it usually varies in
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time. Therefore, a synchronization signal accompanying the data is necessary.
This signal looks like a comb as well and slides over the data. For any position of
comb over the data, the average is computed by extracting only the values pointed
by the comb teeth. Obviously, this mechanism works identically whenever the
teeth are equally spaced or not. Providing the synchronization signal for data is
however not always an easy task.

In [2] a Fourier analysis is also performed, but one operates with
continuous time signals, which forced the extension of FT definition to an infinite
train of Dirac impulses. An interesting effect of TDSA (not emphasized in
McFadden articles) is concerned with the discrete frequency representation of
signals. The difficulty in giving frequency interpretations in [2] results from the
ad hoc transfer of entities that naturally lie into the framework of discrete time
signals to continuous time. A simpler approach is to consider only discrete time
signals and to work with the Discrete Fourier Transform (DFET) [4], [5]. Compute
the number of samples acquired during one period, 7, :

k2|1t |, ©)

The integer K, of (5) plays the role of estimated period, in terms of normalized
time, for the harmonic signal x (with an error smaller than 7,). Assume the

synchronization signal consists of N impulses located at instants:
K,=0<K, <---<K, ;. Then the average signal a, is simply expressed on one

harmonic period by the following definition:

def 1 N=1 -
aN[k]z% Oy[k+Kn], Vke0,K —1. (6)
n=

Obviously, the definition (6) relies on the finite set of acquired data
yIpl=y(pT.), p<0,NK -1 and works exactly when the sampling period

divides the harmonic period. Write in capitals the DFTs associated to the discrete
signals above. Then the following remarkable result holds:
Theorem 1 The DFT of average signal a, is expressed as a weighted average

of DFTs applied on initial data y, for one single harmonic period K..
More specific:



64 Dan Stefanoiu, Janetta Culita

N-1 4
Aylp]= %ZY,,[p]eZ””’K"/KS , Vke0,K -1, @)
n=0
where:
def Kkt 27z jgpl K,
Yipl= Y, ylqle Y, Vpe0,K -1 (8)
9=K,

(The proof is straightforward and therefore omitted.)

Theorem 1 shows that the frequency contents of compacted signal can be
estimated by the following scenario: segment the data into N successive frames,
compute the DFT of order K for each resulted frame and average the results.

Consider the N computed DFTs are concatenated in a “frequency signal”.
Then, in case of uniform synchronization, equations (7) and (8) become:

A= 30 0p], VpeOK i ©

(i.e. simply the average) and, respectively:

def (n+1)KS -1

Yipl= > yqle™™", vpeOK -1 (10)

g=nK¢

(i.e. the frames do not overlap — see the sum limits). A sliding comb with N
equally spaced teeth at K instants can be used to extract the averaged values for

each of the K positions in a period. This picture is quite intuitive and relies on
the hypothesis that, if the main harmonic has a constant period K, then the N

DFTs are quite similar and thus, by averaging them, a noise reduction is obtained.
Moreover, the interpretation holds for non-uniform synchronization as well. But,
in this case, the frames could overlap, depending of index values in (6).

3. Noise Hypotheses and MVM

Return to equation (1) and consider that the measured data y, the
compacted signal x and the noise v are discrete time signals. Usually, the data
set includes N acquired samples measured from a system. Thus, y is a finite
length discrete time signal with support included in 0, N —1. One wants that the
compacted signal x be a finite length discrete time signal as well, but with
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smaller support, for example inside 0, P —1, where P < N . Finally, the noise v is

also discrete time but not necessarily additive to x in the sense of equation (1).
(Actually, in this context, the signals have different supports.) Two natural
hypotheses regarding the noise are assumed, as it will be shown next.

One can split the discrete spectrum of y into M non overlapped sub-

bands with the same width. Consider for simplicity, that M is a divisor of N, i.e.
N=K-M for some K >1. Obviously, this condition is not very restrictive.
Also, denote by DFT, the DFT operator applied to a signal of length /. Then the

natural hypotheses below are assumed hereafter:
H; The DFT of signal y is affected by a set of M complex valued and additive

sub-band noises ¥,, me0,M —1 with finite supports included into
corresponding sub-bands. (Thus, the noises ¥, are orthogonal each other.)
H, Noises ¥, are white Gaussian with null mean and variances A2,
me0,M -1 (unknown).
According to hypothesis Hy, the following model of Y = DFT, (y) can be

defined forany m € 0,M —1 and k € 0,K —1:

Y[mK +k]= A [K]+V,[k], (11)

where: mK +k=ne0,N -1 has been expressed by using the Theorem of
Division with Reminder (TDR) and A4, is a deterministic model of DFT. Usually,
A, is an auto-regressive model or a polynomial. By concatenation of all 4,

m

models, the DFT of compacted signal x is obtained. The overall model (11) is a
description of DFT for every frequency sub-band. Hypothesis H, can be expressed

as follows, forany me 0,M -1, /€0,K -1 and k €0,K —1:

v Ik’ )
p(Vm[k]):ﬁexp —‘ ;Ezz]‘ s E{, [y, =225 [k-11.  (12)

In (12), £ is the density of probability, £ stands for the statistical average
operator (the expecting operator), a” is the complex conjugate of a and J;[e]
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denotes the discrete unit impulse (the Kronecker symbol). As consequence of
hypothesis Hy, every noise ¥, has independent values.

The problem is to provide an estimation of deterministic models A4,
(me0,M -1), by using the DFT of measured data Y[n], ne0,N—-1. The
estimations of variances A2, (m e 0,M —1) can be used to assess the models

accuracy. Intuitively, one wants that the spectrum of compacted signal keeps the
appearance of original data spectrum. With other words, the two spectra should
exhibit similar shapes, but the compacted spectrum must be less noisy. This
requirement can be quantified by means of verisimilitude concept, which comes
from System Identification [1]. Thus, in order to estimate the parameters of
models A4, , the Maximum Verisimilitude Method (MVM) can be employed [1],

[9]. Before describing the MVVM, consider that every model 4, is a linear:

A [kl=9![k]®,, VkeN, (13)
where ¢, [k] (data) and O, (parameters) are column vectors with the same length

(the number of parameters), while T denotes the transposition operator. The
linearity of model aims to keep the low complexity required by spp methods. For
example, if 4, is a polynomial with degree p, :

4,lk]l=a,+ta, k++a,, k', VkeN, (14)

m,1

then, in (13): @) [k]=[1k --- k™ | encompasses the data, real valued, while

0 =[0sz0 a,, “m,pm] includes all parameters, real or complex valued.

If ®, is the vector of parameters 0, extended by the unknown variance

A2, the MVM estimation is defined by:
~ def -
0, =argmaxe(Y,]0,), VmeO,M-1. (15)
0,¢es5,

In (15), s, is the stability domain of model A4

., the data segment in sub-band
me0,M-1is Y ={Y[mK+k]} 5= and £(¥,10©,) is the density of

conditional probability between the data Y, and the parameters ®, . Thus, the
parameters should be selected such that the measured data occur with a maximum
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probability. This actually means that the parameters have maximum verisimilitude
to the measured data. Without any knowledge about the noises affecting the data,
the equation (16) has little impact in practice. Hypotheses H; and H, lead however
the following result.

Theorem 2 Under H; and H, hypotheses, the MVM estimation (15) is identical

to LS estimation, i.e., for any me O,M —1:

k=0

n 1 k4 -1 =
0,= {— (Pm[k]q);[k]} {— 0, [K]Y[mK + k]}
K kZ? K (16)

~ 1 K-1
o =;Z

k=0

2

Y[mK +k]- o [K]8,

(The proof is well known and requires no special manipulations.)

Theorem 2 simplifies the approach and keeps the same interpretation
regarding the maximum of verisimilitude. Moreover, due to LS properties (see [1]
or [9]), the estimates (16) are convergent to the true values as K increases.

The complexity of model (11) and the computational effort can be
controlled through the selected number of parameters (e.g. p, +1 in model (14)).

One of the simplest models is obtained by selecting p, =0 in (14). In this case,
due to (16), the model becomes:

R K-1
Am=%ZY[mK+q], VmeO,M -1, (a7)

q=0

i.e. it is expressed as simple averages of frequency data in corresponding sub-
bands. Obviously, there is a big difference between equations (9) and (17). Within
TDSA, the averages are computed following the comb rule, whereas by means of
MVM frequency averaging, consecutive values inside the same sub-band are
employed. Also, note that, in (17), not the spectral values are used, but the
frequency data obtained by computing the DFT of original data.

4. The FAM

The MVM has theoretically shown how the DFT of compacted signal can
be estimated, by using frequency data. Theorem 2 involves that the accuracy of
estimation improves with the number of spectral lines allocated to each sub-band
(K). Usually, the number of sub-bands (A7) is constant and thus, the accuracy
increases if the number of acquired data ( N ) increases. But the most interesting
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consequence of Theorem 2 is concerned with the reconstruction of compacted
signal from its DFT, which constitutes the core of FAM.

After the models 4, being estimated, the DFT of compacted signal results
by concatenation:

X[mK +k]=A [k], VmeOM -1, Vke0 M —1. (18)
In (18), the TDR has been invoked again. The models A, being estimated by
MVM, the DFT of compacted signal is the nearest deterministic waveform to the
DFT of initial data, in the LS sense. So, the spectrum of compacted signal keeps
the best the appearance of original data spectrum and, moreover, it is smoother.

In equation (18), one can see that the compacted signal has the same
support as the original measured one, i.e. P=N. Thus, the original data have
(partially) been denoised, but not compressed. Some compression is achieved if
each of the models 4, is interpolated in a smaller number of spectral lines than
K. Let L <K be the number of interpolation spectral lines to be considered.
Then P =ML < MK = N and the DFT of compacted signal is similarly expressed
like in (18), but L replaces K .

Finally, the estimated compacted signal is computed with the help of an
inverse DFT,. The FAM is then described by the following procedure:

Step 1. Compute the frequency data Y = DFT,, (y).
Step 2. Use MVM to estimate the deterministic models {4, }

me0,M-1"

Step 3. Perform the interpolation of each model {4, } in L equally

me0,M -1
spaced spectral lines, with L < K .

Step 4. Construct the DFT, of compacted signal by concatenation, like in
equation (18) (with L instead of K), where P = ML .

Step 5. Apply the inverse DFT, to estimate the time values of compacted

signal x on 0,P-1.

The procedure above is quite general and only requires that M be a
divisor of N . No synchronization signal is necessary and even the main (rotation)
harmonic period 7, could miss or be unknown. Thus, even asynchronous signals
can be compacted by using FAM, which is not possible with TDSA. However, if
T exists and can be estimated, then the number of interpolation spectral lines L
has to be set accordingly. Usually, it is suitable that the compacted signal be
represented on a small number of main rotations (up to 10), which involves that
the maximum number of samples and the corresponding number of spectral lines
in each sub-band can easily be derived. However, it is not necessary that 7. be

known with high accuracy. If inaccurately estimated, the compacted signal will
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only lie in a support with length non divisible by 7. For example, if one wants x
to be represented on 5 full rotations, but 0.9-7 is used instead of 7, then the
resulted support length is 4.5x 7, instead of 5x7.. The information about the

main harmonic period is basically not affected, even in case this period is
variable. Also, by interpolation, the aliasing is avoided, since the operation is
applied on DFT and not on data.

The main drawback of FAM in its general form is the computational
effort. If the effect of interpolation is ignored, then the procedure requires about

(Nlog, N + Plog, P+ MK?®) operations. The interpolation is more or less
increasing this number.

A difficulty when using FAM is the selection of parameters N, M and
K as result of a trade-off. On one hand, the MVVM estimates are accurate for a big
number of spectral lines per sub-band K, which involves either N is large or M
is small. On the other hand, the original spectrum is better “imitated” by the
compacted one if the number of sub-bands M is large enough (i.e. the bandwidth
is small enough), which involves either N is large or K is small. Since both M
and K must be set with sufficiently large values, this involves the number of
acquired data N has to be large. This is the price paid for the absence of
synchronization signal.

An interesting particular case results when considering constant
polynomials as deterministic models, like in equation (17). In this case, the
constants are simply the averages computed over frequency data in every sub-
band. If the sub-bands are narrow enough, one can substitute the local DFT
variation by the frequency data averages, as instantaneous frequency contents.
This assumption involves a reduction of computational effort, which makes the
FAM appealing in applications. The compacted signal lies inside the support
0,M -1 and can directly be constructed, as outlined by the following result.

Theorem 3 With the deterministic models (17), the compacted signal X can be
estimated as follows.

x[0] = (0] , m=0
1-wl, & ylkM + m]

m

k
K k=0 1_WKWN

S 19
, mel,M -1 (19)

x[m] =

(The proof only relies on algebraic manipulations and is therefore omitted.)
If M is equal to period K, (see definition (5)) and the time average is

restricted to K periods, then the compacted signal resulted by applying TDSA is
the following (according to equation (6)):
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1 k21
= > JkM +m], VmeO,M-1. (20)
K=
Obviously, although equations (19) and (20) are different, they still have a
common kernel represented by “ y[kM + m]”, i.e. the comb rule in computing the
averages is the same. Theorem 3 shows that, when using FAM, one operates with
weighted averages of initial data, such that the spectrum of compacted signal
would keep the appearance of initial spectrum.

The amount of computations necessary to evaluate x from equations (19)
is about (8K +5)(M —1) operations. (No interpolation is necessary.) This amount

is sensibly lower than the number involved by the general procedure of FAM.

def
ag [m] =

5. Simulation results

Implementation of FAM in particular case of model (17) arises no special
problems. The only restriction that should be verified is N =MK . This is
however only a soft requirement.

The FAM has been implemented in MATLAB environment with model (17).
The following data have been employed in simulation experiments:

1.A sine wave of period K, corrupted by a Gaussian white noise.
2.A raw vibration signal of length N .
3.The high pass filtered vibration signal of 2.
The compacted signal is represented on M < N samples in all cases.
Fig. 1 illustrates a sine wave of period K =500 (a) that has been

compacted to signals with lengths M =333 (b) and M =71 (c).

Sine wave corrupted by Gaussian noise. SNR = 6.0206 dB. Noisy sine wave spectrum
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Fig. 1. A noisy sine wave and two compacted signals with their spectra.
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None of these lengths are divisors of K . However, both compacted

signals recovered the shape of the original one in time as well as in frequency. On
the right column of figure, the corresponding spectra are depicted. The sine wave
was corrupted by a quite strong Gaussian white noise (SNR = 6 dB). The spectra
of compacted signals in Figs. 1(b) and (c) are smoother than the original spectrum
(see the right column), but the resulted SNR is not necessarily increasing. Thus,
for M =333 (b) the SNR is smaller (4.73 dB), while for M =71 (c) the SNR is
bigger (7.1 dB). This implies that increasing the SNR has to be realized by
selecting N, M and K appropriately. Unfortunately, the variation of resulted
SNR with M (for a given N ) is extremely non linear, as Fig. 2 displays.

Variaton of SNR for an averaged noisy sine wave
i i i i i i i i
-Max: (M, SNR) = (12,13 .0871) _ _ _ | _ _ _ _ _
| | |

R
(3]
T

[ [l
| |
= — +
o 50 100 is0 200 250 300 350 400 450 500
Averaged frame length

Fig. 2. SNR versus the compacted support length.

This phenomenon has been confirmed by different simulations, with
different noises and initial SNR values. Thus, sometimes SNR is below the
original one, though these cases are by far less numerous than the cases where
SNR increases. The selected M =333 happened to be the worst case in this
example. In general, there are many possible selections of M such that the
resulted SNR sensibly increases. The figure also shows that the best chances to
increase SNR are obtained when M << N, i.e. when the number of acquired data
is large enough.

A harmonic vibration has been acquired from a bearing with rolling balls,
in order to perform fault detection and diagnosis [8]. The signal is depicted in Fig.
3(a), on top. The sampling rate was 20 kHz and the signal length is 809.35 ms
(N =16 187 samples). During the measurements, one has noticed that the rotation

speed varies around the nominal value of 44.37 Hz (about 2662 rpm) with a
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variance of more than £10% . The speed variation is mainly due to a non uniform
load, but probably the defect that started to develop on the inner race of bearing
also plays a role in this matter. This variation cannot easily be distinguished
within the figure. So, without accurately measuring the rotation speed, the period
of one rotation has been setto 7. = 22.53 ms (about 451 samples). Consequently,

the support length of compacted signal has been established to 4 full rotations, i.e.
M =1804 samples. Note that A is not a divisor of N and all acquired data have
been considered, without truncation or zero-padding. The resulted compacted
signal is depicted on bottom of Fig. 3(a). A bit more than 4 full rotations can
clearly be seen, because of the mentioned speed variation. As expected, the poor
estimation of 7. has practically no influence on the compacted signal.

A segment of raw vibration acquired from bearing <B3850609> Raw vibration spectrum
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Fig. 3. A raw vibration (a, top), the compacted signal (a, bottom) and spectra (b).

The original signal looks very noisy. The estimated SNR is about 3.27 dB.
However, FAM led to a noise reduction. Visually, the compacted signal looks less
noisy. In order to quantify this observation, the SNR of compacted signal has been
estimated by means of the best sine wave passing through the signal in the LS
sense. It has been derived that the new SNR increased to 10.53 dB. The denoising
effect is also emphasized by the spectra depicted in Fig. 3(b). The compacted
signal spectrum is smoother than the original spectrum, keeping the same shape.

The vibration has been filtered by a high pass filter with cut-off frequency
of 500 Hz (more than 10 times the main rotation frequency), in order to
remove/attenuate the main harmonic and the natural harmonics of bearing. The
resulted signal is quite asynchronous, in the sense that no predominant harmonic
can easily be detected. Fig. 4(a) shows on top the filtered vibration. The apparent
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low frequency harmonic is due to the modulation between 2 noises: one encoding
the information of bearing defect and another one issued from the environment
and interference with different sources of vibration. The parameters of compacted
signal depicted on bottom of Fig. 4(a) are the same (i.e. 4 full rotations long), but,
this time, the main rotation cannot be seen. This example clearly shows how
asynchronous (not necessarily harmonic signals) can be compacted by using the
FAM. The previous remarks regarding the noise reduction hold in this example as
well (see also the corresponding spectra in Fig. 4 (b)).

A segment of high pass filtered vibration. Bearing <B3850609>. Filtered vibration spectrum
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Fig. 4. A filtered vibration (a, top), the compacted signal (a, bottom) and spectra (b).

6. Conclusion

This paper dealt with the problem of signal compaction (partially
denoising and compression). An alternative to TDSA technique has been
introduced. The novel approach relies on frequency averaging with maximum
verisimilitude between the original and the compacted FT. The simulations
revealed many insights regarding the effectiveness of FAM, but its limitations too.
Nonetheless, the FAM might be interesting in practice since no synchronization
signals are required and asynchronous signals can also be compacted.
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