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SIGNAL COMPACTION BY MAXIMUM VERISIMILITUDE 

Dan STEFANOIU1, Janetta CULITA2 

De regulă, datele eşantionate furnizate de un proces sunt afectate de 
perturbaţii. Deşi înainte de prelucrarea datelor este necesară deparazitarea lor, 
zgomotele perturbatoare pot îngloba o parte a informaţiei dorite. În acest caz, este 
adecvată o deparazitare parţială, ca etapă preliminară a procedurii de prelucrare. 
O altă cerinţă frecvent întâlnită în pre-procesarea datelor o constituie compresia 
informaţiei utile într-un număr mai mic de date, care împreună cu deparazitarea 
parţială descriu conceptul de “compactare de semnal”. Articolul prezintă o metodă 
originală de obţinere a datelor preliminare compactate, bazată pe conceptul de 
“verosimilitate”, nefiind necesar un semnal de sincronizare care însoţeşte datele 
achiziţionate.  

Sampled data provided by a process are usually corrupted by various noises. 
Although data are required to be denoised before applying any further processing, 
the corrupting noises could encode a part of desired information. A partial 
denoising is suitable in this case, as part of pre-processing procedure. Another 
requirement frequently used in data pre-processing is to compress the useful 
information in a smaller number of data. Partial denoising and compression are 
gathered in the concept of “signal compaction”. The paper introduces an original 
method for providing compacted preliminary data, relied on the concept of 
“verisimilitude” and requiring no synchronization signal accompanying the 
acquired data. 

Keywords: time domain synchronous averaging, maximum verisimilitude 

1. Introduction 

An interesting problem of signal pre-processing (spp) is to extract a 
“useful” signal from noise-corrupted acquired data. The “usefulness” is regarded 
here from two points of view. Firstly, a part of noise should be attenuated such 
that the information carried by the initial signal is mostly encoded by the extracted 
signal as well. One refers to this operation as denoising. Secondly, some 
applications (like e.g. image interpretation or fault diagnosis and detection) 
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require redundant data. For other applications (such as speech or image coding), 
on the contrary, the less redundant the data, the better the performance. 
Redundancy is usually quantified by the compression ratio, coarsely computed as 
the ratio between the extracted signal and the original signal sizes. In general, pre-
processed signals are not required to be maximally compressed, but to preserve 
some redundancy in a smaller number of samples. By definition, one refers to 
partial denoising together with partial compression as (signal) compaction.  

The first difficulty in constructing a compacted signal arises from the fact 
that the rule of combination between the true (deterministic) data and the 
(stochastic) noise is unknown. (The noise is often considered as white Gaussian, 
with null statistical mean, as consequence of Central Limit Theorem). A second 
difficulty is concerned with the separation between the deterministic and the 
stochastic components of data. Even in case of signal-noise superposition, it is 
extremely difficult, if not impossible, to draw a fine line between the two 
components. Therefore, the compacted signal may contain a part of noise, 
whereas the removed signal may include some useful information that should not 
have been removed. The quality of the resulted separation strongly depends upon 
the denoising method and is assessed by means of Signal-to-Noise Ratio (SNR).  

Depending on the SNR and on the subsequent purpose of pre-processed 
data, one can identify three main classes of signal extraction methods, based on 
models in time, in frequency or in time-frequency. In time domain, the oldest 
approach is perhaps based on interpolation techniques, mostly coming from early 
works of classical Mathematics. The interpolation model includes in general the 
most part of initial noise, because the model is maximally fitted to data. Another 
approach using parametric models is to find the waveform which matches the data 
the best, according to a given criterion, usually Least Squares (LS) based. The 
waveform results by means of a system identification recipe [1]. In general, the 
identification methods are however quite complex. Within the spp stage, simpler 
methods are usually preferred.  

A very practical approach in time domain is concerned with averaging and 
non-parametric models. The average is however a very coarse estimation of data 
provider behavior. In spite of such a limitation, when cleverly used, the average 
could outperform other more sophisticated models in simplicity and effectiveness. 
In [2] has been devised a technique known as Time Domain Synchronous 
Averaging (TDSA). A combination between TDSA and Lagrange interpolation 
techniques is introduced in [3]. Nowadays, TDSA is employed in numerous 
applications where data are collected from rotating machinery, despite the fact it 
requires 2 data sets: the main one and the synchronization impulses.  

In frequency domain, the basic methods of compaction during spp are 
based upon spectral estimation techniques. A good description of these techniques 
can be found in [4] or [5] and they aim to provide a smoother spectrum than the 
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original one. Smoothing the spectrum implies noise attenuation and a more 
accurate estimation of compacted signal spectrum. The frequency approaches 
operate within the hypothesis that the measured data are quasi-stationary, i.e. their 
spectrum is quasi-constant in time. But, in general, the most systems provide data 
which are more or less non-stationary. Therefore, an approach in joint time-
frequency domain is more suitable when operating with large sets of non-
stationary data. A quasi complete description of time-frequency analysis methods 
can be found in [6]. In spp, the time-frequency methods are seldom employed 
because of their complexity.  

The Frequency Averaging Method (FAM) described hereafter belongs to 
the frequency domain approaches. To the best of our knowledge, the method is 
genuine, i.e. it has not been devised by other scientists. The article is organized as 
follows. Into the next section the TDSA method is succinctly overviewed. Section 
3 is concerned with basic hypotheses regarding the noises and the presentation of 
Maximum Verisimilitude Method as theoretical basic tool. Within the Section 4, 
the FAM is described. Simulation examples using artificial and real measured data 
(bearing vibrations) are given in Section 5. Some interesting insights about 
method effectiveness are also revealed.  

2. On TDSA 

The principle of TDSA originates from the early works in Signal 
Processing. A clear evidence of time domain averaging is reported for example in 
[7] – the Welch method. But the TDSA technique has been devised by McFadden 
in [2]. The main idea is to perform the signal compaction in case the measured 
data are provided by a harmonic system with the output y  described as follows: 

 
 ( ) ( ) ( )y t x t v t= + ,   t∀ ∈R , (1) 

 
where x  is the main harmonic signal with a known period rT  and v  is an 
unknown noise. For example, such signals are returned by rotating machineries, 
where rT  is the rotation period, usually known or measurable. No assumptions are 
made regarding the noise v  in [2], but, obviously, its average has been considered 
null. The problem is to extract x  from y , i.e. to provide an estimation of signal 
x . The compacted signal is then constructed by restricting x  to one period length.  

The solution of this problem is devised in 2 steps. Firstly, x  is estimated 
by the averaged signal below:  
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where 1N ≥  is the number of periods on which the average should be computed. 
Obviously, Na  can be expressed as the output of a comb filter Nc  [4], [5], 
inputted by y , with selectivity controlled by N . There are two main drawbacks 
of this approach: the period rT  must accurately be known and Na  is not 
necessarily periodic, as the sum in (2) is finite. Thus, the input signal should be 
measured over an infinite horizon of time, albeit the average sum in (2) is finite. 
In the second step, y  is sampled with a period sT . The measuring horizon of time 
is finite and included into [0, ]rNT  interval. Then the sampling operation can be 
simulated in continuous time by multiplying the data y  with an infinite train of 
equally spaced Dirac impulses:  
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,   t∀ ∈R . (3) 

 
If data are restricted to some measuring horizon by window Nw  (usually 

rectangular on [0, ]rNT ), the average signal approximating the main harmonic x  
can be defined as follows (by accounting equation (3)):  
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In definition (4), the comb filter has been used again. Unlike in definition 

(2), the time range of signal Na  in (4) has to be restricted to one period: 
[0, )rt T∈ , due to windowing. The signal could extend beyond this interval, but its 

values are less accurate. In definition (4), one can operate with finite data sets 
(because of windowing), which improves the definition (2). However, in this case, 

Na  is not necessarily periodic as well, because definitions (2) and (4) are based on 
the same averaging technique. Unfortunately, the control over the filter selectivity 
is lost: increasing N  does not necessarily improve Na  accuracy. Also, the main 
period rT  still has to be known in advance. This is the major restriction of TDSA.  

Nonetheless, TDSA is very appealing in applications due to its simplicity, 
albeit, in practice, not only rT  cannot accurately be known, but it usually varies in 
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time. Therefore, a synchronization signal accompanying the data is necessary. 
This signal looks like a comb as well and slides over the data. For any position of 
comb over the data, the average is computed by extracting only the values pointed 
by the comb teeth. Obviously, this mechanism works identically whenever the 
teeth are equally spaced or not. Providing the synchronization signal for data is 
however not always an easy task.  

In [2] a Fourier analysis is also performed, but one operates with 
continuous time signals, which forced the extension of FT definition to an infinite 
train of Dirac impulses. An interesting effect of TDSA (not emphasized in 
McFadden articles) is concerned with the discrete frequency representation of 
signals. The difficulty in giving frequency interpretations in [2] results from the 
ad hoc transfer of entities that naturally lie into the framework of discrete time 
signals to continuous time. A simpler approach is to consider only discrete time 
signals and to work with the Discrete Fourier Transform (DFT) [4], [5]. Compute 
the number of samples acquired during one period, rT : 

 

 /
def

s r sK T T= ⎢ ⎥⎣ ⎦ . (5) 
 
The integer sK  of (5) plays the role of estimated period, in terms of normalized 
time, for the harmonic signal x  (with an error smaller than sT ). Assume the 
synchronization signal consists of N  impulses located at instants: 

0 1 10 NK K K −= < < < . Then the average signal Na  is simply expressed on one 
harmonic period by the following definition: 
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=
= +∑ ,   0, 1sk K∀ ∈ − . (6) 

 
Obviously, the definition (6) relies on the finite set of acquired data 

[ ] ( )sy p y pT= , 0, 1sp NK∈ −  and works exactly when the sampling period 
divides the harmonic period. Write in capitals the DFTs associated to the discrete 
signals above. Then the following remarkable result holds:  

Theorem 1 The DFT of average signal Na  is expressed as a weighted average 
of DFTs applied on initial data y , for one single harmonic period sK . 
More specific:  
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where: 
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(The proof is straightforward and therefore omitted.)  

Theorem 1 shows that the frequency contents of compacted signal can be 
estimated by the following scenario: segment the data into N  successive frames, 
compute the DFT of order sK  for each resulted frame and average the results.  

Consider the N  computed DFTs are concatenated in a “frequency signal”. 
Then, in case of uniform synchronization, equations (7) and (8) become:  
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(i.e. simply the average) and, respectively:  
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(i.e. the frames do not overlap – see the sum limits). A sliding comb with N  
equally spaced teeth at sK  instants can be used to extract the averaged values for 
each of the sK  positions in a period. This picture is quite intuitive and relies on 
the hypothesis that, if the main harmonic has a constant period sK , then the N  
DFTs are quite similar and thus, by averaging them, a noise reduction is obtained. 
Moreover, the interpretation holds for non-uniform synchronization as well. But, 
in this case, the frames could overlap, depending of index values in (6).  

3. Noise Hypotheses and MVM  

Return to equation (1) and consider that the measured data y , the 
compacted signal x  and the noise v  are discrete time signals. Usually, the data 
set includes N  acquired samples measured from a system. Thus, y  is a finite 
length discrete time signal with support included in 0, 1N − . One wants that the 
compacted signal x  be a finite length discrete time signal as well, but with 
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smaller support, for example inside 0, 1P − , where P N≤ . Finally, the noise v  is 
also discrete time but not necessarily additive to x  in the sense of equation (1). 
(Actually, in this context, the signals have different supports.) Two natural 
hypotheses regarding the noise are assumed, as it will be shown next.  

One can split the discrete spectrum of y  into M  non overlapped sub-
bands with the same width. Consider for simplicity, that M  is a divisor of N , i.e. 
N K M= ⋅  for some 1K ≥ . Obviously, this condition is not very restrictive. 
Also, denote by lDFT  the DFT operator applied to a signal of length l . Then the 
natural hypotheses below are assumed hereafter:  

H1 The DFT of signal y  is affected by a set of M  complex valued and additive 
sub-band noises mV , 0, 1m M∈ −  with finite supports included into 
corresponding sub-bands. (Thus, the noises mV  are orthogonal each other.) 

H2 Noises mV  are white Gaussian with null mean and variances 2
mλ , 

0, 1m M∈ −  (unknown).  
According to hypothesis H1, the following model of ( )NY DFT y≡  can be 

defined for any 0, 1m M∈ −  and 1,0 −∈ Kk :  
 

 [ ] [ ] [ ]m mY mK k A k V k+ = + , (11) 

 

where: 0, 1mK k n N+ = ∈ −  has been expressed by using the Theorem of 
Division with Reminder (TDR) and mA  is a deterministic model of DFT. Usually, 

mA  is an auto-regressive model or a polynomial. By concatenation of all mA  
models, the DFT of compacted signal x  is obtained. The overall model (11) is a 
description of DFT for every frequency sub-band. Hypothesis H2 can be expressed 
as follows, for any 0, 1m M∈ − , 0, 1l K∈ −  and 1,0 −∈ Kk :  
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In (12), p  is the density of probability, E  stands for the statistical average 
operator (the expecting operator), a∗  is the complex conjugate of a  and 0[ ]δ •  
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denotes the discrete unit impulse (the Kronecker symbol). As consequence of 
hypothesis H2, every noise mV  has independent values. 

The problem is to provide an estimation of deterministic models mA  

( 0, 1m M∈ − ), by using the DFT of measured data [ ]Y n , 0, 1n N∈ − . The 
estimations of variances 2

mλ , ( 0, 1m M∈ − ) can be used to assess the models 
accuracy. Intuitively, one wants that the spectrum of compacted signal keeps the 
appearance of original data spectrum. With other words, the two spectra should 
exhibit similar shapes, but the compacted spectrum must be less noisy. This 
requirement can be quantified by means of verisimilitude concept, which comes 
from System Identification [1]. Thus, in order to estimate the parameters of 
models mA , the Maximum Verisimilitude Method (MVM) can be employed [1], 
[9]. Before describing the MVM, consider that every model mA  is a linear:  

 
 [ ] [ ]T

m m mA k k= φ θ ,   k∀ ∈N , (13) 

where [ ]m kφ  (data) and mθ  (parameters) are column vectors with the same length 
(the number of parameters), while T  denotes the transposition operator. The 
linearity of model aims to keep the low complexity required by spp methods. For 
example, if mA  is a polynomial with degree mp :  
 
 ,0 ,1 ,[ ] m

m
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then, in (13): [ ] 1 mpT

m k k k⎡ ⎤= ⎣ ⎦φ  encompasses the data, real valued, while 

,0 ,1 , m

T
m m m m p⎡ ⎤= ⎣ ⎦θ α α α  includes all parameters, real or complex valued. 

If mΘ  is the vector of parameters mθ  extended by the unknown variance 
2
mλ , the MVM estimation is defined by:  
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In (15), mS  is the stability domain of model mA , the data segment in sub-band 

0, 1m M∈ −  is 0, 1{ [ ]}m k KY Y mK k
∈ −

= +  and ( | )m mY Θp  is the density of 

conditional probability between the data mY  and the parameters mΘ . Thus, the 
parameters should be selected such that the measured data occur with a maximum 
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probability. This actually means that the parameters have maximum verisimilitude 
to the measured data. Without any knowledge about the noises affecting the data, 
the equation (16) has little impact in practice. Hypotheses H1 and H2 lead however 
the following result.  

Theorem 2 Under H1 and H2 hypotheses, the MVM estimation (15) is identical 
to LS estimation, i.e., for any 0, 1m M∈ − :  
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(The proof is well known and requires no special manipulations.)  

Theorem 2 simplifies the approach and keeps the same interpretation 
regarding the maximum of verisimilitude. Moreover, due to LS properties (see [1] 
or [9]), the estimates (16) are convergent to the true values as K  increases.  

The complexity of model (11) and the computational effort can be 
controlled through the selected number of parameters (e.g. 1mp +  in model (14)). 
One of the simplest models is obtained by selecting 0mp =  in (14). In this case, 
due to (16), the model becomes:  

 
1

0

1ˆ [ ]
K

m
q

A Y mK q
K

−

=

= +∑ ,   0, 1m M∀ ∈ − , (17) 

 
i.e. it is expressed as simple averages of frequency data in corresponding sub-
bands. Obviously, there is a big difference between equations (9) and (17). Within 
TDSA, the averages are computed following the comb rule, whereas by means of 
MVM frequency averaging, consecutive values inside the same sub-band are 
employed. Also, note that, in (17), not the spectral values are used, but the 
frequency data obtained by computing the DFT of original data.  

4. The FAM  

The MVM has theoretically shown how the DFT of compacted signal can 
be estimated, by using frequency data. Theorem 2 involves that the accuracy of 
estimation improves with the number of spectral lines allocated to each sub-band 
( K ). Usually, the number of sub-bands ( M ) is constant and thus, the accuracy 
increases if the number of acquired data ( N ) increases. But the most interesting 
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consequence of Theorem 2 is concerned with the reconstruction of compacted 
signal from its DFT, which constitutes the core of FAM.  

After the models mA  being estimated, the DFT of compacted signal results 
by concatenation:  
 ˆˆ [ ] [ ]mX mK k A k+ = ,   0, 1m M∀ ∈ − , 0, 1k M∀ ∈ − . (18) 
In (18), the TDR has been invoked again. The models mA  being estimated by 
MVM, the DFT of compacted signal is the nearest deterministic waveform to the 
DFT of initial data, in the LS sense. So, the spectrum of compacted signal keeps 
the best the appearance of original data spectrum and, moreover, it is smoother.  

In equation (18), one can see that the compacted signal has the same 
support as the original measured one, i.e. P N= . Thus, the original data have 
(partially) been denoised, but not compressed. Some compression is achieved if 
each of the models mA  is interpolated in a smaller number of spectral lines than 
K . Let L K<  be the number of interpolation spectral lines to be considered. 
Then P ML MK N= < =  and the DFT of compacted signal is similarly expressed 
like in (18), but L  replaces K .  

Finally, the estimated compacted signal is computed with the help of an 
inverse PDFT . The FAM is then described by the following procedure:  

Step 1. Compute the frequency data ( )NY DFT y≡ .  
Step 2. Use MVM to estimate the deterministic models { } 0, 1m m M

A
∈ −

.  

Step 3. Perform the interpolation of each model { } 0, 1m m M
A

∈ −
 in L  equally 

spaced spectral lines, with L K< .  
Step 4. Construct the PDFT  of compacted signal by concatenation, like in 

equation (18) (with L  instead of K ), where P ML= .  
Step 5. Apply the inverse PDFT  to estimate the time values of compacted 

signal x̂  on 0, 1P − . 
The procedure above is quite general and only requires that M  be a 

divisor of N . No synchronization signal is necessary and even the main (rotation) 
harmonic period rT  could miss or be unknown. Thus, even asynchronous signals 
can be compacted by using FAM, which is not possible with TDSA. However, if 

rT  exists and can be estimated, then the number of interpolation spectral lines L  
has to be set accordingly. Usually, it is suitable that the compacted signal be 
represented on a small number of main rotations (up to 10), which involves that 
the maximum number of samples and the corresponding number of spectral lines 
in each sub-band can easily be derived. However, it is not necessary that rT  be 
known with high accuracy. If inaccurately estimated, the compacted signal will 
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only lie in a support with length non divisible by rT . For example, if one wants x  
to be represented on 5 full rotations, but 0.9 rT⋅  is used instead of rT , then the 
resulted support length is 4.5 rT×  instead of 5 rT× . The information about the 
main harmonic period is basically not affected, even in case this period is 
variable. Also, by interpolation, the aliasing is avoided, since the operation is 
applied on DFT and not on data.  

The main drawback of FAM in its general form is the computational 
effort. If the effect of interpolation is ignored, then the procedure requires about 

3
2 2( log log )N N P P MK+ +  operations. The interpolation is more or less 

increasing this number.  
A difficulty when using FAM is the selection of parameters N , M  and 

K  as result of a trade-off. On one hand, the MVM estimates are accurate for a big 
number of spectral lines per sub-band K , which involves either N  is large or M  
is small. On the other hand, the original spectrum is better “imitated” by the 
compacted one if the number of sub-bands M  is large enough (i.e. the bandwidth 
is small enough), which involves either N  is large or K  is small. Since both M  
and K  must be set with sufficiently large values, this involves the number of 
acquired data N  has to be large. This is the price paid for the absence of 
synchronization signal.  

An interesting particular case results when considering constant 
polynomials as deterministic models, like in equation (17). In this case, the 
constants are simply the averages computed over frequency data in every sub-
band. If the sub-bands are narrow enough, one can substitute the local DFT 
variation by the frequency data averages, as instantaneous frequency contents. 
This assumption involves a reduction of computational effort, which makes the 
FAM appealing in applications. The compacted signal lies inside the support 
0, 1M −  and can directly be constructed, as outlined by the following result.  

Theorem 3 With the deterministic models (17), the compacted signal x̂  can be 
estimated as follows:  

 1

0

ˆ[0] [0] , 0
1 [ ]ˆ[ ] , 1, 1

1

m K
M

k m
k K N

x y m
w y kM mx m m M

K w w

−

=

= =⎧
⎪

− +⎨ = ∈ −⎪ −⎩
∑

. (19) 

(The proof only relies on algebraic manipulations and is therefore omitted.)  
If M  is equal to period sK  (see definition (5)) and the time average is 

restricted to K  periods, then the compacted signal resulted by applying TDSA is 
the following (according to equation (6)):  
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Obviously, although equations (19) and (20) are different, they still have a 
common kernel represented by “ [ ]y kM m+ ”, i.e. the comb rule in computing the 
averages is the same. Theorem 3 shows that, when using FAM, one operates with 
weighted averages of initial data, such that the spectrum of compacted signal 
would keep the appearance of initial spectrum.  

The amount of computations necessary to evaluate x̂  from equations (19) 
is about (8 5)( 1)K M+ −  operations. (No interpolation is necessary.) This amount 
is sensibly lower than the number involved by the general procedure of FAM.  

5. Simulation results 

Implementation of FAM in particular case of model (17) arises no special 
problems. The only restriction that should be verified is N MK= . This is 
however only a soft requirement.  

The FAM has been implemented in MATLAB environment with model (17). 
The following data have been employed in simulation experiments:  

1.A sine wave of period sK , corrupted by a Gaussian white noise.  
2.A raw vibration signal of length N .  
3.The high pass filtered vibration signal of 2.  

The compacted signal is represented on M N<  samples in all cases.  
Fig. 1 illustrates a sine wave of period 500sK =  (a) that has been 

compacted to signals with lengths 333M =  (b) and 71M =  (c).  

 
Fig. 1. A noisy sine wave and two compacted signals with their spectra.  
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None of these lengths are divisors of sK . However, both compacted 
signals recovered the shape of the original one in time as well as in frequency. On 
the right column of figure, the corresponding spectra are depicted. The sine wave 
was corrupted by a quite strong Gaussian white noise (SNR 6 dB≅ ). The spectra 
of compacted signals in Figs. 1(b) and (c) are smoother than the original spectrum 
(see the right column), but the resulted SNR is not necessarily increasing. Thus, 
for 333M =  (b) the SNR is smaller (4.73 dB), while for 71M =  (c) the SNR is 
bigger (7.1 dB). This implies that increasing the SNR has to be realized by 
selecting N , M  and K  appropriately. Unfortunately, the variation of resulted 
SNR with M  (for a given N ) is extremely non linear, as Fig. 2 displays.  
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Fig. 2. SNR versus the compacted support length. 

This phenomenon has been confirmed by different simulations, with 
different noises and initial SNR values. Thus, sometimes SNR is below the 
original one, though these cases are by far less numerous than the cases where 
SNR increases. The selected 333M =  happened to be the worst case in this 
example. In general, there are many possible selections of M  such that the 
resulted SNR sensibly increases. The figure also shows that the best chances to 
increase SNR are obtained when M N<< , i.e. when the number of acquired data 
is large enough. 

A harmonic vibration has been acquired from a bearing with rolling balls, 
in order to perform fault detection and diagnosis [8]. The signal is depicted in Fig. 
3(a), on top. The sampling rate was 20 kHz and the signal length is 809.35 ms 
( 16 187N =  samples). During the measurements, one has noticed that the rotation 
speed varies around the nominal value of 44.37 Hz (about 2662 rpm) with a 
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variance of more than 10%± . The speed variation is mainly due to a non uniform 
load, but probably the defect that started to develop on the inner race of bearing 
also plays a role in this matter. This variation cannot easily be distinguished 
within the figure. So, without accurately measuring the rotation speed, the period 
of one rotation has been set to 22.53rT =  ms (about 451 samples). Consequently, 
the support length of compacted signal has been established to 4 full rotations, i.e. 

1804M =  samples. Note that M  is not a divisor of N  and all acquired data have 
been considered, without truncation or zero-padding. The resulted compacted 
signal is depicted on bottom of Fig. 3(a). A bit more than 4 full rotations can 
clearly be seen, because of the mentioned speed variation. As expected, the poor 
estimation of rT  has practically no influence on the compacted signal.  

 

 
Fig. 3. A raw vibration (a, top), the compacted signal (a, bottom) and spectra (b). 

The original signal looks very noisy. The estimated SNR is about 3.27 dB. 
However, FAM led to a noise reduction. Visually, the compacted signal looks less 
noisy. In order to quantify this observation, the SNR of compacted signal has been 
estimated by means of the best sine wave passing through the signal in the LS 
sense. It has been derived that the new SNR increased to 10.53 dB. The denoising 
effect is also emphasized by the spectra depicted in Fig. 3(b). The compacted 
signal spectrum is smoother than the original spectrum, keeping the same shape.  

The vibration has been filtered by a high pass filter with cut-off frequency 
of 500 Hz (more than 10 times the main rotation frequency), in order to 
remove/attenuate the main harmonic and the natural harmonics of bearing. The 
resulted signal is quite asynchronous, in the sense that no predominant harmonic 
can easily be detected. Fig. 4(a) shows on top the filtered vibration. The apparent 
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low frequency harmonic is due to the modulation between 2 noises: one encoding 
the information of bearing defect and another one issued from the environment 
and interference with different sources of vibration. The parameters of compacted 
signal depicted on bottom of Fig. 4(a) are the same (i.e. 4 full rotations long), but, 
this time, the main rotation cannot be seen. This example clearly shows how 
asynchronous (not necessarily harmonic signals) can be compacted by using the 
FAM. The previous remarks regarding the noise reduction hold in this example as 
well (see also the corresponding spectra in Fig. 4 (b)).  

 

 
Fig. 4. A filtered vibration (a, top), the compacted signal (a, bottom) and spectra (b). 

 
 
6. Conclusion 
 
This paper dealt with the problem of signal compaction (partially 

denoising and compression). An alternative to TDSA technique has been 
introduced. The novel approach relies on frequency averaging with maximum 
verisimilitude between the original and the compacted FT. The simulations 
revealed many insights regarding the effectiveness of FAM, but its limitations too. 
Nonetheless, the FAM might be interesting in practice since no synchronization 
signals are required and asynchronous signals can also be compacted.  
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