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EIGENVALUE PROBLEM FOR SCHRODINGER EQUATION
USING NUMEROV METHOD

Cosmin TATU', Mihai RIZEA?, Niculae N. PUSCAS®

In aceeasti lucrare este prezentatd o metodd originald de rezolvare a
ecuatiei lui Schrédinger unidimensionald, folosind potentialul Wood-Saxon, cu
ambele puncte de intoarcere interior respectiv exterior care poate fi utilizata §i in
alte domenii (de exemplu in spectroscopie moleculard), precum si solutia numericd
a acesteia. Acestea se referd la alegerea pasului, schimbarea pasului, iteratia
valorilor proprii, fixarea limitelor inferioard respectiv superioard a valorilor
proprii, determinarea unui interval de integrare necesar pentru coordonata de
porzitie, un exemplu numeric cu potentialul Wood—Saxon si o comparatie a Metodei
Numerov cu alte metode.

In this paper we present an original method to solve the one-dimensional
Schrodinger equation in Wood Saxon potential, with both an inner and outer
classical turning point which can be used in other fields (for example molecular
spectroscopy) and also the its numerical solution. These involve choice of a step
size, changing step size, iteration on the eigenvalue, setting upper and lower bounds
on the eigenvalue, determining a useful range of the coordinate for the numerical
integration, a numerical example with Wood—Saxon potential and a comparation
between Numerov method and other methods.

Keywords: one-dimensional Schrodinger equation,Wood Saxon potential,
eigenvalue, Numerov method, classical turning point.

1. Introduction

Over the past couple of decades, new algoritms have improved the accuracy
and efficiency with a few orders comparable of the original Numerov method for
resonant state and highest oscillatory solution, by finding better discretization or
extending the interval of periodicity.

In these algoritms we found Taylor series expansion [1], [2], continuity of
the logarithmic derivative [2], bisection method [3] used for finding zero of the
nonlinear equation f (x) =0, a few types of discretizations [1]-[5],

trigonometrically-fitting method [4], [5] (TFM) which overcome the traditional
Obrechkoff one-step method (or called as the non-TFM) for its poor-accuracy in
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the resonant state, and Wood Saxon potential. Numerical solution of the one-
dimensional Schrodinger equation in a Wood-Saxon potential has seen application
in electrochemistry.

Numerov’s method is the highest order method which is at the same time a
three-point method. Lower-order methods such as the Runge-Kutta method (error
of order h*y™) lead to smaller net intervals %, and hence longer integrations
times and more roundoff errors. Methods involving more than three adjacent
function values should be avoided, since they are frequently unstable. If the
Noumerov method with a given step size 4 has insufficient accuracy, the remedy
lies in decreasing the step size, not in going to some other method.

2. Numerov method; theory

Method of Numerov is the most popular scheme to integrate the one-
dimensional Scrodinger equation:
y'=f(x)yx), f(x)=V(x)-E, x€[a,b] (1
with nonsingular potential V'(x). In order to solve it we used a three point scheme
of the form:
yx+h)=2y(x)+ y(x=h) = (V"' (x+ )+ y" (x =) + B y"(x)  (2)
where:

By =h112, B =51"/6 3)
and hrepresent the step size. The values of B, and fB, where obtained from the
condition that Eq. (2) may be integrated exactly, polynomials whose degree is as
high as possible. In fact, the algoritm (2) and (3) integrates exactly the functions
Lx,x*,x*,x" and x°.

It should be noted, however, that the general behaviour of the solution of
Eq.(1) is better described in terms of the exponential functions. Indeed, take some
subinterval [a;,b;] of [a,b] on which approximate V'(x) by a constant V . The Eq.

(1) is then approximated by y_” = fy, f =V — E which has the general solution:

y=4, exp(ﬁx)+ B, exp(— \/7x) 4)

It means that the algorithm (2) and (3) is accurate enough for Eq.(1) if the
step size & is so small that the exponential functions can be approximated safely
by fifth order polynomials. Therefore the larger f is the smaller should be the
step size to be used and this is the basis of repeated criticism of the standard
Numerov scheme when it is used to integrate Eq. (1) at higher energies.

We shall discuss the various problems encountered, and methods used to
solve the eigenvalue problem for Scrédinger equation:
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* How to chose a step size, how to decide when the step size needs
changing, and how to carry out this change. A midpoint formula is develop for use
with the Numerov method.

* How to iterate on the eigenvalue when already close to it. The usual
variational method is put into a convenient form,and a formula is developed for
the derivative of the wavefunction, to be used with the Numerov method (it
should be noted that the Numerov method itself does not give the derivative at
all).

* How to narrow down the search for the desired eigenvalue (with N a
given number of nodes) in the initial stages.

* How to decide on a range of the independent variable x for the numerical
integration.

In order to establish the statement of the problem, and a quick review of
the Numerov method we consider the form of one-dimensional Scrodinger
equation:

dZ
d2

§=f(x>y(x> (5)

where
) =@M 1)V (x) - E]. (6)
Here V(x) is the potential energy function, M is the reduced mass of the
problem, and #°is Planck's constant divided by 27. The potential
V(x)approaches zero in the limit of large positivex, it is negative for

intermediare values of x, and becomes positive and large for small positive x .
Formally speaking, we desire a solution y(x) which is bounded and square-

integrable on the positive x axis, with y(0) = 0. In practice, we need not consider
values near x =0 at all, since y(x) becomes exponentially small in that region,
due to the “repulsive core” of the potential ' (x). The energy £ in Eq. (6) is an
eigenvalue, to be determined so that the solution y,(x) of Eq. (5) is not only

square-integrable (and therefore approaches zero as xapproaches infinity), but
has exactly N nodes (zeros) on the positive x axis.
The eigenvalue E, in question are negative. For any £, eigenvalue or not,
there are two values of x, called the classical turning points, at which:
f(x)=0. (7
The desired solution yp(x) has increasing exponential behavior for
0 < x < x,, oscillatory behavior between the two turning points [where f(x) is
negative], and decreasing exponential behavior for x >x,. We shall concentrate
on the problem of numerical integration of the differential Eq. (5), without
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worrying about the eigenvalue problem aspects; that is, we assume that f(x) is a
given function, which is large and positive for small x, becomes negative in the
range x, <x<x, [where x,and x, are the solutions of Eq. (7)], and then
becomes positive again, approaching a constant positive value as x approaches
infinity. In order to establish notation for later use, we review Numerov method
briefly here, and follow this with a brief reminder why this is the method of
choice. We start from the Taylor expansion of y(x + /) around the point x,

0 n

Yoty =3y ®)

n=0 n'

where y is the n'th derivative if y(x) evaluated at the point x . We obtained:

1 Lo 1w 1 e
E[y(x+h)+y(x—h)]=y +5h O TE AR A )
and, differentiating twice,
4
%[y(z)(x+h)+y(2)(x—h)] =y? +%h2y(4) +%y(6) +o (10)

We now multiply Eq. (10) by the factoréhz, and substract the result

from Eq. (9). This eliminates the term proportional to 3. We replace the second

derivative y'*, wherever it occurs, by f(x)y(x) according to Eq. (5). Introducing
the notation

h h* 2M

T = — =

(x) 12f(X) 27

we thus arrive to the basic formula of the Numerov method

[V(x)-E] (11)

=Tx+M)y(x+h)+[1-T(x—h)]y(x—h) =[2+10T(x)]y(x)—%y(6) +... (12)

If y(x) and y(x — k) are known, y(x+ /) can be found directly from this

equation if the error term, proportional to ', is ignored; the values of T(x)are
known, of course.

3. Changing net size

In the case of large positive values of the potential V'(x) for small x, we
must start the integration with a rather small net size /4. Unless we are prepared to
change net size as we go out, we will then waste a lot of machine time in the
region where f(x) is small in absolute value. It is therefore necessary to decide,
during the course of the integration, whether the net size can be increased with
safety, whether it must perhaps be decreased, and to program in the necessary
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steps for carrying out these operations. In the neighborhood of a point x at which
f(x) is positive and varying slowly, the solution y(x) has roughly exponential
behavior exp(tfax) with a = \/m and in a region of negative f(x), the
behavior of y(x) is oscillatory, of type sin(kx —b) with k =,/— f(x). In either
case, we obtain the estimate:
YO =) y(x) (13)
We substitute this estimate into the error term of Eq. (12), and use the notation
(11):
Error.in.y(x+h 72
YD) oy (14)
y(x) 10
The relative error per step that we are prepared to tolerate depends on the
total number of the steps we anticipate having to take, and on the accuracy with
which we wish to know the final wavefunction. The number of steps we shall
have to take is proportional to the number of nodes N in the wavefunction, since
a given accuracy in y(x) decides in the main the number of half-wavelengths can
be estimated as N +1/2 for our purpose.

As an example, suppose we anticipate having to take some 500 steps
altoghether, and we wish to know the function y(x) to 1% accuracy. We can then

Relative error per step =

tolerate relative errors of up to 2x 107>, witch by Eq. (14) means | 7(x) |< 0.001 is
a safe upper limit. These estimate depend on integrating in such a way that error
made at a given step does not tend to perpetuate itself, with compound interest,
during subsequent steps. It should be noted that the condition deduced from the
estimate (14) is a condition on T7(x), on the coefficient in the differential
equation, not on the solution y(x) directly. This highly desirable behavior is
associated with the linearity if the differential Eq. (5), and is sometimes not
brought out clearly in books on numerical analysis where the emphasis is
frequently on the solution of nonlinear differential equations. Since the condition
which determines the choice of step size is on 7T(x), the regions of x in which
different step sizes are required can be determined as soon as 7'(x) is known for
all x to sufficient accuracy, as soon as we have a trial value of the energy F
[which appears in Eq. (11)] sufficiently close to the true value of E. Thus, in
principle, #(x) need not be tested at every point during the integration; but in
practice, such a test takes little time. The only step-size changes of interest are
halving and doubling of the step size. T'(x) should be calculated in minimum

time. The effective way of doing so is to store, in core memory, the values of:
Y(x)=h"2MV (x)/12h° (15)
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for all netpoints x, =nh on the finest net size /. The computation of 7'(x) for
this net size is then a straight table-lookup followed by substraction of a constant:
T(x)=Y(x)—h>2ME /12#> (16)

If we restrict net-size changes to doubling and halvings, and if h in Eq.
(15) is the finest net size ever used, then the effect of net-size changes amounts to
multiplication of the right side of Eq. (16) by an appropriate power of 4, a fast
operation in a binary machine. If % is chosen as indicated, the possible net-size
halving during the course of the integration will never lead us to a net size A'
smaller than %, and there will never be a need for interpolations in the table of
Y(x).

Doubling the net size is trivial: all we need to do is to carry along, during
the integration, y(x —2h)as well as y(x - h) .When h is doubled, as a result of a
test on T(x+h), the value of y(x—2h) is stored into the position reserved
for y(x—h), T(x) is multiplied by 4, and T(x—h')=T(x—2h) are obtained by
table-lookup followed by multiplication by a new power of 4.

Halving the net size, at first sight, is more troublesome.If we decide that
the absolute value of 7'(x + 4) is too large for comfort, and to introduce the halved

net size h'=h/2, we require y(x—h')= y(x — g) to continue the integration. The

value of y(x) known to us are y(x—#) and y(x). We thus require an accurate

formula for midpoint interpolation-accurate to the same order as the Numerov
method itself —for otherwise we lose the advantage of the Numerov method.

Letting x, =x —g be the point at which we desire to know y, our problem can

be restarted as follows: find y(x,), given values of y(x,+#4') and y(x,—h'), and
given that y(X) satisfies the differential equation (5). The solution, though

exceedingly simple, does not, to our knowledge, appear in the literature: it consist
in using the basic formula of the Numerov method, Eq. (12), to solve for it y(x).
The accuracy is then obviously the same as the accuracy of the Numerov
method.No additional function values need be stored and net-size halving is now
as simple as net-size doubling. For the sake of the record,we write down the
midpoint interpolation formula explicitly (in the error term, we replace
2+107T(x) by 2):

N-Tx+M]y(x+h)+[1-T(x—-h)]y(x—h) N h(’y“‘)
2+107T(x) 480

y(x) = +.. . (17)



Eigenvalue problem for Schrodinger equation using numerov method 63

4. Iteration on the eigenvalue when we are close and a derivative formula

The lowest eigenvalue of the Hamiltonian E is approximated by the mean

h? 2 2
(v(0)|Hv(x)) _ [v(x) —ﬁ(d [dx?)+V(x) [v(x)dx
-~ One obtain E = and
<v(x)|v(x)> [v?(x)dx

value

finally

IME _ [v(x)|-d? /dx® +2MV (x)/ 1 Jo(x)}dx
o [v (x)dx
Written in this form, the expression is rather awkward. We have seen

already that and must integrate outwards for small values of the coordinate x, and
inwards for large x. We let Q be a trial value for the energy E, hopefully close

to the true value of E . Then integrate the differential equation:
d*>v 2M
e h—z[V(x) —O(x) = f, ()v(x) (19)
first outwards from some sufficiently small value of x until we reach a joining
point x =x,, then inwards from some sufficiently largue value of x until we

(18)

reach the same joining point.The outwards integration is started in such a way that
we obtain the exponentially increasing solution, the inwards integration is started
in such a way that we obtain the exponentially decreasing solution.In either
solution,there is one free multiplicative constant.We can, and do, read just this
constant at the end so that v(x) turns out to be continuous at x = x,, the joining
point.In practice, x, is chosen to be the minimum of the potential /'(x). The fact
that this v(x) is not yet the true solution to the eigenvalue problem manifest itself
as a discontinuity in the first derivative v'(x) at x =x,. The lefthand value V',
obtained from the outwards integration fails to equal the righthand value V',
obtained from the inwards integration. The second derivative d*v/dx’ therefore
has a delta-function singularity at x = x,, which makes a finite contribution to the
integral in the numerator of (18). Except for this delta function contribution, the
result would be just Q, the trial value for the energy, as can be seen by

substituting (19) into (18). Putting things together, we obtain the simple iteration
formula:

2ME _ 2MQ v(x,)(V'=v',)

R J.[v(x)]zdx
The Simpson-rule sums necessary for the evaluation of the integral in the
denominator can be accumulated during the process of solving the differential

(20)
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Eq. (19), and can be multiplied by the appropriate factors to make v(x)
continuous at x = x,, without any problem. However, Eq. (20) is useless unless
we have an accurate value for the derivative dv/dx =v'(x). The Numerov method

by itself fails to give us such a value; in fact, the Numerov method is built on the
fact that the first derivative does not appear explicitly in the differential equation.
One method is to integrate the second derivative d’v/dx’ numerically;
however, this is both awkward and productive of numerical inaccuracies.
A better method, which is new to our knowledge, can be developed by
using reasoning similar to that of the Numerov method itself. We star by
developing a low-accuracy formula, so as to show the basic idea; we then improve

the method so as to get a derivative formula with an error term of order 4°v** .

Returning to the Taylor — series expansion (8), we compute:
3 5
4 = %[y(x +h)—y(x—h)]= hy'+%y(3) + %y(s) +... (21)

Taking into account the second derivative on both sides, and multiplying
by 4> /6, we obtain:
h3
3)

h’ h’
B = "x+h) = 1"(x=h)]=—pD + O 4 . 22
] (lz]u (x+h)—y"(x—h)] 7 t3g7 (22)

We substract (22) from (21) and use the differential equation to replace "
by f(x)y(x), to obtain the first derivative formula:

hy'=[1-T(x+h)]y(x+h)—[1-T(x—h)]y(x—h)+(7/360)°y’ +... . (23)

Here T'(x)is defined by (11) with f(x) = f,(x) defined by (19). The error
term in (23) may be sufficiently small in some cases. It is, however, of order
1°y® porrer than the basic error of the Numerov method. At substantially no

expense in machine time, the accuracy of the first derivative, and hence of Eq.
(20), can be improved significantly, simply by using function values at x+ 2/
and x —2h . We define:

Ay =235+ 2) = y(x = 20) (24)
and

1
B, =Ehz[y"(x+2h)—y”(x—2h)]= 25)

=T(x+2h)y(x+2h)—T(x—2h)y(x—2h)
We then write down the Taylor expansion of 4,,4,,B,, and B,, carrying

terms up to order #°v® inclusive. We eliminate the terms proportional to k* ™"
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with £=3,5,7 and solve for #y'. The procedure is tedious but straight forward; we
quote only the result which is:
9_(9)
160 3Ty 3T Vg ) A016Ry T
21 32 35 40 35 9
Thus, by integrating a mere two steps beyond the joining point x = x,, we

hy (26)

can determine the value of the first derivative to an accuracy substantially better
than the basic accuracy of the Numerov method. We now have an iteration
scheme of second order for the eigenvalue E : starting from a trial eigenvalue Q,

near to £, we find an improved approximation to E from Eq. (20). The
improvement is second order, the error of £ is proportional to the square of the
error of the trial value Q , once Q is close enough. The iteration is terminated

conveniently when we begin to hunt, when the new correction £ —Q is both

sufficiently small for safety and no smaller than the previous correction in
absolute value. The one unnecessary iteration can be saved after a bit of
experience, by setting a straight upper limit on | £ —Q|, and terminating as soon

as | £ — Q| falls below this upper limit.

The iteration procedure described in the preceding section works only if the
trial energy Q is already quite close to the true eigenvalue E, lies certainly
between them:

O <Ey <0 (27)

We then try the value:

0=(0+0,)/2 (28)
and ascertain whether Q lies above or below the desired E, ([0,,0,] being a
“probe interval”). If O lies above E,, we replace O, by O and repeat the
process; if Q lies below E, , we replace O, by O and repeat the process. At each
stage, we gain exactly one binary digit of accuracy in the energy. Unless O, and
Q, are very bad limits indeed, a few stages of halving suffice to get us close
enough to E, . The first step to ascertain where Q lies in relation to E, is to
count the nodes of the trial function v(x) generated by (19). As we generate v(x),

we count each node and accumulate. If the node count, at any stage, exceeds N,
then the trial value Q was too high. Conversely, if at the end of generating v(x),

the node count is below N, then O was too low. Since we generate v(x) in two
stages, so to speak, first by integrating out, then by integrating in, a bit of care is
required to avoid double counting of nodes occurring right at the joining point x, .

We have found the following simple scheme quite adequate to ensure
convergence:
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(1) Ascertain whether the number of nodes in v(x) equals N ; if not, proceed

with halving.
(2) If the node count agrees, proceed to evaluate the second-order correction
E—-Q from (20) and (26); the sign of the correction is right, even if the

magnitude is far off. Thus, if £—Q turns out to be positive, Q was too low, and
we replace O, by Q;if £ —Q turns out to be negative, ( was too high, and we
replace O, by Q.

(3) Now compute the new E =Q+(E—-Q)predicted by the second-order
iteration scheme. If this new value of E lies between O, and Q, it is safe to use. If

not, next trial value is determined by Eq. (28). In this way, we combine the safety
of halving scheme with the speed of the second-order iteration.

5. Setting upper and lower bounds on the eigenvalue

The halving method requires bounds O, and O, on the true eigenvalue

E,, We discuss here methods of setting such bounds. The simpliest case, and the

one occurring most of the time, is that we already posses a list of true eigenvalues

E,, with M=N-1,N-2,N-3,...,N—k, say. Clearly Q,=E, , is a lower

bound for E,, . Ordinary polynomical extrapolation of the list E,, to some depth

j <k [in practice, j = Min(k,4) is adequate] yields a prediction for E, , which
we denote by W, . We then put:

O =Ey,, O=Ey,+2Wy-Ey,) (29)

Unless the polynomical extrapolation is utterly unjustified, the factor 2 in

Eq. (29) ensure that Q, lies above the true E, . Furthermore, when we start the

halving procedure with this O, and Q,, the first value tried, by (28), is the
predicted value, Q =W, . If the prediction is accurate, this trial value is close
enough to the truth to permit use of the second-order iteration scheme, which then
yields full convergence in 3 or 4 steps.

Use of (29) requires at least two known eigenvalues, £, , and E, ,. Thus,

an alternative procedure is required at the beginning of the run. The simplest
choice is:
O =Min[V(x)], 0,=0 (30)
These are perfectly safe upper and lower bounds on all bound-state
energies. There are two troubles, however:
(1) Quite a few halving steps may be required if such generous bound are used.
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(2) The choice of the range of integration (minimum and maximus values ofx)
for finding v(x), depends on the trial energy. A range of integration suitable for

0= %Min[V(x)] the first trial value generated from the choice (30) by means of

(28), is a most unsuitable range of integration for the desired eigenvalue E,
particulary. So if N =0 if we wish to start by generating the ground state. Thus, if
(30) is used, the range of integration must be readjusted during the halving
process until we are down to the right number of nodes.
Better limits than (30) are available if we want to generate all eigenvalues
E, from N =0 onwards. O, = Min[V(x)] is then a fairly close lower bound for
the true E,, but O, =0 would be a very bad upper bound. A simple scheme
consistes in approximating V' (x) near its minimum by a quadratic polynomial
(oscillator potential) and determining the ground state energy of this
oscillator, iv/2 .We then set O, = Q, + hv, the extra factor 2 serving as a safety
measure. An alternative is to use Eq. (20) with a simple trial function:
v(x) = exp[-a(x —x,)’] €1y
The two methods can be combined by determining the parameter ¢ in (30)
from the oscillator-potential fitting, the function (31) being just of the right form
for the ground-state wavefunction of an oscillator potential. With a bit of
experience, it is possible to make a reasonable guess at the zero-point energy
E,—Min[V(x)] and to set a generous upper limit O, which is nonetheless far

nearer to the true E; than the trivial choice, without going to all the trouble of
evaluating (18) numerically for the function (30).Once the lowest eigenvalue E|

is known, a safe upper limit for the eigenvalue E, is:
E <0, =E,+3{E,— Min[V(x)]} (32)

The factor 3 is exactly right for a square-well potential, and is an
overestimate for all other potentials; for an oscillator potential, the correct factor
would be 2, to that 3 is a perfectly safe choice for an upper limit. Once £, and E,
are known, extrapolation becomes possible with more and more accuracy as
further eigenvalue very rapid convergence.

The outwards integration must start at a value of xless than the inner
turning point x, ; the inwards integration must start at a value of x larger than the
outer turning point x,. In this section, we discuss the choice of these starting
points, and hence the choice of the total range of integration for the wavefunction.
We also discuss how the integrations are started so as to get the desired solution,
the exponentially increasing solution for the outwards integration, the
exponentially decreasing solution for the inwards integration. We discuss the
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second point first; that is, let us suppose we have chosen a staring value of x, call
it x=a, for outward integration. Clearly v(a)can be set arbitrarily, since one
multiplicative factor is free. To get going with the Numerov method, we require
an approximation to v(a + k) for the exponentially increasing solution. The first
thing to realize is that quite sizeable errors are permitted here. An erroneous
choice of v(a+h) has the effect of admixing, to the desired exponentially
increasing solution, a component proportional to the other, exponentially
decreasing solution. As we integrate out from a towards the turning point x,, this
erroneous component becomes smaller. Whereas the desired component increases
in value.

To the crude approximation need here, the differential equation (5) is
satisfied by:

v(x) = v(a)exp[W (x)] (33)

where

Wi(x)= ji f(x)dx. (34)

This is one step cruder than the usual WKB approximation, but is good
enough for us here.We now become even cruder, by replacing the integral from
relation (34) by its trapezoidal-rule approximation.The result is the following
estimate for v(a + h):

v(a + h) =v(a)exp[/3T(a) ++/3T(a+h)] (35)
where T'(x) is defined by (11), and is the quantity we require in any case for the

Noumerv method. We note that f(x), and hence T(x), are positive outside the

classical turning points, so that the square roots in (35) are real numbers. The
positive square roots should be used for the exponentially increasing solution, to
get from a to a+h, and the negative square roots should be use for the
exponentially decreasing solution, to get from the outermost point x=»5 to
x=b—h, at the start of the inwards integration. We note that there is no
difference, in the Numerov method, whether one integrates inwards or outwards;
the basic equation (12), can be solved for y(x—+#) as it can for y(x+h). It
remains to decide on suitable values of a and b. If a is too close to the inner
turning point x,, we fail to generate enough of the desired wavefunction; if a is

too far from x,, we not only waste machine time by generating the wave function

(we miss an appreciable part of the exponential tail) in a region where its value is
exceedingly small and of no conceivable physical interest, but we can also get into
scaling troubles: even modern machines, with floating-point facilities, do not
allow an infinite range of the floating-point exponent. And once we are well and
truly into the exponential region, it becomes all too easy to get into underflow
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troubles even on present machines. Supppose we wish to chose the inner starting
point x =a so that v(a)is smaller than the value at the turning point, v(x,), by a

factor exp( 4), with A given a priori. For example, we might choose A4=16,
corresponding to a factor of roughly 10’. We now use the estimate Egs. (33), (34)
to get the condition on a:

X

j F(x)dx =4 (36)

The integrand is zero at the upper limit, the classical turning point x,. We

again replace the integral by trapezoidal-rule approximation, and keep going
downwards through x, —h,x, —2h,x, —3h,...,x;-h, until the accumulated sum

exceeds 4. The terms in the sum are of form /27(x,) where 7'(x)is defined by
Eq. (11). Te uppermost value of x, x =25, is determined similary, the condition
being:

b

j f(x)dx =4 (37)

Since f(x)= f,(x) depends on the value of the trial energy O, the

turning points x,, x, as well as the cutoff points @ and b, depend on the value of
Q. As Q increases, the outer turning point X, and the outer cutoff point » move
further out (increase in value), whereas the inner turning point x, and the inner

cutoff point ¢ move inwards (decrease in value).In principle, a and b ought to be
recalculated when the trial energy O changes.

6. Numerical example and discussion of results

We take into account the Woods-Saxon potential:

_ __ Y uq
Vi(x)=Vys(x)= 1+q) + 1+q) (38)

where q:exp(x_xoj, with u, =V, =-50, a=0.6, x,=7and u, =-u,/a . We
a

consider Eq. (1) for this potential in rather large domain of energies, £_. = - 50,

E_..=1010. For negative energies we solve the bound state problem, with the
boundry conditions

§(0)=0,  y(x)=expl-v=E) (39)
for large values of x. For positive energies one has the so called open channel
problem. This consists either to determine the phase shifts 8(E) or to find those
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E’s at which & equals /2. We actually solve the latter problem, known as “ the
resonance problem” when the eigenenergies lie under the potential barrier. The
boundary conditions for this problem:

¥(0)=0, y(x)=cos(Ex) (40)

for large x. The domain of numerical integration is [0,15]. One of the authors (C.
Tatu) has developed a software application in Fortran programming language for
Numerov method begining with the three point scheme and the iteration scheme
of second-order.

The numerical example consiste in the integration of the differential
equation using Wood-Saxon potential:

s @1
1+exp[(r—R)/a]
where r =x, V, = potential depth, R = width of the potential, and a= surface

Vs =V () =

thickness. After compilation of this program he used in Linux OS a Gnuplot
software for graphical representation of V' (x) (Wood-Saxon potential) and y(x)
function (Figs. 1 and 2, 3, 4, respectively). Some eigenvalues, errors and number
of iterations are presented in Table 1.

Table 1.
Eigenvalues Errors Xmatch-Xi Iterations
1 | -49.45778872900700 9.24D-10 -0.00000000140718 35
2 | -48.14843004409380 2.09D-08 1.27513E-09 35
3 | -46.29075410649230 1.52D-07 -8.43995E-10 35
4 | -43.09683190659410 6.34D-07 8.98532E-10 35
5 | -41.23260969553620 1.92D-06 -3.37735E-10 35
6 | -38.12278984299330 4.75D-06 -1.41659E-10 35
7 | -34.67232334252640 1.01D-05 -6.84757E-11 35
8 -30.91226692618510 1.94D-05 4.50828E-10 35
9 | -26.87348318285510 3.43D-05 -1.66361E-10 36
10 | -22.58865865646650 5.64D-05 -2.12436E-10 36
11 | -18.09477582683750 8.75D-05 -2.12082E-10 36
12 | -13.43699793696420 1.29D-04 -8.28638E-11 37
13 | -8.676261823904500 1.80D-04 3.68863E-11 37
14 | -3.908469327185230 2.37D-04 2.91823E-11 38

In the case when the Woods-Saxon potential (Fig.1) is negative for x < x,, is
also negative and has increasing exponential for x; <x < x, and becomes positive
an decresing exponential for x > x,, where x, , x, are the classical turning points
(solutions of f(x)=0, with f(x)=V(x)—E ).
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In Figs. 2-4 we present the dependence of function y(x)(from equation
(D):y"= f(x)y(x)), for N=1, N =2 and N =14 nodes.

0 2 4 B 8 10 12 14 16

Fig1

Fig 1. The dependence of Woods-Saxon potential /' (x) on the coordinate X .

As can be seen it will have an oscillatory behavior until turning point and
an exponential behaviour after it.

Fig

Fig. 2, 3, 4. The dependence of function y(x), for:2) N =1,3) N =2 and4) N =14 nodes.
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7. Conclusions

Starting from Taylor expansion, we use the convergence scheme with
halving method (bisection method) starting from a trial energy value Q (to find the

real energy £'). The halving method require bounds Q,, O, on the true eigenvalue
E, Once E, and E, are known the polinomical extrapolation of the list E,,

becomes possible. At the integration we replace the integral using the trapezoidal-
rule approximation. These involve choice of a step size, changing step size,
iteration on the eigenvalue, setting upper and lower bounds on the eigenvalue,
setting upper and lower bounds on the eigenvalue, determining a useful range of
the coordinate for the numerical integration, a numerical example with Wood-
Saxon potential and a comparation between Numerov method and other methods.
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