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ON THE ANALYTICAL, NUMERICAL AND 
EXPERIMENTAL MODELS FOR DETERMINING THE 

MODE SHAPES OF TRANSVERSAL VIBRATIONS OF   A 
CANTILEVER BEAM 

Amado ȘTEFAN1, Andra NEGRU2, Florina BUCUR3 

 The paper presents theoretical, numerical and experimental aspects 
regarding the determination of the natural frequencies of transverse vibrations for 
the beams used in the construction of drones to support the motors. The following 
schematizations were used: cantilever beam with constant flexural rigidity and rigid 
mass concentrated at the free end on the beam axis; cantilever beam with constant 
flexural rigidity, with mass concentrated eccentrically with respect to the axis of the 
beam at the free end; elastic beam with two intervals of constant rigidity, and 
eccentrically concentrated mass at the free end. The beam is of an annular section, 
with the same dimensions throughout the length and is made of carbon fiber 
composite. 
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FEM 

1. Introduction 

Over the last decades the aviation industry underwent significant changes 
and unmanned air vehicles are the result of research and evolution in this domain. 

An unmanned aerial vehicle (UAV) is an aircraft without a human pilot 
aboard, commonly referred to as a drone or as an unpiloted aerial vehicle and a 
remotely piloted aircraft (RPA) [1].  

The performance characteristics are important design parameters for the 
UAVs since the potential drone mission types can be differentiated on their basis. 
The most important features considered in the design of UAVs include weight, 
range, endurance, production costs, speed and maximum flight altitude. 

UAVs with rotary wings generate the lift from the rotation of the rotor 
blades [1, 2], which can be designed to have the structure equipped with a number 
of engines that can vary from one to twelve [3].  

The main source of vibration is the rotation of rotor blades assembly and 
its interaction with air.  The natural frequencies of vibrating systems must be 
different from the frequencies of unbalanced motor rotation and the vortexes 
frequencies, to avoid resonance regimes. 
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2. Theoretical approach 

The beam model corresponding to the Euler-Bernoulli beam, neglects the 
effect of the shear force on the displacement of the points on the beam axis, 
respectively on the rotation angle of the section. Also, the angular acceleration 
with which the beam element rotates is ignored because in the dynamic 
equilibrium equation of the beam element the inertia torque is not considered. 

The infinitesimal beam element has the mass dm A dxρ= ⋅ ⋅ , where ρ  is 
density and A  stands for the transverse section area.  

The inertial force acts in opposite direction with the acceleration of beam 
element, and it is distributed to the length dx , as in Fig. 1 ( zT  and iyM  are 

positive, zp  is positive if it is oriented in positive direction of z  axis) . 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Infinitesimal beam element  
 
The differential equation of free transverse vibrations under the conditions 

described above is [4]: 
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infinitesimal beam element acceleration. 
Solution of the differential equation is [5]: 
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The beam with the motor and accessory parts is illustrated in Fig. 2.  The 
beam section is annular with the outer diameter of 16 mm and the inner diameter 
of 14 mm and the distance from the clamped end of the beam up to the center of 
mass of the motor is 273 mm. As for the beam mechanical properties, the Young’s 
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modulus has the value of 43.6 10⋅ MPa and density equals 1400kg/m3. Because 
the number of plies and their orientation is unknown, the elastic modulus of the 
beam is determined using a bending experimental test [6].  

 
 

Fig. 2. Geometry of the beam 
 
The following schematizations are used in this research, where section A 

is fixed (Fig. 3): 
 

 
 

 
 

Fig. 3. Considered schematizations for analytical models 
 
For (a) and (b) cases, the mass considered concentrated is the sum of the 

masses of the clamping bushes, the motor support plate and the motor, 
respectively 0.143 kg. In case (b), the center of mass eccentricity is at 22.47 mm 
from the beam axis. 

For the (c) case, the beam part between sections B and C (Fig. 2), the 
clamping bushings, the motor board and the motor are considered rigid. This 
assumption is made because the motor material is metallic, with a higher rigidity 
comparative to the beam. The motor support plate weights 1 g. A half of the 
motor support plate, between section B and C, is rigid because it is clamped and 
the other half has a free end. The free end half weights 0.5 g so it can be neglected 
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compared to the motor mass. Fig. 4 shows the part considered rigid and the 
position of its center of mass relative to section B and the beam axis. 

 

 
 

Fig. 4. Part considered rigid 
 

The mass of the part considered rigid is 0.147 kg. The position relative to 
section B is 25.66 mm through the axis of the beam and to 21.98 mm above it. 

In case (a), the integration constants are determined from boundary conditions. 
In the clamped end of the beam [7]: 
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Since the system is homogeneous, in order to have a different solution 
from the trivial one, it must be underdetermined compatible. The system matrix 
determinant must be null, a condition which represents an algebraic equation with 
the unknownω . 

The mode shapes (eigenmodes) are represented in Fig. 5, giving the value 
1 for 4C  constant and solving the determined compatible system (8), where the 
constant k  is calculated for each mode according to the corresponding pulsation. 
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In case (b) and (c) the boundary conditions in the fixed end are similar to 

those from case (a). At the free end, the shear force equals the mass inertia force, 
and the bending moment equals the inertia bending moment of the concentrated 
mass [9]. 

 
 

Fig. 5. The 1st and 2nd mode shapes of transverse vibration for case (a) 
Thus, for (b) case: 
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the equation (7) becomes: 
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In the schematization from (c) case, the boundary conditions from section 
B, are: 
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where 2 2 2
2 3 =+L L d  is the distance between section B and the concentrated mass. 

 
The last two relations in system (7) become: 
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The transcendental equations have been solved using a program with root 
function developed in Mathcad software. 

3. Finite element method approach 

The CAD model presented in Fig. 2 was developed Solidworks software 
and analyzed using COSMOSWORKS software.  

For the finite element model an automatic mesh was created [10], initially 
with the average size of elements of 2.5 mm for the support plate, motor and 
clamping bushes, and 2 mm for the motor support beam.  For the beam 



On the analytical, numerical and experimental models […] vibrations of a cantilever beam   175 

discretization SHELL elements with average size of 1 mm and were used. For the 
other components, SOLID elements were used (Fig. 6).  

    
Fig. 6  Finite element discretization 

The number of nodes resulted from the discretization are 88845.  The 
clamping bush is restricted in displacement on the surfaces which are in contact 
with the drone body. The contact between elements is bonded type. 

In Table 1 are presented the corresponding frequencies of the first 8 
normal modes resulted from the finite element analysis (FEA). The bolded values 
(from the 1st and 4th mode) are the frequencies that correspond to the first two 
normal modes of transversal vibrations of the cantilever beam considered.  

Table 1 
The frequencies for the first 8th eigenmodes of vibration resulted from FEA 

Mode number                       Frequency (Hz)  

1 36.781        
2 36.951        
3 388.86        
4 407.94        
5 485.15        
6 659.26        
7 1323.5        
8 1737.6        

 
 In Fig. 7 and Fig. 8 are represented the first and the fourth eigenmode of 
transverse vibration in plane xOz  rezulted from the numerical simulations. On the 
fourth eigenmode of transverse vibration the maximum relative amplitudine is at 
the free-end of the motor suport plate. The mass of this component is insignificant 
compared to the mass of the part considered rigid (presented in Fig. 4), for this 
reason in the analytical study it was neglected. 
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Fig. 7. First mode shape of vibration (first eigenmode of transverse vibration in xOz  plane) 

 

 
Fig. 8. Fourth mode shape of vibration (second eigenmode of transverse vibration in xOz  plane) 

4. Experimental results 

For the frequency experimental determination of the first eigenmode of 
vibration, which corresponds to a transverse vibration in the xOz plane, a laser 
vibrometer Polytec PDV 100 was used, the procedure being similar with the one 
described in [11]. In Fig. 9 the experimental set-up is presented. The electrical 
signal acquisition was accomplished with a SIGLENT SDS 1202X-E 
oscilloscope, which allows storing and measuring the output of the vibrometer 
(vibrational velocities in the frequency range up to 22 kHz) as presented in   Fig. 
10. For the excitation of the beam an impact hammer was used. The structure was 
impulsed in the transversal Oz direction, on the motor area. 
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Fig. 9.  Polytec PDV 100 laser vibrometer placed under the electric motor 

  

 
Fig. 10. The signal recorded by the oscilloscope, with the acquisition rate of 100000 Samples/s 

Using the Fourier transform of the signal, the 415 Hz frequency was 
highlighted, corresponding to modes 2 of transverse vibrations in the xOz  plane.  
The FFT transform is presented in Fig. 11. 

 
Fig. 11. FFT transform 

5. Conclusions and future work 
From the finite element analysis were obtained similar results to 

experimental ones due to the accuracy with which the system geometry is defined 
(see Table 2 and Table 3). The analytical model in which the motor mass is 
concentrated on the beam axis, is acceptable for the first mode of vibration, but 
produces large errors for mode 2 and for higher ones. From all the 
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schematizations used, (c) case leads to the results closest to the experimental 
results. 

In Table 2, the frequencies corresponding to (a), (b), (c) cases of analytical 
analysis, FEM and experimental studies are presented. 

Table 2  
Frequencies (Hz) for (a), (b), (c) analytical cases, FEM and Experimental 

Vibration mode Case a) Case b) Case c) FEM Experimental 
Mode 1 34.50 34.25 36.35 35.20 35.90 
Mode 2 890.28 449.96 352.91 407.90 415.00 

         The percentage errors between the frequency values obtained from 
experimental and analytical cases, and the ones between experimental and 
numerical are presented in Table 3. The (a) case of the analytical study has the 
largest errors compared to the experimental measurement because the inertia 
moment of the concentrated mass situated on the beam axis is null. The (b) and (c) 
cases have better results due to moment of inertia calculated with respect to 
section B, which is different from zero. 

Table 3  
Percentage errors between experimental-analytical and experimental-numerical values 
Vibration 

mode 
 

Experimental-
analytical (a) case 

(%) 

Experimental-
analytical (b) case 

(%)  

Experimental-
analytical (c) case 

(%) 

Experimental-
numerical with 

FEM (%) 
Mode 1 3.87 4.59 1.25 1.95 
Mode 2 114.50 8.42 14.96 1.71 

In future research, the influence of the rotation frequency of the motor rotor 
at different speeds acting on the quadcopter arm will be studied.                    
Motor operating regimes which work at a frequency that overlaps the eigen 
frequency of the beam must be avoided in order to avert the resonance 
phenomenon. 
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