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Scalable test functions for multidimensional continuous
optimization

George Anescu1

Multidimensional scalable test functions are very important in
testing the capabilities of new optimization methods, especially in evaluating
their response with the increase of the search space dimension. The paper
is proposing new sets of test functions for continuous optimization, both
unconstrained (or only box constrained) and constrained.
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1. Introduction

The real world optimization problems that emerge from various scientific
and engineering fields are characterized by complexity, non-linearity and
increased numbers of decision variables and constraints. In order to be able to
handle such difficult problems the researchers in the optimization field are
continually proposing new improved optimization algorithms. Due to the
intrinsic mathematical difficulty of the global optimization problem, in the
last decades there is a trend in researching new nature inspired optimization
algorithms, capable to provide acceptable solutions in convenient computing
time, even though the global solution is not guaranteed. Such nature inspired
algorithms, also named meta-heuristic, or population based algorithms, have
some advantages over the traditional gradient based algorithms: they are able
to handle more general classes o optimization problems, are derivative free
(can be successfully applied when the derivatives are not available or do not
exist) and can be easily parallelized on modern multiprocessor computers.
Before the newly proposed optimization methods are applied to real world
optimization problems, their properties are extensively evaluated by using
known test functions from standard literature. In most of the cases the global
solutions of the test functions are theoretically known, but sometimes only
the best experimentally found solutions are available (for the so called open
problems) and any improvement to the best known solutions provided by
the tested optimization algorithm is considered as a competitive advantage.
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One important property that modern optimization methods need (especially
in modern Big Data applications) is scalability, i.e. the ability to respond well
when the dimension of the search space increases. In order to appropriately
evaluate the scalability property of the optimization methods there is a need
of multidimensional scalable test functions. Many sets of optimization test
functions (benchmarks) are already known from the literature (see [1], [2], [3],
[4], [5], [6], [7], [8], etc.), but there is still a need for multidimensional scalable
test functions, and especially there is a lack of multidimensional scalable test
functions for testing continuous constrained optimization methods. The goal
of the present paper is to supplement the known collections of optimization
test functions with some new proposals of multidimensional scalable problems,
especially deceptive problems (for which the size of the basin of attraction of
the global solution is small compared to the sizes of the basins of attractions of
some local solutions), which can prove useful in further testing and comparing
the capabilities of the numerous modern optimization methods.

The rest of the paper is organized as follows: Section 2 presents the
general model of the Continuous Global Optimization Problem (CGOP);
Section 3 presents the new proposed unconstrained (or box constrained)
optimization test functions; Section 4 presents the new proposed constrained
optimization test functions; and finally, Section 5 summarizes and draws some
conclusions.

2. Continuous Global Optimization Problem (CGOP)

The Continuous Global Optimization Problem (CGOP) is generally
formulated as ([9]):

minimize f(x) (1)

subject to x ∈ D
with

D = {x : l ≤ x ≤ u; and gi(x) ≤ 0, i = 1, . . . , G;

and hj(x) = 0, j = 1, . . . , H}
(2)

where x ∈ Rn is a real n-dimensional vector of decision variables
(x = (x1, x2, . . . , xn)), f : Rn → R is the continuous objective function,
D ⊂ Rn is the non-empty set of feasible decisions (a proper subset of Rn),
l and u are explicit, finite (component-wise) lower and upper bounds on x,
gi : Rn → R, i = 1, . . . , G is a finite collection of continuous inequality
constraint functions, and hj : Rn → R, j = 1, . . . , H is a finite collection
of continuous equality constraint functions. In the black box approach of
the CGOP problem, which is specific for the derivative free meta-heuristic
population based optimization methods, no other additional suppositions are
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made and it is assumed that no additional knowledge about the collections of
real continuous functions can be obtained, i.e. for any point x in the boxed
domain {x : l ≤ x ≤ u} it is assumed the ability to calculate the values of the
functions f(x), gi(x), i = 1, . . . , G, hj(x), j = 1, . . . , H, but nothing more.
However, in the gradient based optimization methods it is assumed that the
methods have also access to the derivatives of the mentioned set of functions
functions (if they exist).

The general mathematical model presented in this section will be applied
to the formal presentations of all the proposed optimization test functions in
the next sections of the paper. All the proposed functions are multidimensional
and scalable to the dimension of the search space n. All the other properties
of the functions (such as, unimodality or multimodality) are described when
they are known. The known global solutions (theoretically provable), or
the best known global solutions (for open problems) are also specified. All
the numerical results presented were obtained by applying metaheuristic
optimization methods (see the methods presented in [10], [11] and [12]).

3. Unconstrained optimization test functions

In this section is described a new set of 13 unconstrained (or box
constrained) optimization test functions.
• f1 - unimodal, global minimum value (theoretical) f ∗1 = 0 at
x∗ = (0, 0, . . . , 0):

f1(x) =
n∑

j=1

(2xj−1 + x2jxj+1 − xj+1)
2,

n ≥ 3, xn+1 = x1, x0 = xn, −2 ≤ xj ≤ 2, j = 1, . . . , n

(3)

• f2 - unimodal, global minimum value (theoretical) f ∗2 = 0 at
x∗ = (2, 2, . . . , 2):

f2(x) =
n∑

j=1

[log2(xj−1x
2
j)− log3(x

5
j+1 − 5)]2,

n ≥ 3, xn+1 = x1, x0 = xn, 1.39 ≤ xj ≤ 4, j = 1, . . . , n

(4)

• f3 - unimodal, global minimum value (theoretical) f ∗3 = 0 at
x∗ = (2, 2, . . . , 2):

f3(x) =
n∑

j=1

[xj − |x2j−1 − 2xj + 4|1/2 log2 (4− xj+1)]
2,

n ≥ 3, xn+1 = x1, x0 = xn, −4 ≤ xj ≤ 3.999, j = 1, . . . , n

(5)
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• f4 - unimodal, global minimum value (theoretical) f ∗4 = 0 at
x∗ = (1, 1, . . . , 1):

f4(x) =
n∑

j=1

[2xj − 1

xj−1xj+1

− 1]2,

n ≥ 3, xn+1 = x1, x0 = xn, 0.001 ≤ xj ≤ 2, j = 1, . . . , n

(6)

• f5 - unimodal, global minimum value (theoretical) f ∗5 = 2n
n−1 at

x∗ =
(

1
n−1 ,

1
n−1 , . . . ,

1
n−1

)
:

f5(x) =
n∑

j=1

xj +
n∑

j=1

xj(
−xj +

n∑
j1=1

xj1

)2 ,

n ≥ 3, 10−6 ≤ xj ≤ 2, j = 1, . . . , n

(7)

• f6 - unimodal, global minimum value (theoretical) f ∗6 = 2n
(n−1)2 at

x∗ =
(

1
n−1 ,

1
n−1 , . . . ,

1
n−1

)
:

f6(x) =
n∑

j=1

x2j +
n∑

j=1

x2j(
−xj +

n∑
j1=1

xj1

)4 ,

n ≥ 3, 10−6 ≤ xj ≤ 2, j = 1, . . . , n

(8)

• f7 - unimodal, global minimum value (theoretical) f ∗7 = 0 at
x∗ = (1, 1, . . . , 1):

f7(x) =
1

n
(x1 − 1)2 +

n∑
j=1

(x3j − 3x2j+1 + 3xj−1 − 1)2,

n ≥ 3, xn+1 = x1, x0 = xn, −2 ≤ xj ≤ 2, j = 1, . . . , n

(9)

• f8 - multimodal, global minimum value (theoretical) f ∗8 = 0 at
x∗ = (−1,−1, . . . ,−1), but there is another local minimum with a larger
attraction basin close to (−2,−2, . . . ,−2), which is frequently trapping
the optimization methods:

f8(x) =
1

n
(x1 + 1)2 +

n∑
j=1

[xj − 2(xj−1 + xj+1)− xj−1xj+1 − 2]2,

n ≥ 3, xn+1 = x1, x0 = xn, −3 ≤ xj ≤ 3, j = 1, . . . , n

(10)
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• f9 - multimodal, global minimum value (theoretical) f ∗9 = 1 at
x∗ = (1, 1, . . . , 1), but the attraction basin of the global minimum is
small and usually the optimization methods are trapped by a local
minimum with a larger attraction basin located in the vicinity of the
origin (0, 0, . . . , 0):

f9(x) =
n∑

j=1

[x2j(2x
2
j + xj+1 + 2)− xjxj−1(3xj + 3xj−1 − xj+1)]

2+

+ e

1

n2

n∑
j=1

(xj − 1)2

,

n ≥ 3, xn+1 = x1, x0 = xn, −1 ≤ xj ≤ 2, j = 1, . . . , n

(11)

• f10 - multimodal, global minimum value (theoretical) f ∗10 = −1 at
x∗ = (0.4, 0.4, . . . , 0.4). This is a very difficult test function if approached
as a black box model due to the small dimension of the attraction basin
of the global minimum which is also masked by local maxima. Usually
the optimization methods are trapped by one of the local minima in the
corners of the limiting box. A graphical representation of this function is
given in Fig. 1 for the 2-dimensional case:

Figure 1. Difficult optimization problem (2-dimensional case)
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f10(x) = −2e

−20
√
n


n∑

j=1

(xj − 0.4)2

1/2

+
n∏

j=1

cos(xj − 0.4)

n ≥ 1, −1 ≤ xj ≤ 1, j = 1, . . . , n

(12)

• f11 - multimodal, global minimum value (theor.) f ∗11 ≈ −n(n− 1)2/n−2

at x∗ ≈
(
(n− 1)1/n−2, (n− 1)1/n−2, . . . , (n− 1)1/n−2

)
, as an example for

n = 10, f ∗11 = −17.323844081 at x∗ = (1.316326878, 1.316327304,
1.316327411, 1.316326966, 1.316327494, 1.316327450, 1.316327500,
1.316327146, 1.316327265, 1.316327356). The function has another local
minimum with a larger attraction basin located in (0, 0, . . . , 0), which
usually is trapping the optimization methods:

f11(x) =
n∑

j=1

(
n∑

j1=1,j1 6=j

xj1 −
n∏

j1=1,j1 6=j+1

xj1

)2

−
n∑

j=1

x2j

n ≥ 3, xn+1 = x1, 0 ≤ xj ≤ 2, j = 1, . . . , n

(13)

• f12 - multimodal, global minimum value (theoretical) f ∗12 ≈ −2.78n
at x∗ ≈ (2.78, 2.78, . . . , 2.78), as an example for n = 10, f ∗12 =
−27.771045004 at x∗ = (2.777105469, 2.777105469, . . . , 2.777105469).
The function has another local minimum with a larger attraction basin
located at x∗ ≈ (1.56, 1.56, . . . , 1.56), which usually is trapping the
optimization methods:

f12(x) =
n∑

j=1

(
logxj−1

xj + 2xjxj+1 − 7xj+1 sin (xj−1xj) − cosx2j

)2
−

n∑
j=1

xj

n ≥ 3, xn+1 = x1, x0 = xn−1, 1.001 ≤ xj ≤ π, j = 1, . . . , n

(14)

• f13 - multimodal, global minimum value (theoretical) f ∗13 ≈ −n at
x∗ ≈ (−1,−1, . . . ,−1), as an example for n = 10, f ∗13 = −10.065145954
at x∗ = (−1.012645301,−1.012645301, . . . ,−1.012645301). The function
has many local minima which have the potential of trapping the
optimization methods, notably the one located in origin with f13(0) = 0:

f13(x) =
n∑

j=1

(
x4jxj−1 − x3jxj+1 + xj−1xj+1 − xj+1

)2
+

n∑
j=1

xj

n ≥ 3, xn+1 = x1, x0 = xn−1, −2 ≤ xj ≤ 2, j = 1, . . . , n

(15)
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4. Constrained optimization test functions

In this section is described a new set of 29 constrained optimization test
functions.
• f1 - multimodal, global minimum value (theoretical) f ∗1 =

√
n+ 1 at x∗ =(√

n+ 1, 0, . . . , 0
)

and cyclic permutations:

f1(x) =
n∑

j=1

xj,

g(x) = (n+ 1)−
n∑

j=1

x2j −
n∏

j=1

xj ≤ 0,

n ≥ 3, 0 ≤ xj ≤
√
n+ 1 + 1, j ≤ 1, . . . , n

(16)

• f2 - unimodal, global maximum value (theoretical) f ∗2 = n at
x∗ = (1, 1, . . . , 1):

f2(x) =
n∑

j=1

xj,

g(x) = −(n+ 1) +
n∑

j=1

x2j +
n∏

j=1

xj ≤ 0,

n ≥ 3, 0 ≤ xj ≤ 2, j = 1, . . . , n

(17)

• f3 - unimodal, global maximum value (theoretical) f ∗3 = n at
x∗ = (1, 1, . . . , 1):

f3(x) =
n∑

j=1

x2jxj+1,

g(x) = −n+
n∑

j=1

x3j ≤ 0,

n ≥ 3, xn+1 = x1, 0 ≤ xj ≤ 2, j = 1, . . . , n

(18)

• f4 - unimodal, global minimum value (theoretical) f ∗4 = 0 at
x∗ = (1, 1, . . . , 1):
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f4(x) =
n∑

j=1

xj
xj+1

−
n∑

j=1

xj,

g(x) = −(n+ 1) +
n∑

j=1

xjxj+1 +
n∏

j=1

xj ≤ 0,

n ≥ 3, xn+1 = x1, 0.001 ≤ xj ≤ 2, j = 1, . . . , n

(19)

• f5 - multimodal, global maximum value (theoretical) f ∗5 = n− 1 at
x∗ = (n− 1, 1, . . . , 1) and cyclic permutations:

f5(x) =
n∏

j=1

xj,

g1(x) = −2(n− 1) +
n∑

j=1

xj ≤ 0,

g2(x) = n(n− 1)−
n∑

j=1

x2j ≤ 0,

n ≥ 3, , 0 ≤ xj ≤ n, j = 1, . . . , n

(20)

• f6 - multimodal, global minimum value (theoretical) f ∗6 = 2n−1 at
x∗ = (1, 2, . . . , 2) and cyclic permutations:

f6(x) =
n∏

j=1

xj,

h1(x) = −(2n− 1) +
n∑

j=1

xj = 0,

h2(x) = −(4n− 3) +
n∑

j=1

x2j = 0,

n ≥ 3, 0 ≤ xj ≤ 3, j = 1, . . . , n

(21)

• f7 - unimodal, global minimum value (theoretical) f ∗7 = 1 at
x∗ = (1, 1, . . . , 1):
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f7(x) =
n∑

j=1

1

(1− xj) +
n∑

j1=1

xj1

,

g(x) = −1 +
n∑

j=1

xj

(1− xj) +
n∑

j1=1

xj1

≤ 0,

n ≥ 3, 0 ≤ xj ≤ 2, j = 1, . . . , n

(22)

• f8 - unimodal, global minimum value (theoretical) f ∗8 = n− 2n
n+1

at x∗ = (1, 1, . . . , 1):

f8(x) =
n∑

j=1

−xj +
n∑

j1=1

xj1

xj +
n∑

j1=1

xj1

,

h(x) = −n+
n∑

j=1

xj = 0,

n ≥ 3, 0.001 ≤ xj ≤ 2, j = 1, . . . , n

(23)

• f9 - unimodal, global maximum value (theoretical) f ∗9 = n
2

at
x∗ = (1, 1, 2, . . . , 2n−2):

f9(x) =
n−1∑
j=1

xj
xj+1

,

h(x) = −2n−1 +
n∑

j=1

xj = 0,

gk(x) = −xk+1 +
k∑

j=1

xj ≤ 0, k = 1, . . . , n− 1,

n ≥ 3, 0.001 ≤ xj ≤ 2n−1, j = 1, . . . , n

(24)

• f10 - unimodal, global minimum value (theoretical) f ∗10 = n at
x∗ = (1, 1, . . . , 1):
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f10(x) =
n∑

j=1

x3j + x2j

1 +
n∏

j1=1,j1 6=j

xj1

,

h(x) = −1 +
n∏

j=1

xj = 0,

n ≥ 3, 0 ≤ xj ≤ 2, j = 1, . . . , n

(25)

• f11 - unimodal, global maximum value (theoretical) f ∗11 = n
2

at
x∗ = (1, 1, . . . , 1):

f11(x) =
n∑

j=1

xj
(1 + x3jxj+1)

,

g(x) = 1−
n∏

j=1

xj ≤ 0,

n ≥ 3, xn+1 = x1, 0 ≤ xj ≤ 2, j = 1, . . . , n

(26)

• f12 - unimodal, global maximum value (theoretical) f ∗12 = 1
2

at
x∗ = (1, 1, . . . , 1):

f12(x) =
n∑

j=1

1

(xj + 2n− 1)
,

g(x) = 1−
n∏

j=1

xj ≤ 0,

n ≥ 3, 0 ≤ xj ≤ 2, j = 1, . . . , n

(27)

• f13 (Generalized Nesbitt Inequality, see [13]) - unimodal, global minimum
value (theoretical) f ∗13 = n

n−1 at x∗ = (1, 1, . . . , 1):

f13(x) =
n∑

j=1

xj(
−xj +

n∑
j1=1

xj1

) ,

h(x) = −n+
n∑

j=1

xj = 0,

n ≥ 3, 0.001 ≤ xj ≤ 2, j = 1, . . . , n

(28)
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• f14 - unimodal, global minimum value (theoretical) f ∗14 = 0 at
x∗ = (1, 1, . . . , 1):

f14(x) = (n− 1)
n∑

j=1

xj − 2
n∑

1≤j1<j2≤n

xj1xj2 ,

g(x) = 1−
n∑

j=1

1(
1 +

n∑
j1=1,j1 6=j

xj1

) ≤ 0,

n ≥ 3, 0 ≤ xj ≤ 2, j = 1, . . . , n

(29)

• f15 - unimodal, global minimum value (theoretical) f ∗15 = 1 at
x∗ = (1, 1, . . . , 1):

f15(x) =
1(

n∑
j=1

1

x2j + n

) − 1(
n∑

j=1

1

xj

) ,

g(x) = n−
n∑

j=1

xj ≤ 0,

n ≥ 2, 0.001 ≤ xj ≤ 2, j = 1, . . . , n

(30)

• f16 - unimodal, global maximum value (theoretical) f ∗16 = 1 at
x∗ = (1, 1, . . . , 1):

f16(x) =
2n+1∑
j=1

xj
n(x2j + 1) + 1

,

g(x) = −(2n+ 1) +
2n+1∑
j=1

xj ≤ 0,

n ≥ 1, 0 ≤ xj ≤ 2, j = 1, . . . , 2n+ 1

(31)

• f17 - unimodal, global minimum value (theoretical) f ∗17 = 2n+ 1 at
x∗ = (0, 0, . . . , 0):
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f17(x) =
2n+1∑
j=1

log2 (1 + 3xj+xj+1),

h(x) =
2n+1∑
j=1

xj = 0,

n ≥ 1, x2n+2 = x1, −2 ≤ xj ≤ 2, j = 1, . . . , 2n+ 1

(32)

• f18 - unimodal, global minimum value (theoretical) f ∗18 = 16 at

x∗ =
(

1√
n
, 1√

n
, . . . , 1√

n

)
:

f18(x) =
n∑

j=1

(xj + xj+1)
4

xjxj+1

,

g(x) = 1−
n∑

j=1

x2j ≤ 0,

n ≥ 3, xn+1 = x1, 10−6 ≤ xj ≤ 1, j = 1, . . . , n

(33)

• f19 - multimodal, global minimum value (theoretical) f ∗19 = 1.8 at
x∗ = (0.5, 0.5, 0, . . . , 0) and cyclic permutations:

f19(x) =
n∑

j=1

xj + xj+1

1 + xjxj+1

,

g(x) = 1−
n∑

j=1

xj ≤ 0,

n ≥ 3, xn+1 = x1, 0 ≤ xj ≤ 1, j = 1, . . . , n

(34)

• f20 - unimodal, global maximum value (theoretical) f ∗20 = 2n
√
n

n+1
at

x∗ =
(

1√
n
, 1√

n
, . . . , 1√

n

)
:

f20(x) =
n∑

j=1

xj + xj+1

1 + xjxj+1

,

g(x) = −1 +
n∑

j=1

x2j ≤ 0,

n ≥ 3, xn+1 = x1, 0 ≤ xj ≤ 1, j = 1, . . . , n

(35)

• f21 - unimodal, global maximum value (theoretical) f ∗21 = 2n at
x∗ = (1, 1, . . . , 1):



Scalable test functions for multidimensional continuous optimization 39

f21(x) = 2
n∏

j=1

(x2j + 1)−
n∏

j=1

(x3j + 1),

g(x) = −1 +
n∏

j=1

xj ≤ 0,

n ≥ 3, xn+1 = x1, 0 ≤ xj ≤ 2, j = 1, . . . , n

(36)

• f22 - unimodal, global minimum value (open problem) for n = 10, f ∗22 =
0.885506173 at x∗ = (1.808714501, 0.611851955, 0.711171539,
0.811288889, 0.903346486, 0.984843787, 1.059007430, 1.125675681,
1.187060342, 1.243895193):

f22(x) =
n∑

j=1

xjj∏j
j1=1(xj1 + 1)

,

g(x) = 1−
n∏

j=1

xj ≤ 0,

n ≥ 2, 0 ≤ xj ≤ 3, j = 1, . . . , n

(37)

• f23 - unimodal, global maximum value (theoretical) f ∗23 = 1 at
x∗ =

(
1
n
, 1
n
, . . . , 1

n

)
:

f23(x) =

n∑
j=1

1

1− x2j
n∑

j=1

1

1− xjxj+1

,

h(x) = −1 +
n∑

j=1

xj = 0,

n ≥ 3, xn+1 = x1, 0 ≤ xj ≤ 0.999, j = 1, . . . , n

(38)

• f24 - unimodal, global minimum value (theoretical) f ∗24 = 1 at
x∗ =

(
1
n
, 1
n
, . . . , 1

n

)
:
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f24(x) =
n∑

j=1

log2
xj
xj+1

nxj−1 + n− 1
,

g(x) = −1 +
n∑

j=1

xj ≤ 0,

n ≥ 3, xn+1 = x1, x0 = xn, 10−6 ≤ xj ≤ 1, j = 1, . . . , n

(39)

• f25 - multimodal, global minimum value (open problem), for n = 10,
f ∗25 = 1.874972874 at x∗ = (0.413805624, 4.548875314, 4.546871049,
0.411744067, 0.015928136, 0.011641123, 0.0117279236, 0.011646751,
0.011759360, 0.016000783) and cyclic permutations:

f25(x) =
n∑

j=1

x2j
1 + xj(xj−1 + xj+1)

,

g(x) = n−
n∑

j=1

xj ≤ 0,

n ≥ 3, xn+1 = x1, x0 = xn, 0 ≤ xj ≤ n, j = 1, . . . , n

(40)

• f26 - unimodal, global minimum value (theoretical) f ∗26 = n at
x∗ =

(
1
n
, 1
n
, . . . , 1

n

)
:

f26(x) = e
− 1

(n2−n)1/2

n∑
j=1

e

xj

(−xj+
∑n

j1=1
xj1)

1/2

,

g(x) = 1−
n∑

j=1

xj ≤ 0,

n ≥ 2, 10−6 ≤ xj ≤ 1, j = 1, . . . , n

(41)

• f27 - multimodal, global minimum value (theoretical) f ∗27 = n with
many solutions, as an example for n = 9, x∗ = (2.062398515 ×
10−5, 7.099654204× 10−5, 1.475907850, 5.591264529, 4.733189813,
4.490091124, 1.610322128, 1.246368226, 3.477101693):
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f27(x) =
n∑

j=1

[x2n+1 + x2n+2 − 2(xn+1 cosxj + xn+2 sinxj) + 1]1/2,

h1(x) =
n∑

j=1

cosxj = 0,

h2(x) =
n∑

j=1

sinxj = 0,

n ≥ 2, − 2 ≤ xn+1, xn+2 ≤ 2, 0 ≤ xj < 2π, j = 1, . . . , n

(42)

• f28 - unimodal, global minimum value (theoretical) f ∗28 = n
2

at
x∗ = (1, 1, . . . , 1):

f28(x) =
n∑

j=1

x
xj

j−1

x2j(xj+1 + 1)
,

g(x) = −1 +
n∏

j=1

xj ≤ 0,

n ≥ 3, xn+1 = x1, x0 = xn−1, 0.001 ≤ xj < 2, j = 1, . . . , n

(43)

• f29 - unimodal, global maximum value (theoretical) f ∗29 = 1
2

at

x∗ =
(
1
n
, 1
n
, . . . , 1

n

)
:

f29(x) =
n∑

j=1

xj
1 + xj−1 + logxj

xj+1 − xj+1

,

g(x) = −1 +
n∑

j=1

xj ≤ 0,

3 ≤ n ≤ 10000, xn+1 = x1, x0 = xn−1, 1.0e− 4 ≤ xj < 0.999,

j = 1, . . . , n

(44)

5. Conclusions

The paper proposed two new sets of optimization test functions: a set
of 13 continuous unconstrained (or box constrained) test functions, and a
set of 29 continuous constrained test functions. All the proposed functions
are multidimensional and scalable to the dimension of the search space, n,
which is a useful property when the response in performance (efficiency and
success rate) of an optimization method is investigated with the increase of the
dimension of the search space. It is the hope of the author that the proposed
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new sets of optimization test functions will represent a valuable addition to
the known collections of optimization test functions and will prove useful in
investigating the properties of new or existing optimization methods.
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