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A FAMILY OF THREE-STAGE STOCHASTIC
RUNGE-KUTTA METHODS WITH ORDER TWO AND

THEIR STABILITY

Mahmood Parsamanesh1

In this paper, a general form of three-stage Runge-Kutta meth-
ods is introduced for numerical solution of stochastic differential systems.
The conditions that must be satisfied to methods have weak order two are
obtained by comparison between the weak second-order expansion of the
methods and the simplified weak order two Taylor scheme. Moreover, some
particular solutions of the order conditions are given and then corresponding
stochastic Runge-Kutta methods of this family are presented. The Mean-
Square stability of the proposed class of methods is considered, the stability
function is obtained, and the Region of MS-stability is given. Finally, the
obtained methods are compared numerically in some examples.
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1. Introduction
Stochastic differential equations (SDEs) can describe more realistic mod-

els and include stochastic effects in the model by inserting the noise term in
ordinary differential equations (ODEs). There is an increasing interest in us-
ing SDEs and they have been applied to a wide range of problems, because of
recent progresses in the stochastic analysis and availability of sufficiently pow-
erful computers[2, 5, 10–12]. The exact solution of SDEs is not often available
and hence, suitable numerical methods must also be introduced for solving
arisen SDEs. Stochastic Runge-Kutta (SRK) methods as generalization of
their analogous for ODEs are efficient instruments and has been studied by
many authors[1, 3, 4, 8, 13]. The organization of this work is as follows: af-
ter some brief preliminaries, in the next section a general form of three-stage
stochastic Runge-Kutta methods is presented and conditions under which this
methods have weak order two, are extracted. In section 3 some stochastic
Runge-Kutta methods are introduced whose parameter values are particular
solutions of the obtained conditions in section 2. In section 3 the MS-stability
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of this class is studied. Section 4 is devoted to implementation issues and nu-
merical comparisons via some examples. Finally, the results are summarized
as conclusions.

2. Stochastic Runge-Kutta methods
A scalar Ito SDE is of the following form:

dxt = f(t, xt)dt+ g(t, xt)dWt, xt0 = x0 (1)
where f, g : [t0, T ] × R → R are the drift and diffusion coefficients respec-
tively, {Wt}t0≤t≤T represents a one-dimensional standard Wiener process and
the initial value x0 ∈ R is non-random. Moreover, suppose that coefficients f
and g satisfy the conditions that ensure existence and uniqueness of solutions
to (1)(see [11]). The numerical methods for solving SDEs may be strong or
weak, with constant or variable step sizes, and various order of convergence.
We concentrate on methods that converge in the weak sense and with order
two in which the step size are assumed constant.

A numerical solution {xn}n=N
n=0 with step size h as an approximation of

solution {x(t)}t=T
t=0 of (1) is of weak convergence order γ if for each smooth

function F , there exist a constant K > 0 such that [7]∣∣∣E[F (xN)]− E[F (x(T ))]
∣∣∣ ≤ Khγ.

Tocino and Vigo-Aguiar[15, 17] presented some stochastic Runge-Kutta meth-
ods of weak order two by comparing the stochastic expansion of the approx-
imation of the method with corresponding Taylor scheme. In this work, we
generalize the methods were given in [17] and we propose three-stage Runge-
Kutta methods of the following form:

xn+1 = xn + (α1K0 + α2K1 + α3K2)h+Υ1S0 +Υ2S1 +Υ3S2, (2)
with

K0 = f(tn, Xn),

S0 = g(tn, Xn),

K1 = f(tn + µ0h,Xn + λ0K0h+ S0Θ1),

S1 = g(tn + µ̄0h,Xn + λ̄0K0h+ S0Φ1),

K2 = f(tn + ρ0h,Xn + φ0K0h+ S0Θ2),

S2 = g(tn + ρ̄0h,Xn + φ̄0K0h+ S0Φ2),

(3)

where Υ1,Υ2,Υ3,Θ1,Θ2,Φ1 and Φ2 are random variables of mean-square order
1
2
. When ρ̄0 = µ̄0, φ̄0 = λ̄0 and α3 = 0 we obtain the same form that was pre-

sented in [17]. We seek values for the constants and conditions on the random
variables such that the scheme be of order two in the weak sense. To do this, as
the procedure in deterministic case for construct Runge-Kutta methods [9], we
must obtain the stochastic expansion of the method (2)-(3) and corresponding
Taylor scheme. Then a comparison between them determines the method such
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that the method be of weak order two. The simplified weak order two Taylor
scheme can be obtained from the order two Taylor approximation and in scalar
case it is given by[15]

xn+1 = xn + g∆Wn + fh+
1

2
gg01((∆Wn)

2 − h)

+
1

2
(g10 + fg01 +

1

2
g2g02 + gf01)h∆Wn +

1

2
(f10 + ff01 +

1

2
g2f02)h

2,

(4)

where g = g00 = g(tn, xn) and gij =
∂i+jg
∂ti∂xj for function g = g(t, x) with t, x ∈ R

and ∆Wn is any normal random variable N(0, h).
Now to compare the method and the simplified Taylor scheme, we need

a order two truncated expansion of the method. An expression of the order
two truncated expansion of process F (t+ h, x(t)+∆x) in terms of increments
h and ∆x can be found in [16] and it is of the following form:

F (t+ h, x(t) + ∆x)
(2)
≃F00 + F10h+ F01∆x

+ (F20 + g2F12 + g3g01F03 +
g4

4
F04)

h2

2

+ (F11 +
g2

2
F03)h(∆x) + F02

(∆x)2

2
.

(5)

To obtain the expansion of the method we need also to employ 2-equivalent
processes. Two processes {yt} and {zt} are said 2-equivalent in the weak
sense and are denoted by yt

(2)
≃ zt, if they have same weak order two Itô-Taylor

expansion at each point.
Consider the SDE dx(t) = dW (t) with t(0) = 0. Then for process

F (t,W (t)) = W 3(t) we have

F (t+ h,W (t) + ∆W )
∣∣∣
t=0

= (∆W )3

(2)
≃

(
W 3(t) + (0)h+ 3W 2(t)∆W + (0)

h2

2
+

1

2
(6h∆W ) + 6W (t)

(∆W )2

2

)∣∣∣
t=0

= 3h∆W,

which state
(∆W )3

(2)
≃ 3h∆W (6)

Also, for process F (t,W (t)) = tW 2(t) we have

F (t+ h,W (t) + ∆W )
∣∣∣
t=0

= h(∆W )2

(2)
≃

(
tW 2(t) + hW 2(t) + 2tW (t)∆W + h2 + 2hW (t)∆W + t(∆W )2

)∣∣∣
t=0

= h2,
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and therefore

h(∆W )2
(2)
≃ h2 (7)

As a same way the following 2-equivalents can be obtained

(∆W )4

h

(2)
≃ 6(∆W )2 − 3h, (8)

(∆W )4√
h

(2)
≃ 6

√
h(∆W )2 − 3h

3
2 , (9)

(∆W )5

h

(2)
≃ 15h∆W, (10)

(∆W )6

h
3
2

(2)
≃ 45

√
h(∆W )2 − 30h

3
2 . (11)

By using truncated expansion (5) and 2-equivalence h3
(2)
≃ 0, from the deter-

ministic part of (2) we obtain

(α1K0 + α2K1 + α3K2)h = α1f(tn, xn)h+ α2f(tn + µ0h, xn + λ0K0h+ S0Θ1)h

+ α3f(tn + ρ0h, xn + φ0K0h+ S0Θ2)h

(2)
≃(α1 + α2 + α3)fh+ (α2µ0 + α3ρ0)f10h

2 + (α2λ0 + α3φ0)f01fh
2

+ α2f01gΘ1h+ α3f01gΘ2h+
1

2
α2f02g

2Θ2
1h+

1

2
α3f02g

2Θ2
2h.

(12)
Besides, the stochastic part of (2) can also be written as follows:

Υ1S0 +Υ2S1 +Υ3S2

= gΥ1 + g(tn + µ̄0h, xn + λ̄0fh+ gΦ1)Υ2 + g(tn + ρ̄0h, xn + φ̄0K0h+ S0Φ2)Υ3

(2)
≃(Υ1 +Υ2 +Υ3)g + µ̄0g10Υ2h+ ρ̄0g10Υ3h+ λ̄0g01fΥ2h+ φ̄0g01fΥ3h

+ g01gΦ1Υ2 + g01gΦ2Υ3 + (g11 +
g2

2
g03)µ̄0gΦ1Υ2h+ (g11 +

g2

2
g03)ρ̄0gΦ2Υ3h

+ λ̄0g02fgΦ1Υ2h+ φ̄0g02fgΦ2Υ3h+
1

2
g02g

2Φ2
1Υ2 +

1

2
g02g

2Φ2
2Υ3.

(13)
Then by substituting 2-equivalences (12) and (13) in (2), we can easily see
that the Runge-Kutta method (2)-(3) and the simplified Taylor scheme (4) are
2-equivalent if the following relations hold:

α1 + α2 + α3 = 1,

µ0α2 + ρ0α3 =
1

2
, (14)

λ0α2 + φ0α3 =
1

2
,
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(α2Θ1 + α3Θ2)h
(2)
≃ 1

2
h∆Wn,

(α2Θ
2
1 + α3Θ

2
2)h

(2)
≃ 1

2
h2, (15)

Υ1 +Υ2 +Υ3

(2)
≃ ∆Wn,

(µ̄0Υ2 + ρ̄0Υ3)h
(2)
≃ 1

2
h∆Wn,

(λ̄0Υ2 + φ̄0Υ3)h
(2)
≃ 1

2
h∆Wn, (16)

Φ1Υ2 + Φ2Υ3

(2)
≃ 1

2
((∆Wn)

2 − h),

Φ2
1Υ2 + Φ2

2Υ3

(2)
≃ 1

2
h∆Wn.

(µ̄0Φ1Υ2 + ρ̄0Φ2Υ3)h
(2)
≃ 0,

(λ̄0Φ1Υ2 + φ̄0Φ2Υ3)h
(2)
≃ 0. (17)

Therefore, preceding discussions conclude the following theorem:

Theorem 2.1. Suppose that f and g in SDE (1) are sufficiently differentiable
and satisfy conditions for the existence and uniqueness of solutions. Then
the stochastic Runge-Kutta method (2)-(3) has order two in the weak sense if
(14)-(17) hold.

3. Some particular stochastic Runge-Kutta methods
In order to methods (2)-(3) be applicable, we must determine some par-

ticular solutions of systems (15)-(17). First consider system (15) and take
Θ1 = ν1∆Wn and Θ2 = δ1∆Wn. Then by 2-equivalence (6) this system be-
comes as follows:

α2ν1 + α3δ1 =
1

2
,

α2ν
2
1 + α3δ

2
1 =

1

2
.

(18)

Solving systems (14) and (18) we get three class of solutions as follows:
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Case 1. The four-parameter solution

µ0 =
(2α3ρ0 − 1)(−1 + 2α3δ

2
1)

1− 4α3δ1 + 4α2
3δ

2
1

,

ν1 =
−1 + 2α3δ

2
1

−1 + 2α3δ1
,

α1 =
1

2
(
−1− 4α3δ1 + 2α3 + 4α3δ

2
1

−1 + 2α3δ21
),

α2 = −1

2
(
1− 4α3δ1 + 4α2

3δ
2
1

−1 + 2α3δ21
),

λ0 =
(−1 + 2α3ϕ0)(−1 + 2α3δ

2
1)

1− 4α3δ1 + 4α2
3δ

2
1

.

(19)

Case 2. The three-parameter solution

µ0 = −1
2
(ρ0−1

α2
), ν1 = 0, α1 = −α2 +

1
2
,

α3 =
1
2
, δ1 = 1, λ0 = −1

2
(−1+φ0

α2
).

(20)

Case 3. The parameter free solution

α1 =
1

2
, α2 = 0, α3 =

1

2
, δ1 = 1, φ0 = 1, ρ0 = 1. (21)

Now we consider the systems (16) and (17) using linear combinations of vari-
ables ∆Wn,

√
h and (∆Wn)2√

h
as follows:

Υ1 = γ1∆Wn + γ2
√
h+ γ3

(∆Wn)
2

√
h

,

Υ2 = λ1∆Wn + λ2

√
h+ λ3

(∆Wn)
2

√
h

,

Υ3 = µ1∆Wn + µ2

√
h+ µ3

(∆Wn)
2

√
h

,

Φ1 = β1∆Wn + β2

√
h+ β3

(∆Wn)
2

√
h

,

Φ2 = η1∆Wn + η2
√
h+ η3

(∆Wn)
2

√
h

.

(22)

With these random variables, if we take µ̄0 = ρ̄0 and λ̄0 = φ̄0 in (3), then
the order condition Φ1Υ2 + Φ2Υ3

(2)
≃ 1

2
((∆Wn)

2 − h) in system (16) yields to

(Φ1Υ2 +Φ2Υ3)h
(2)
≃ 1

2
((h∆Wn)

2 − h2). By 2-equivalent h(∆W )2
(2)
≃ h2 in (7) we

get (Φ1Υ2 + Φ2Υ3)h
(2)
≃ 0 and thus system (17) is omitted. Using equivalences

(6) and (8)-(11) it can be seen that system (16) has the following one parameter
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solution [17]:

β3 = η3 = 0, µ̄0 = λ̄0 = 1, γ1 =
1

2
, γ2 = γ3 = 0, µ1 = λ1 =

1

4
,

µ2 = −λ2 =
1− 48µ2

3

32µ3

, λ3 = −µ3, β1 = η1 = 1 +
32µ2

3

1− 48µ2
3

,

β2 = −η2 =
8µ3

1− 48µ2
3

,

(23)

where µ3 ̸= 0 and µ3 ̸= 1
4
√
3
.

Now, supposing µ3 = −1
4

in solution (23) of system (16), we state some
particular solutions of systems (14)-(17) and we obtain following examples of
second-order stochastic Runge-Kutta method (2)-(3):

(I) A solution of system (19) in Case 1 is

α1 =
1

6
,

α2 =
4

6
,

α3 =
1

6
,

ν1 =
3

5
∓

√
6

10
,

δ1 =
3

5
± 2

√
6

5
,

µ0 = −1

4
ρ0 +

3

4
,

λ0 = −1

4
ϕ0 +

3

4
.

(24)

Therefore, if we take ρ0 = ϕ0 = 1, we have µ0 = λ0 = 1
2

and we obtain
the following method, which we call it ”SRK1 method”:

xn+1 = xn +
1

6
(K0 + 4K1 +K2)h+

1

4
(2S0 + S1 + S2)∆Wn

+
1

4
(S2 − S1)(

√
h− (∆Wn)

2

√
h

),



190 Mahmood Parsamanesh

with
K0 = f(tn, xn),

S0 = g(tn, xn),

K1 = f(tn +
1

2
h, xn +

1

2
K0h+ (

3

5
∓

√
6

10
)∆WnS0),

S1 = g(tn + h, xn +K0h+
√
hS0),

K2 = f(tn + h, xn +K0h+
3

5
± 2

√
6

5
∆WnS0),

S2 = g(tn + h, xn +K0h−
√
hS0).

(II) Let α2 = 1
4

and ρ0 = φ0 = 3
4

in system (20) in case 2. Then we get
”SRK2 method” as follows:

xn+1 = xn +
1

4
(K0 +K1 + 2K2)h+

1

4
(2S0 + S1 + S2)∆Wn

+
1

4
(S2 − S1)(

√
h− (∆Wn)

2

√
h

),

with
K0 = f(tn, xn),

S0 = g(tn, xn),

K1 = f(tn +
1

2
h, xn +

1

2
K0h),

S1 = g(tn + h, xn +K0h+
√
hS0),

K2 = f(tn +
3

4
h, xn +

3

4
K0h+∆WnS0),

S2 = g(tn + h, xn +K0h−
√
hS0).

(III) Parameter values in case 3 (system (21)) yield to the weak second-order
”Platen method”[7].

4. Mean-Square stability
In this section we consider MS-stability of the test equation for SDEs

first, and then we consider numerically MS-stability of proposed methods for
SDEs. Consider the Ito scalar linear test equation as follows

dx(t) = αx(t)dt+ βx(t)dW (t), t > 0, α, β ∈ C, (25)
with nonrandom initial condition x(t0) = x0 ∈ R, x0 ̸= 0. Exact solution of
(25) is given by

x(t) = x0 exp{(α− 1

2
β2)t+ βW (t)}.

It can be shown [14] that the solution of the test equation (25) is MS-stable if
and only if 2ℜ(α) + |β|2 < 0.
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Definition 4.1. Numerical solution {xn}n∈N for solving test equation (25)
generated by a scheme with equidistant step size is MS-stable if

lim
n→∞

E[|xn|2] = 0.

Applying second-order RK schemes given in previous section on the test
equation (25) we obtain the following difference equation

xn+1 = xn

(
1 + α(α1 + α2 + α3)h+ α2(α2λ0 + α3ϕ0)h

2 + βαh(α2Θ1 + α3Θ2)

+ β(Υ1 +Υ2 +Υ3) + βαh(λ̄0Υ2 + φ̄0Υ3) + β2(Φ1Υ2 + Φ2Υ3)
)
.

(26)
Using definitions of variables in (22) we have

Υ1 +Υ2 +Υ3 = (γ1 + λ1 + µ1)∆Wn + (γ2 + λ2 + µ2)
√
h+ (γ3 + λ3 + µ3)

∆Wn√
h

,

λ̄0Υ2 + φ̄0Υ3 = (λ̄0λ1 + φ̄0µ1)∆Wn + (λ̄0λ2 + φ̄0µ2)
√
h+ (λ̄0λ3 + φ̄0µ3)

∆Wn√
h

,

Φ1Υ2 + Φ2Υ3 = (β1λ1 + η1µ1)(∆Wn)
2 + (β2λ2 + η2µ2)h+ (β3λ3 + η3µ3)

(∆Wn)
4

h

+ (β1λ2 + β2λ1 + η1µ2 + η2µ1)
√
h∆Wn + (β2λ3 + β3λ2 + η2µ3 + η3µ2)(∆Wn)

2

+ (β1λ3 + β3λ1 + η1µ3 + η3µ1)
(∆Wn)

3

√
h

,

and then by parameter values in solution (23) of system (16) with assumption
λ̄0 = φ̄0 we get

Υ1 +Υ2 +Υ3 = ∆Wn,
λ̄0Υ2 + φ̄0Υ3 =

1
2
∆Wn,

Φ1Υ2 + Φ2Υ3 =
1
2
(∆Wn)

2 − 1
2
h.

(27)

In addition, considering stochastic variables Θ1 = ν1∆Wn and Θ = δ1∆Wn

and using first equation in system (18), we obtain

α2Θ1 + α3Θ2 =
1

2
∆Wn. (28)

Now by employing system (14) and inserting (27) and (28) in (26),

xn+1 = xn

(
1 + αh+

1

2
α2h2 + β∆Wn(1 + αh) +

1

2
β2((∆Wn)

2 − h)
)
. (29)

Let us denote yn = ∥xn∥2 = E|xn|2. Taking the square of the mean square
norm of (29), by this property of moments of the Wiener process ∆Wn, that
state E[(∆Wn)

n] = 0 if n is an odd number and E[(∆Wn)
n] = (n − 1)(n −

3)(n−5) . . . 1 if n is an even number, the following one-step difference equation
is obtained:

yn+1 = yn(|1 + αh+
1

2
α2h2|2 + |β|2h|1 + αh|2 + 1

2
|β|4h2). (30)
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If we take ∆ = αh and k = −β2/α, then hβ2 = −k∆ and therefore, the one-
step difference equation (30) becomes of the form yn+1 = P (∆, k)yn, where

P (∆, k) = |1 + ∆+
1

2
∆2|2 + |1 + ∆|2|∆k|+ 1

2
|∆k|2. (31)

The region determined by R = {(∆, k) ∈ R2 : |P (∆, k)| < 1} is called the
region of MS-stability of the scheme.
Notice that the stability function P (∆, k) is same with the stability function
of Platan method [7] and with the stability function of family A in [14] with
parameter α2 = 1

2
and hence MS-stability region of this class of schemes is

similar to MS-stability region of these methods. Fig 1 shows the region stability
of this class of weak order 2 stochastic RK methods.

Figure 1. MS-stability region.

5. Numerical experiments
In this section we employ numerical examples to examine and illustrate

stochastic Runge-Kutta methods developed in this article. Each example is
solved by a method for 5,000 independent sample paths with step size h and
then mean of these solutions is considered as the weak numerical solution[6, 7].
Error and standard deviation of each method is calculated as follows:

ϵ =
∣∣∣E[xN ]− E[x(T )]

∣∣∣,
σ =

√
E[x2

N ]− E2[xN ],

where x(T ) and xN are the exact solution and numerical solution at the end
time T , respectively. To simulate the increments ∆Wn we use a normal dis-
tribution N(0, h).
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Example 5.1. Consider non-linear SDE

dx(t) = (
1

3
x(t)1/3 + 6x(t)2/3)dt+ x(t)2/3dW (t), x(0) = 1, (32)

with exact solution x(t) = (2t+ 1 + W (t)
3

)3.
We compare SRK1 method and SRK2 method with Platen method. The first
moment of the solutions will be approximated at T = 1 whose exact solution is
E[x(1)] = 28. The errors and standard deviations of the employed methods has
been summarized in Table 1. Moreover, the speed of the methods are compared

Table 1. Errors and standard deviations in the approximation
of E[x(1)] in Example 5.1.

Platen SRK1 SRK2
h err s. d err s. d err s. d
2−1 5.874 6.11 5.197 6.26 5.291 6.24
2−2 2.182 7.99 1.845 8.09 1.888 8.08
2−3 0.772 8.71 0.649 8.75 0.664 8.75
2−4 0.229 9.23 0.191 9.24 0.196 9.24
2−5 0.029 9.17 0.019 9.17 0.020 9.17

and time of computations are summarized in Table 2 as CPU-time.

Table 2. CPU-time of evaluations to approximate E[x(1)] in
Example 5.1.

h Platen SRK1 SRK2
2−1 0.078125 0.062500 0.062500
2−2 0.109375 0.140625 0.125000
2−3 0.171875 0.296875 0.281250
2−4 0.359375 0.453125 0.453125
2−5 0.718750 0.921875 0.921875

Example 5.2. Consider the following system of SDEs
dx1(t) = 0.5a2x1(t)dt+ ax2(t)dW (t),

dx2(t) = 0.5a2x2(t)dt+ ax1(t)dW (t).
(33)

The exact solution of system (33) is

x(t) =

 cosh
(
aW (t) + cosh−1(x1(0))

)
sinh

(
aW (t) + sinh−1(x2(0))

)  (34)

We estimate first moments of components x1 and x2 at T = 1 employing Euler-
Maruyama method and SRK1 method. Errors of approximations are given in
Table 3 for a = 1.
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Table 3. Errors in approximation of first moments E[x1(1)]
and E[x2(1)] in Example 5.2.

Euler SRK1
h E[x1(1)] E[x2(1)] E[x1(1)] E[x2(1)]

10−1 1.638840 1.110225 0.030163 0.042791
10−2 0.896515 1.701824 0.003467 0.005086
10−3 0.869014 1.691193 0.000365 0.000539

Example 5.3. In this example we consider the stability of schemes SRK1 and
SRK2 by applying the difference equation (29) with equidistant step size h to
the linear test SDEs

dx(t) = αx(t)dt+ βx(t)dW (t), x(0) = 1

with the following values for α and β:
(i) α = −100, β = 10 and h = 0.005,
(ii) α = −100, β = 10 and h = 0.01,
(iii) α = −120, β = 11 and h = 0.01.
In cases (i)-(iii) we have respectively P (∆, k) = 0.640625 < 1, P (∆, k) =
0.75 < 1 and P (∆, k) = 1.05085 > 1 and so for examples (i) and (ii) schemes
are MS-stable and for example (iii) they are MS-unstable. Running a MATLAB
code with 10,000 independent trials, the results, summarized in Table 4, confirm
the above analysis.

Table 4. Values of ∥x(t)∥2 = E|x(t)|2 using RK scheme for
test examples (i)-(iii).

∥x(t)∥2 = E|x(t)|2
t (i) (ii) (iii)

0.01 0.637739 0.791478 1.013640
0.02 0.233158 0.600301 1.351227
0.03 0.064782 0.333338 0.894226
0.04 0.019702 0.215174 0.551664
0.05 0.004635 0.072973 1.542861
0.06 0.000846 0.093904 1.250331
0.07 0.000875 0.029113 0.270396
0.08 0.000139 0.002788 1.161399
0.09 0.000018 0.001060 3.229528
0.10 0.000003 0.000079 3.321441

6. Conclusions
In this paper, we studied a family of three-stage stochastic Runge-Kutta

methods. The conditions that must satisfy in order to the methods have
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weak order two were obtained. The SRK1 method and the SRK2 method
were obtained as particular solutions of the conditions. It was shown that the
Platen method can be also concluded as a particular solution of this family.
Numerical simulations show that errors resulted by SRK1 and SRK2 methods
are less than Platen method for each step size. Moreover, CPU-times for these
methods have less values in large step sizes but not in small step sizes due to
an extra stage in these methods rather than Platen method. In addition, the
mean-square stability of some particular schemes of this family was studied
and the stability function and the region of stability were given. The region
of stability is same as the region of Platen’s method. Also, the stability of the
obtained stochastic schemes were numerically compared for various values of
parameters and step sizes.
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