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A NEW BERNOULLI SUB-ODE METHOD FOR
CONSTRUCTING TRAVELING WAVE SOLUTIONS FOR
TWO NONLINEAR EQUATIONS WITH ANY ORDER

Bin Zheng?

In this paper, a new generalized Bernoulli sub-ODE method is
proposed to construct exact solutions of nonlinear equations. The validity
of the method is testified by finding new exact traveling wave solutions of
the BBM equation with any order and general Gardner equation.
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1. Introduction

The nonlinear phenomena exist in all the fields including either the scien-
tific work or engineering fields, such as fluid mechanics, plasma physics, optical
fibers, biology, solid state physics, chemical kinematics, chemical physics, and
so on. It is well known that many nonlinear evolution equations (NLEEs)
are widely used to describe these complex phenomena. So, the powerful and
efficient methods to find analytic solutions of nonlinear equations have drawn
a lot of interest by a diverse group of scientists. Among the possible solu-
tions to NLEESs, certain solutions for special form may depend only on a single
combination of variables such as traveling wave variables. In the literature,
there is a wide variety of approaches to nonlinear problems for constructing
traveling wave solutions. Some of these approaches are the homogeneous bal-
ance method [1,2], the hyperbolic tangent expansion method [3,4], the trial
function method [5], the tanh-method [6-8], the non-linear transform method
[9], the inverse scattering transform [10], the Backlund transform [11,12], the
Hirotas bilinear method [13,14], the generalized Riccati equation [15,16], the
Weierstrass elliptic function method [17], the theta function method [18-20],
the sineCcosine method [21], the Jacobi elliptic function expansion [22,23],
the complex hyperbolic function method [24-26], the truncated Painleve ex-
pansion [27], the F-expansion method [28], the rank analysis method [29], the
exp-function expansion method [30] and so on.
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In this paper, we propose a Bernoulli sub-ODE method to construct
exact traveling wave solutions for NLEEs. Firstly, we reduce the NLEEs to
ODEs by a traveling wave variable transformation. Secondly, we suppose the
solution can be expressed in a polynomial in a variable GG, where G satisfies the
Bernoulli equation. Thirdly, the degree of the polynomial can be determined
by the homogeneous balance method, and the coefficients can be obtained by
solving a set of algebraic equations.

The rest of the paper is organized as follows. In Section 2, we describe the
Bernoulli sub-ODE method for finding traveling wave solutions of nonlinear
evolution equations, and give the main steps of the method. In the subsequent
sections, we will apply the method to find exact traveling wave solutions of
the BBM equation with any order and general Gardner equation. In the last
Section, some conclusions are presented.

2. Description Of The Bernoulli Sub-ODE Method

In this section we present the solutions of the following ODE:
G+ MG = uG? (1)

where A\ # 0.
When p # 0, the Eq. (1) is the type of Bernoulli equation, and we can

obtain the solution as )
G=43——, (2)
g + det

where d is an arbitrary constant.
When p = 0, the solution of Eq. (1) is denoted by

G =de ™™, (3)

where d is an arbitrary constant.

Suppose that a nonlinear equation, say in two independent variables z, t,
is given by

P(U,Ut,umutt,uzt,umx,---) = 07 (4)

where u = u(z,t) is an unknown function, P is a polynomial in u = u(z,t) and
its various partial derivatives, in which the highest order derivatives and non-
linear terms are involved. By using the solutions of Eq. (1), we can construct
a serials of exact solutions of nonlinear equations.

Step 1. We suppose that

The traveling wave variable (5) permits us reducing (4) to an ODE for u = u(¢&)
P(u, u',u”, ...) = 0. (6)

Step 2. Suppose that the solution of (6) can be expressed by a polynomial
in GG as follows:
u(€) = apmG™ + Ay G™ L (7)
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where G = G(§) satisfies Eq. (1), and a, ay—1..., and p are constants to
be determined later, a,, # 0. The positive integer m can be determined by
considering the homogeneous balance between the highest order derivatives
and nonlinear terms appearing in (6).

Step 3. Substituting (7) into (6) and using (1), collecting all terms with
the same order of G together, the left-hand side of (6) is converted into another
polynomial in G. Equating each coefficient of this polynomial to zero, yields
a set of algebraic equations for a,,, a;,—1..., k,c, A and pu.

Step 4. Solving the algebraic equations system in Step 3, and by using
the solutions of Eq. (1), we can construct the traveling wave solutions of the
nonlinear evolution equation (6).

In the following sections, we will apply the method described above to
some examples.

3. Application Of The Bernoulli Sub-ODE Method For BBM
Equation With Any Order

In this section we will consider the BBM equation with any order [31]:
Uy + atly + bu"uy — Ty =0, n >0, (8)

where a, b and r are known constants.
In order to obtain the traveling wave solutions of Eq. (8), we suppose
that

u(z,t) = u(§), § =z —ct, 9)
where c is a constant that to be determined later.
By using the wave variable (9), (8) is converted into an ODE

—cu' + au’ 4+ bu™u' + cru” = 0. (10)

Suppose that the solution of (10) can be expressed by a polynomial in G as
follows:

u(€) = ZaiG", (11)

where a; are constants. Balancing the order of u"u' and v in Eq. (10), we

have mn+m+1=m+3 = m = % So we make a variable u = v%, then
(10) is converted into

2(a—c+bv)n*v*v +2cr(2—n)(2—2n) (V') +bernvv'v” 4+ 2ncrv*e” = 0. (12)

Suppose that the solution of (12) can be expressed by a polynomial in G as
follows:

v(€) = Zbicﬂ, (13)

where b; are constants, G = G(¢) satisfies Eq. (1). Balancing the order of v3v’/
and (v')? in Eq. (12), we have 4l +1=3l+3 = [ =2. So Eq. (13) can be
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rewritten as

v(§) = boG* 4 b1G + by, by # 0, (14)
where by, by, by are constants to be determined later. Then with (1) we can
obtain

V(&) = 2bouG? + (byp — 26, N)G? — biAp
0" (€) = 6bop®G* 4 (2b114% — 10bop\)G® + (=3by i) + 4byA?)G? + b A2 G
V"(€) = 24bopP GO + (6bypi® — 5dbop® N)G* + (=120 pi® X + 38bou\?)G?

(T A2 — 85,03 G2 — b ASG.

Substituting (14) into (12) and collecting all the terms with the same power of

G together and equating each coefficient to zero, yields a set of simultaneous
algebraic equations as follows:

GY : 12bcrnbyp® + 4n?bbyp + 80n2erb3u® — 96crnb3p® + 64crb3pu® = 0

G® . —192crb3p®\ — 32bernb3 X + 22bernby b33 + 96¢rb b3 — 4n2bbiN
—204ncrb3p® A — 144ernbib3p® + 14n2bb3by p + 288crnbipi®lambda
+156n%crb bip® = 0

G" 0 12n2bbob3p + 172n%crb3p)? — dn’cbip — 72crnbibop® + 28bernbiu)
—288crby b2 p? A\—14n2bbsby A\+12bcrnbiby i +96n2crbibyp® —58bcrnb b \
+432crnby b p* X + 12bcrnbobip® + 96n2crbobip® + 4nab3pu — 288crnbs >
—384n2crbibap X + 48¢crbibop® 4+ 192erb3uA? + 18n2bbibsu = 0

GO : An2cbi\ — An2ab3\ — 64crb3N® + 8erbip® + 30n2bbobi b3p + 10n?bb3bopu
—12n2bbob3 X + 10n?ab3bip — 10n?chabp — 18n?bb2b3N + 288crb b\
—144erb2byp® X — 31bernbibapi> X — 8bernb3 A3 + 2bernb? i 4 50bcrnb b3 u\?
+10bcrnbgby by — 216n%crboba X — 32bernbobsp® A — 228n%crbiby A
—48n2crbi\3 4+ 16n2crb3p® + 310n%crbib3uA? + 120n2crbob; by
+216crnbibop® X — 432crnbb3u)? — 12crnb3 i + 96crnbs\3 = 0

G® : 2n2bbip + 24n2bbobibapr — 30n2bbobib3N + 12n20b3bau — 10n?bb3 by \
+8n2ab3bayp—8n?cbibopi—10n?ab3bi A+ 100 cb3bs A\+8n2abob3 —8n?chob3 i
—24crb3 P A—96¢rb b33 +144crb2by A +-26bcrnbiby u A2 —26bernboby 2 ba A
+48n2crb3bap®+152n%crbobip* —36n2crb? 2 \+28bcrnbobs pA? —5bernb’ 2 \

—14bernby b33 4-2bcrnbob? 113 —264n2crbgby 12 ba A\—82n2crby b3IN3+24n2crbyb? 113

+176n2crbibop)? + 144crnb b33 — 216crnbibop)? + 36crnbi A =0

G*Y: —2n2bbIN+2n2ab? pu—2n2ch? 1—24n>bbob2 by \+12n2aboby bapi—12n2cboby b
+18n2bb2baby 11— 12n2bb3b3 A +6n2bbob? 114812 cbibe A\—8n?abiba \+8n?chyb3 A
—8n2abob3\ + 24crb3uA? — 48crb2ba A3 — 8bernbybiN® — Sbernbobi A
+22bernbby uA2by — 48n2crbgb? X\ + 180n2crboby uA2by — 32n2crbybi3
+12n2erb31db; — 108n2erb[0)2bop® X + 26n2crb? uA? + 4bernb pl?
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—Thernbiby\3 — 44n2crb?bo X3 — 36crnbi pd? 4+ 72ernbiby\3 = 0

G3 1 12n%chobibo\ — bernbiA3 + T6n2crbibo A2 — 4n?cbob? 1 — 12n2abobyba A
—6n2bbyb3 A — 6bcrnbyby A3by — 36n2crboby AN3by — 24n2cr b u?by A+ 12crnb3 \3
—2n2abi A —6ncrb3 A3 +-2n2ch3 N —18n2bbababy A\+4bcrnbybI A\ +4n2ablba
+4n2bb3bap + 6n20bAb3 1 + Anabob?p + 28n2crbobi u\* — 8erbilambda®
—4n2chibap = 0

G? . —2n2cbibyp + 2n20b3by n — An?abibo\ — An*abibo\ — 16n%crbiba\® = 0

Gl =2n2ab3by A — 2n20b3 by X + 2n2ch3bi X — 2n2erbib A = 0.
Solving the algebraic equations above, yields:

—2n?a
CcC = 9 bO = 07
brnA? — 12rnA? + 6n2rA2 — 2n2 + 8r\?
b —2(3bn + 20n? — 24n + 16)aru
YT b(brnA2 — 12rnA? + 6n2rA2 — 202 + 8rA2)’
2ar?(3b 20n? — 24 16
by — arp®(3bn + 20n n+ 16) (15)

b(brnA? — 12rnA? + 6n2rA\? — 2n2 + 8rA?)’

Provided that p # 0, combining with (2) and (3) we can obtain the traveling
wave solutions of the BBM equation (8) as follows:

—2(3bn + 20n? — 24n + 16)aru 1
() = 2 _ 2 2:\2 _ 92 7 (
b(brnA? — 12rnA? + 6n2rA2 — 2n? +8rA%) K | g0

)
A
2arp?®(3bn + 20n? — 24n + 16) 1

2, 16
+b(brn)\2 — 12rnX2 4+ 6n2rA\2 — 2n? + 8r)\?) (H i de’\f) (16)
A

Then
—2(3bn + 20n? — 24n + 16)aru 1 )
(brnA? — 12rnA2 + 6n2rA2 — 2n? + 8r\?) % 1 deX

u() = [;

2arp®(3bn + 20n? — 24n + 16) 1
b(brnA2 — 12rnA2 + 6n2rA? — 2n2 4+ 8rA2) 1 | g
A

2w, (A7)

—9n%a
brnd? — 12rnA\? + 6n°rA? — 2n? + 8ri?

where £ =z —| Jt, and d is an arbitrary

constant.

Remark 3.1. If we take p = 0, then we obtain trivial solution u = 0.
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Remark 3.2. In [31], the author has reported the following exact solutions of
BBM equation (8).

3=

aA?(14n)(2+n)

{ WS@CW[%A(LE + n2+A2 —5 b+ Co)] ,Zf 1(1 7é O, A27" — 7’L2 7é 0

 BUE@VT o2l (4 /20 4 B4 Cy)]", otherwise

u(z,t) =

Also some other exact solutions have been reported in [32-33]. Our result
(17) is different from the results in [31-33], and have not been reported in the
literature to our best knowledge.

4. Application Of The Bernoulli Sub-ODE Method For General
Gardner Equation

We consider the general Gardner equation [32]:
u + (p+ qu™ 4+ 1)Uy + Uy =0, n >0, r <O0. (18)
When n=1,q # 0,7 # 0, Eq. (18) becomes the KdV-mKdV equation
uy + (p+ qu + ru)uy + Uppe = 0.

When n =1, # 0,r =0, Eq. (18) becomes the KdV equation

g + (p 4 qu)ug + Uger = 0.
Whenn =1,¢=0,r # 0, Eq. (18) becomes the mKdV equation

up + (p + 1u*) gy + Ugge = 0.

In the following, we shall construct exact traveling wave solutions of Eq.
(18). In order to obtain the traveling wave solutions of Eq. (18), we suppose
that

where k,w are constants that to be determined later.
By using (19), (18) is converted into an ODE

—kwu' + k(p + qu” + ru®™)u’ + E*u” =0 (20)
Suppose that the solution of (20) can be expressed by a polynomial in G as

follows:
= a4G (21)
i=0

where a; are constants, G = G(&) satisfies Eq. (1). Balancing the order of
u?™y’ and uv” in Eq. (20), we have 2mn+m +1=m+3 = m= % So we
make a variable u = v, then (20) is converted into
—k(w—p—qu—rv*)n*v*v +k* (1—n) (1—2n) (v')* 43k n(1—n)vv'v"+E*n*v*v"” = 0.
(22)
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Suppose that the solution of (22) can be expressed by a polynomial in G as
follows:

v@)=§:@@, (23)

where b; are constants. Balancing the order of v*¢’ and (v)? in Eq. (22), we
have 4/ +14+1=314+3 = [ =1. So Eq. (23) can be rewritten as

(&) = bG + by, by #0, (24)

where by, by are constants to be determined later.

Substituting (24) into (22) and collecting all the terms with the same
power of G together and equating each coefficient to zero, yields a set of si-
multaneous algebraic equations as follows:

G kn2biwbE\ — kn2bipbi\ — kn2birbg\ — kn2bigbi\ — k*n2b3bi 23 = 0

G? . —4kn®bIrb3IN + kn?bipb3 i + kn2birbju — 3k3nbibg\® — 2knb2 pbo
+2kn?biwbo A — kn?biwbiu + kn2biqbiu + k*n*bibgA* — 3kn?biqbiA
+Tk*n2b3biuX* = 0

G? . —E3B3IN® — 3kn?biqbo A + 3kn?b3qbi i+ kn2biw\ + 4kn?b3rbdu — 6kn2b3rb3\
—kn?b3pA — 2kn?b3wbop + 2kn?bipbop + 2k3n2b2bouN? + 12k3nb3bou)?
— 123020301 1>\ = 0

G* . —kn?bwp + 6k3n2b3b, 13 + kn2b3pp — kn?big\ + 6kn2b3rbd i+ 3kn?b3qbop
—4kn2birboX — 9E3n2bibop N + 3K3B3nuA? + k303n?u)? — 15k3nb2bop®\
+3k3b3uN? = 0

G® . —kn?bir A+ kn?biqu+6k>n2b2bop’ — 3k363n? 2 X — 6k3b3np* A+ 6k3nb2 by i
+4kn2birbou — 3k303 2\ = 0

GO kn®biru + K303 13 + 2k303n2 13 + 3K303nu® = 0.
Solving the algebraic equations above, yields:

Case 1:
n3pr + 5n2pr + Snpr + 4pr — 2ng* — ¢* b 0
w = =
r(n3 + 5n2 + 8n + 4) 0T

—(2n+1)
_ra@r+l) Ve O (25)
YA+ 2)r An+2)
Substituting (25) into (24), we have

_ —pg(2n+1)
A YR
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By (18) and u = vw, we can obtain the traveling wave solution of general
Gardner equation as follows:
When p # 0

—nq(2n +1) 1

|

= n 26
U1(§> [ A(n—i—?)r H+de/\£ ] ) ( )
A
where d is an arbitrary constant,
—(2n+1
%qn n3pr 4+ 5n’pr + Snpr + 4pr — 2ng* — ¢*
E=+ (x — t).
A(n +2) r(n® 4+ 5n2 + 8n + 4)
When p = 0, we obtain trivial solution v = 0.
Case 2:
L n3pr + 5npr + 8npr + 4pr — 2ng* — ¢ . —(2n+1)q
B r(n3 + 5n2 + 8n + 4) » T (4 2)r
—(2n+1)
IR s -
PN+ 2)r A(n + 2)
Substituting (27) into (24), we have
o(€) = puqg(2n + 1) —(2n+1)q
A(n+2)r (n+2)r

Similarly, we can obtain another traveling wave solution of general Gardner
equation as follows:

When p # 0
uz(§) = |

pg(2n + 1) 1 —(2n+1)q
( +
An+2)r g (n+2)r
A

7, (28)

where d and £ are the same as Case 1.
When p = 0, we have u = 0.

Remark 4.1. Compared with the exact solutions of general Gardner equa-
tion reported by the authors in [32,34,35], the results (26) and (28) are new
solutions.

5. Conclusions

In this paper, we have seen that some new traveling wave solutions of
BBM equation with any order and general Gardner equation are successfully
found by using the Bernoulli sub-ODE method. Now we briefly summarize the
method in the following.

The main points of the method are that assuming the solution of the
ODE reduced by using the traveling wave variable as well as integrating can be
expressed by an m-th degree polynomial in G, where G = G(§) is the general
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solutions of a Bernoulli sub-ODE equation. The positive integer m can be
determined by the general homogeneous balance method, and the coefficients
of the polynomial can be obtained by solving a set of simultaneous algebraic
equations .

Compared to the methods used before, one can see that this method is
concise and effective. Also this method can be used to many other nonlinear
problems.
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