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NONLINEAR MODEL PREDICTIVE CONTROL FOR
TRAJECTORY TRACKING OF A CLASS OF CONTINUUM
ROBOTS

Ammar AMOURI, Halim MERABTI, Abdelhakim CHERFIA,
and Yazid LAIB DIT LEKSIR

This paper presents a Nonlinear Model Predictive Control (NMPC)
scheme for solving the trajectory tracking and obstacle avoidance problems
for a class of continuum robots with three actuators per bending section,
namely Cable-Driven Continuum Robot (CDCR). Since, NMPC schemes
were strongly limited by the computational burden associated with the op-
timization algorithms, the Knowledge-based Particle Swarm Optimization
(KPSO) algorithm is used to solve the existing optimization problem in the
NMPC, due to its simplicity and fast convergence. The proposed NMPC-
KPSO has been applied to the kinematic models developed on the basis
of kinematic equations of inextensible bending section and by using the
Constant Curvature Kinematic Approach (CCKA). The proposed control
scheme was evaluated via simulation examples with complex trajectories in
a free and confined environment. The obtained results showed satisfactory
performances in terms of tracking accuracy, computation time and obsta-
cle avoidance. Considering the quality of solution and computation time,
the proposed NMPC-KPSO can be considered as an alternative solution for
real-time applications of this class of continuum robots.

Keywords: Continuum robot, cable-driven continuum robot, nonlinear
model predictive control, particle swarm optimization, trajectory tracking,
obstacle avoidance.

1. Introduction

Continuum robots are a category of hyper-redundant manipulators that
are inspired by the biological world like elephant trunks [1], snakes [2] and
octopus tentacles [3]. These robots are characterized by high dexterity and
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flexibility allowing them to operate in confined spaces and complex environ-
ments where conventional rigid robots cannot work. These properties make
continuum robots suited for a large number of applications in various fields,
such as the medical field, in particular for minimally invasive surgery [4], rescue
operation [5], and so on. Nowadays, several designs of the continuum robot
have been built [6, 7]. The popular hard class with three actuators per bending
section, namely Cable-Driven Continuum Robot (CDCR) [8, 9] is one of them.
A CDCR can comprise single or multi-bending sections. Each bending section
can be bent and rotated with respect to other sections to control the robot
shape and end-tip pose giving two Degrees of Freedom (DoF's).

In literature, classical and advanced control schemes have been widely
used to control different robotic systems, such as wheeled mobile robots, se-
rial /parallel robot manipulators, and unmanned aerial vehicles. Nevertheless,
with regards to continuum robots, the design of control schemes for these
robotic systems can be considered as a challenge due to the complexity of their
mathematical models, hyper-redundancy and modeling inaccuracies. However,
some works relative to the control of continuum robots have been proposed
using different control strategies, such as Proportional-Integrated-Derivative
(PID) controller, Adaptive Control Algorithms (ACAs), Fuzzy Logic Con-
troller (FLC) and Nonlinear Model Predictive Control (NMPC).

Regarding classical controllers, two contributions have been made on
CDCRs [10, 11], where the authors used a PID controller allowing accurate
tracking of trajectories using approximate dynamic models for a single and
multi-bending sections continuum robot. However, the robustness of contin-
uum robots control depends on the accuracy of their models; some contri-
butions have been proposed using advanced control schemes. For instance,
adaptive Neural Networks (NNs) scheme [12] and adaptive Support Vector
Regressor (SVR) controller [13] have been made on a continuum manipula-
tor, namely Compact Bionic Handling Arm (CBHA). In [14], a fuzzy logic
based static feedback controller is developed for a single bending section of a
Tendon-Driven Continuum Robot (TDCR); while in [15], a FLC is proposed
for autonomous execution of end-effector trajectory tracking tasks for a con-
tinuum manipulator, namely TDCR, using the kinematic model.

Other researchers have used NMPC to control the continuum robots
[16, 17]. In [16], authors propose a NMPC scheme to control the growth of vine-
like growing robots in which the growth control was applied to the kinematic
model and in [17], where a MPC has been developed for the autonomous
steering of concentric tube robots.

In the present paper, we attempt to apply a NMPC-KPSO to control a
class of continuum robots, namely Cable-Driven Continuum Robot (CDCR).
The proposed control scheme gives a better performance in terms of rapid
convergence, and trajectory tracking accuracy via point-to-point technique in
a free and confined environment. It is noteworthy that the main advantage
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of KPSO algorithm is that it allows computing the control signal faster than
other optimizer methods [18].

The remainder of this paper is organized as follows: Section 2 gives a brief
summary of the forward and differential kinematic models of a CDCR based
on CCKA . Section 3 describes the Nonlinear Model Predictive Control and
the optimizer method, namely Knowledge-based Particle Swarm Optimization.
Simulation results and analysis are presented in Section 4. Concluding remarks
and future works are provided in Section 5.

2. Kinematical Models of CDCR

Among the methods proposed to tackle the forward kinematics of con-
tinuum robots, the constant curvature kinematic approach (CCKA) [9, 19] is
commonly used, due to its simplification in modeling. This section provides a
brief summary of the kinematics of a CDCR based on CCKA. Since the CDCR
is an open kinematic chain of serially connected bending sections, the position
and orientation of the robot’s end-tip can be expressed as follows:

x = [x" xMT = h(k), (1)

where x € R is the task variables of the CDCR’s end-tip. x* € R? labels the
Cartesian position vector, and x® presents the rotation angles {®, ©, ¥} of
the frame attached to the robot’s end-tip with respect to the reference frame.
k = [ki ... kI]T € R"*? is the configuration state of the whole CDCR, and
k; = [0; ¢;]" is a vector of bending and orientation angles which are used
as generalized coordinates (i.e. inputs/outputs) to control the robot. h is a
robot-independent mapping function (For more details on the development of
forward and differential kinematics of the considered robot, we refer the reader
to reference [20, 21]).

The derivative with respect to time of the task variables, x, yields the
CDCR’s end-tip Cartesian and angular velocity as follows:

x = J(k)k, (2)

where J(k) € R®*?" is the Jacobian matrix that can be calculated as follows:
Oh(k)
k)= —~

39 =2, (3)

3. Nonlinear model predictive control based on the KPSO

This section gives a summary of the NMPC strategy and the applied opti-
mizer method, namely KPSO. The NMPC-KPSO is applied to the kinematic
model i.e. the manipulated variables are the velocities in the configuration
space, which is proposed to control the CDCR under study. The proposed
NMPC-KPSO scheme will allow for accurate tracking of reference trajectory
defined in a task space by considering the imposed physically constraints as
well as presence/absence of environmental constraints. Beginning with the
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mathematical formulation of NMPC, the KPSO and the problem setting are
described thereafter.

3.1. Mathematical Formulation of NMPC

For any robotic system, the kinematic motion can be described by the
discrete state space model as follows:

x(k+1) = f(x(k),u(k)), (4)

where x € X is the constrained state space in a convex and closed set. u €
U C R” is the constrained control signal in a compact convex set, and f is a
continuous mapping with £(0,0) = 0.
To regulate the state to the origin by using the NMPC, the optimization
problem to be minimized can be expressed as follows:
k+N—1

Cn(x,k,u) = wixesn) + Y fa(xe,ue), (5)
=k

where N is the prediction horizon, and w(xx, y) is a weight on the final state
space. It should be noted that the weight w and the final region are introduced
to guarantee stability of the NMPC.

The solution of the optimization problem described in Equation (5) allows
an accurate tracking of a reference trajectory and permits to calculate the con-
trol signal across the prediction horizon. At each sampling instant, the problem
is solved to obtain the optimal control sequences u = [ug U1 ... Upin_1] €
U, but only the first sequence is applied to the robot.

3.2. KPSO

The PSO developed by Kennedy and Eberhart is a metaheuristic opti-
mization method that is inspired by the behavior of particles within a group
[22]. The main advantage of this method is its fast convergence with few tuned
parameters compared with various global optimization algorithms [18, 23, 24].

In each iteration ¢, the position of each particle p is updated as a function
of the local best position szbest and the global best position Pgtbest, meanwhile
each step, the particles positions and velocities are updated according to the

following equations:

U;+1 = U;) + Clpl(‘Pgbest - ZL’Z) + CQ:OQ(P;best - ZE;), (6)
w = m, (7)

where m; and v; are the position and velocity of the particle p; ¢; and ¢y are
constants; p; and py are random numbers between 0 and 1.

Since a common barrier to optimization methods is the early convergence
of solution to local minima that makes them inefficient in practical applica-
tions; to tackle this issue, the re-generating technique of initial population of
the swarm [25] has been added to the KPSO method in this paper, see Fig. 1.
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Fig. 1 Block Diagram of Applied KPSO method

3.3. Problem setting

The purpose of this study is to find the control signals, i.e. bending
and orientation velocities of each bending section, by using the NMPC-KPSO
that allows the robot to track a given reference trajectory in its workspace.
Since the optimization problem arising in the NMPC is generally non convex,
the use of metaheuristic methods may be justified. A prior knowledge of the
best solutions allows the metaheuristic method to reduce the computation
time and increase the solution precision [18, 23, 24]. Thus, in this paper,
the Knowledge-based Particle Swarm Optimization (KPSO) method is used
to minimize the cost function defined in equation (5) as in works [26, 27].
The coordinates of the particle in PSO are the variables of the optimization
problem, which represent in our case the angular velocity of the bending and
orientation angles of each bending section. In three-dimensional search space,
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the dimension of the optimization problem is (2 x n). The block diagram of
the proposed NMPC-KPSO scheme is shown in Fig. 2.

When obstacles exist in the robot’s workspace, the strategy can be carried
out by placing some points on the robot’s central axis so that these points do
not collide with existing obstacles and the robot reaches the target. To realize
obstacle avoidance, a given penalty or some constraints conditions will be
added to the cost function. The obstacles are identified by a position vector
with respect to reference frame Ry. To Sum up, the problem is to find the
control law defined by éj and ¢;, with j = 1,2,...,n, that allows the robot to:
(1) track a given reference trajectory defined in the task space, and (2) avoid
the static obstacles existing in its workspace.

4. Simulations and analysis

In order to test the feasibility and verify the performance of the pro-
posed NMPC-KPSO scheme in terms of tracking accuracy and computation
time, three simulation examples for tracking spatial trajectories, in a free and
confined environment and in the presence of static obstacles, are performed.
The first example is considered to implement the proposed controller on a one-,
two- and three-bending section CDCR for tracking a spiral-shaped trajectory,
inside their workspaces, in a free environment i.e. without obstacles. The sec-
ond one represents a robot with three-bending section tracking a line-shaped
trajectory with a specific orientation for the end-tip of the CDCR. The third
example concerns a CDCR with one-bending section for tracking a circular-
shaped trajectory in the presence of a static obstacle located on the reference
trajectory. The lengths of all CDCR sections are assumed physically identi-
cal and share the values for ¢;, with j = 1,2,3, as 300 mm. The selected
parameters of the KPSO method which offer an acceptable compromise on
performance are: swarm size = 6, iterations = 30 and ¢; = ¢, = 1.2. The sim-
ulation examples are conducted on MATLAB software using Intel® Core™
i3-2310M CPU at 2.10 GHz and 4GB RAM.

4.1. Simulation 1: trajectory tracking in a free Cartesian space

In this simulation, the spiral-shaped trajectories defined by Equation (8)
are considered to evaluate the performances of the proposed NMPC-KPSO
scheme in terms of trajectory accuracy and computation time. To achieve this
purpose, the same form of reference trajectory is used as input for CDCRs
consisting of one-, two- and three-bending section. All robots start from an
initial state as x© = [1.7387, 01521, P, + 299.9932]7 where P, is equal to 0
mm, 300 mm and 600 mm, respectively.

t

xF = {h(t).ﬂn(%).cos(t), h(t).sin(E)sin(t), P, + h(t).cos(f—5> }T, (8)



Nonlinear model predictive control for trajectory tracking of a class of continuum robots 25

where h(t) = 15¢;.sin(¢/15)/t. The controller time step is chosen to be t =
0.005 (sec) and the prediction horizon is N = 2 with a total simulation samples
is equal to 994.
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Fig. 3 Actual and reference trajectories, and Euclidean errors be-

tween them

The simulation results in Figs. 3(a), 3(b) and 3(c) show the tracking of
the desired spiral-shaped trajectory for one-, two- and three-bending section
CDCR, respectively, and Euclidean errors between the actual and reference
trajectory along z-axis, y-axis and z-axis. From these Figures, it can be seen
that the curves are almost superposed and that the average errors for three
cases are respectively smaller than 5.107° mm, 7.10~* mm and 5.1073 mm, see
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Fig. 5 Computation times for tracking the spiral-shaped trajectories

Fig. 4. The computation times for three cases are presented in Fig. 5 where
the mean values are smaller than 4 msec, 5 msec and 23 msec, respectively.
These results demonstrate the good tracking of the reference trajectories with
very low computation times. The required control signals to track the spiral-
shaped trajectories, for three cases, are shown in Fig. 6.

4.2. Simulation 2: trajectory tracking with a specified orienta-
tion

For most applications of such a robotic system, both positioning and
orientation of the end-effector are important. This simulation presents results
for tracking a trajectory with a specific orientation assigned to the end-tip
of CDCR. For this, the CDCR equipped with three-bending section is used
for tracking a line-shaped trajectory defined by Equation (9) with end-tip’
orientations of {® =0, © =0, ¥ = 0}.

x" = {30t, 0, 900 — 10t} 7, (9)

Fig. 7 presents some configurations of the CDCR for the line-shaped
trajectory tracking with previously-defined orientations. The simulation was
carried out by adding additional constraints defined as |0, ¥| < 1072 (rad) to
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Fig. 6 Control signals for tracking the spiral-shaped trajectories

the cost function. We note, here, that these CDCR’ configurations are achieved
using the kinematic model in which the required bending and orientation angles
(see Fig. 8) are obtained by analytical integration of the control signals shown
in Fig. 9. The Euclidean errors between the actual and reference trajectory,
along r-axis, y-axis and z-axis, as well as errors of end-tip’ orientations are
shown in Fig. 10. From this Figure, it can be seen that there is a significant
convergence between the actual and reference trajectory where the average
error is less than 0.016 mm. The computation times is depicted in Fig. 11
where the mean value is less than 68 msec. In this simulation the robot starts
from an initial state of £ = 0 with a total simulation sample of 510, and the
parameters of the applied KPSO method are chosen as: iterations = 70 and
swarm size = 15.
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Fig. 9 Control signals to track the line-shaped trajectory with a
specific orientation of the CDCR’s end-tip

4.3. Simulation 3: trajectory tracking in Cartesian space in the
presence of obstacle

In this simulation, the CDCR composed of one-bending section tracks a
circular-shaped trajectory defined as x¥ = [169.86cos(t), 169.86sin(t), 221.37]7
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Fig. 11 Computation time for tracking the line-shaped trajectory
with a specified orientation

(mm) in the presence of a static obstacle which is located on the reference
trajectory at x7(t = m/2). The robot starts from an initial state as x* =
[1075, 107, 300]” (mm). The simulation results for tracking the above tra-
jectory while avoiding the fixed obstacle are shown in Fig. 12. From this figure,
it can be seen the good tracking of the reference trajectory by the robot and
the success to avoid a static obstacle. The obstacle is avoided by adding a
penalty to the cost function where the distance between the robot and the
static obstacle is less than a given safe distance. The necessary variation of
the cables length to track the desired trajectory and avoid the static obstacle is
depicted in Fig. 13. In this simulation, the mean computation time is less than
2.6 msec (see Fig. 14) which is very encouraging for real time applications.

As a general conclusion to our analysis, first, the results presented in Figs.
3,4, 10 and 12 point out a good accuracy and a high quality of the trajectory
tracking of the NMPC-KPSO scheme via point-to-point technique. Second,
Fig. 5, 11 and 14 show the low computation times associated to the trajectory
tracking with/without obstacle avoidance and with a specified orientation of
the robot’s end-tip. On the other hand, the computed control signals are very
smooth (see Figs. 6, 9 and 13). Based on these obtained results, the proposed
NMPC-KPSO scheme can be considered as an alternative solution for real-time
applications for this class of continuum robots.
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5. Conclusion

In this paper, a Nonlinear Model Predictive Control (NMPC) scheme
was used to control a class of continuum robots, namely Cable-Driven Con-
tinuum Robot (CDCR). The Knowledge-based Particle Swarm Optimization
(KPSO) method was used for the solution of optimization problem arising in
NMPC. The NMPC-KPSO scheme has been applied to kinematic models de-
veloped on the basis of kinematic equations of inextensible bending section by
using the Constant Curvature Kinematic Approach (CCKA). The proposed
NMPC-KPSO scheme is simulated over different simulation examples ranging
from the trajectory tracking in free Cartesian space with/without specific ori-
entation and with the presence of obstacle. The quality of solution, in terms
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of trajectory tracking and smoothness of the control signals as well as the
computation times show that the proposed NMPC-KPSO scheme is a feasible
alternative for real-time applications. As a perspective of this work, we intend
to apply the proposed scheme for dynamic obstacles as well as a possible ex-
tension to a case where dynamic models are used instead of kinematic models
in three-dimensional space.
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