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A TECHNIQUE FOR BI-DIMENSIONAL CONTOUR 
CONSTRUCTION 

Valeriu VILAG1, Corneliu BERBENTE2 

În lucrare este prezentată o tehnică relativ nouă de construire a unor 
contururi bidemensionale cu posibilă aplicaţie la obţinerea de profile aerodinamice. 
Proiectantul poate obţine geometrii ce urmează a fi validate în medii Computational 
Fluid Dynamics. Tehnica furnizează o relaţie biunivocă între geometria obţinută şi 
un set de şase parametri completat de căteva constrângeri. Acest aspect puternic 
susţine faptul că modul prezentat de a construi contururi bidemensionale poate fi 
utilizat în algoritmi de optimizare pentru profile aerodinamice şi în special 
algoritmi evolutivi. 

In the paper is presented a relatively new technique for bi-dimesnional 
contours construction which may be applied to obtain aerodynamic profiles. The 
designer is able to obtain geometries to be validated into Computational Fluid 
Dynamics environments. The technique provides a biunivoque relation between the 
obtained geometry and a set of six parameters completed with some constraints. 
This strong point states that the presented way of constructing bi-dimensional 
contours may be used into optimization algorithms for airfoils and especially 
evolutionary algorithms. 
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1. Introduction 

Construction of bi-dimensional contours is a mandatory step when 
designing geometries to be verified from different technical points of view such as 
aerodynamic performances. When speaking about aerodynamic shapes, there are 
many ways of defining bi-dimensional contours named airfoils, and those 
definitions are used for having the correct language while speaking about the 
proposed geometry [1]. In order to allow the repeatability of the proposed 
geometry over a large number of studies tmany ways to obtain the contours have 
been proposed, the most popular being the ones proposed by the National 
Advisory Committee for Aeronautics (NACA) from United States of America. 
Besides NACA, who performed extensive tests since 1935 [2], there are many 
others like Office National d’Études et Recherche Aérospatiales (ONERA) from 
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France, Royal Aircraft Factory (RAF) from United Kingdom, Central 
Aerohydrodynamic Institute (TsAGI) from Russia etc. which proposed their own 
contours to be used as airfoils and the designer may consider one to have 
advantages or disadvantages. The technical development lead to changes in the 
design technique for these contours spotted from the last decade of the past 
century by many authors and even multidisciplinary design optimization [3]. 

In this context of constant development of design methods for airfoils 
based on parametric geometries, some using Computer Aided Design approaches 
[4,5], this paper presents a relatively new of them technique of constructing bi-
dimensional contours to be verified from the aerodynamic point of view. It is 
believed that this technique can be used in optimization algorithms for airfoil 
design. 

2. Geometry definition 

We define the geometry of an aerodynamic profile or airfoil using the 
notation from Figure 1. This definition help in showing the general shape of bi-
dimensional contours verified and confirmed as airfoils. 

 

Fig. 1. Aerodynamic profile geometry definition 
 

The geometry is constructed into the xOy Cartesian system and it is placed 
tangent to the two axes, Ox and Oy, by the two circles at the leading and at the 
trailing edge, with their respective radii, R and r, and centers, O1 and O2. 

The “suction side” is the curve from Sle to Ste and it is tangent to the two 
circles mentioned above into these two points. 

The “pressure side” is the curve from Ple to Pte and it is tangent to the two 
circles into these two points. 
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ca is the chord of the profile having the magnitude of the segment obtained 
by projecting the entire profile on the Ox axis. 

The “camber line” is the curve considered to be equally spaced from the 
suction and pressure sides. Some may call this curve “mean camber line”. 

tmax is the maximum thickness of the profile and it is defined as the length 
of the biggest segment which can be placed perpendicular to the camber line from 
pressure side to the suction side. 

3. Contour simplification and parameterization 

This section is dedicated to the proposal of some simplification and 
parameterization to be used when proposing bi-dimensional contours to be 
verified from the aerodynamic point of view and confirmed as airfoils. 

For the leading edge, we consider that Sle is placed into the second 
quadrant of the respective leading edge circle. Thus, the first derivate of the 
suction side in Sle is strictly positive. We consider that Ple is placed into the fourth 
quadrant of the same circle resulting. Thus, a strictly positive first derivate of the 
pressure side into Ple, Fig. 2 a).  

For the trailing edge, we consider that Ste is placed into the first quadrant 
of the respective trailing edge circle. Thus, the first derivate of the suction side in 
Ste is strictly negative. We consider that Pte is placed into the third quadrant of the 
same circle resulting. Thus, a strictly negative first derivate of the pressure side 
into Pte, Fig. 2 b). 

 

Fig. 2. Placement of the points into the quadrants of the two circles 
 

For the proposed way of constructing bi-dimensional contours we consider 
a parabolic distribution for the thickness of the profile and a parabolic shape for 
the camber line. For both parabolic issues we use the parabola portions as 
displayed in Fig. 3a) and b). 

 

Fig. 3. Parabola portions for: a) camber line, b) thickness distribution 
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The camber line is computed from the respective parabola portion and the 
thickness distribution is computed as the absolute distance from the y coordinate 
of the current point on the parabola portion and the x axis. 

We may consider that each parabola is defined by the equation:  
)xx(Ay −−= 24  , (0;1].∈A                                  (1) 

The interval for A is considered to limit the maximum possible curvature 
of the parabola.  

Now, in order to obtain only a portion of the parabola, we define the 
starting point:  
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(0;1]with ∈C . 
We can see that for the three parameters A, B and C each parabola portion 

is fully defined, Figure 4.  

 

Fig 4. Fully defined parabola portion with the help of A, B and C 
 

So, in order to obtain two parabola portions, we will have three parameters 
for the camber line ,C,B,A (0;1][0;1)(0;1] 111 ∈∈∈ and three parameters for the 
thickness distribution: ].;(C),;[B],;(A 101010 222 ∈∈∈                                        

The parabola portion for the camber line must be first scaled and then 
rotated to fit between O1 and O2 points. The scale sc1 can be obtained as the ratio 
between two Euclidian norms: 
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where the coordinates x1, x2, y1, y2 can be calculated with the three parameters of 
the first parabola portion and equations (2) and (3), and the rotating angle α is the 
angle between the line passing through the start and end point of the 
corresponding parabola portion and the line passing through O1 and O2. This 
angle is given by: 

O1 O21 2

2 1 O2 O1
atan atan .y yy y

x x x x
α
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                             (5) 

In equations (4) and (5) the coordinates of O1 and O2 are defined by: 
.ry;rcx;Ry;Rx a =−=== O2O2O1O1                             (6) 

The signs of the angles coming out of the arctangent evaluation are easy to 
impose such as to make the proper difference when calculating the exact value of 
the angle α. 

The thickness distribution must be scaled with respect to the maximum 
thickness tmax. This scale, sc2, is computed as the ratio between tmax and the 
maximum thickness computed for the second parabola portion. The computed 
maximum thickness can be either the y coordinate of the peak of the respective 
parabola, 2A , or one of the y coordinate of the end points of the second parabola 
portion. 

4. Contour construction 

Now, we shall start the construction of the contour, with pressure and 
suction sides, using the values obtained before. We will consider for this the 
portion of the camber line placed outside the two circles from the leading and the 
trailing edge.  

We divide this portion of the camber line into n curves of equal length 
obtaining n+1 points, C1, C2, …, Cn, Cn+1, on which we put the corresponding 
thickness obtained from the second parabola portion. C1 and Cn+1 are easy to be 
obtained knowing the two radii R and r.  

The equal lengths are computed as integrals on the unrotated parabola 
portion which helps in finding the exact locations of C2, …, Cn:  
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Now we only need to calculate the tangential direction onto the camber 
line in each of the C1, C2, …, Cn, Cn+1 points and to find points on the pressure 
side, P1, P2, …, Pn, Pn+1 and on the suction side, S1, S2, …, Sn, Sn+1.  
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The points on the pressure and suction sides are obtained by putting 
segments on the calculated direction, segments equal to half of the corresponding 
thickness, Figure 5.  

 

Fig. 5. Placement of points onto the pressure and suction side 
 

The angle of the tangential direction for each SiPi into Ci is computed as 
the complementary angle βi given by the first derivative of the unrotated and 
unscaled camber line:  
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Since the angle calculated from equation (8) can be either positive or 
negative, we keep in mind that Si is above Ci which is above Pi, meaning: 
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Since problems may occur due to scaling and rotating issues we will show 
later in the paper an example of how all data is used into Computer Aided Design 
(CAD) software. Also, problems can occur for the first and the n+1 thickness so 
we may not consider them when drawing the geometry. 

We now have n+1 points on the pressure side and n+1 points on the 
suction side but there are still missing some curves to completely define the bi-
dimensional contour: (Ple;P1), (Pn+1;Pte), (Sle;S1), (Sn+1; Ste). Since we have to 
build the entire contour anyway, we will use cubic splines curves for creating the 
pressure and suction sides. The cubic spline, or short c-spline, for the pressure 
side will contain all the following points: Ple, P1, P2, …, Pn, Pn+1, Pte and it will be 
tangent to the leading edge circle into Ple and tangent to the trailing edge circle 
into Pte. Similarly, the c-spline for the suction side will contain Sle, S1, S2, …, Sn, 
Sn+1, Ste and will be tangent to the leading edge circle into Sle and tangent to the 
traoling edge circle into Ste.  

The term spline comes from the analogy to a draughtsman’s approach to 
pass a thin metal or wooden strip trough a given set of constrained points and was 
first studied from an energetic point of view considering the materials properties 
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for bending to touch the given points [6]. Since this approach is rather difficult 
and has limited application some other ways to construct splines were found 
namely here polynomials splines. C-splines are curves based on third degree 
polynomial interpolation between the constrained points [7]. 

We present the approach for the suction side, the one for pressure side 
being very similar. For our problem we may consider the following sets of 
functions which define the c-spline curve of the suction side:  
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The function fi define, the curve over the portion between Si and Si+1 
curves on the suction side. For i=0 we consider the curve from S0=Sle to S1, and 
for i=n+1 we consider the curve from Sn+1 to Sn+2=Ste. 

We impose the condition that the c-spline contains all the points 
previously defined:  
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 Two other conditions refer to the “smoothness” of the c-spline, namely 
two adjacent third degree polynomial functions have the first and second 
derivatives equals in the control points (tangent and curvature):  

.n,i,xfxf,xfxf
iiii S

''
iS

''
iS

'
iS

'
i 0)()()()(

1111 11 ===
++++ ++                   (12) 

We must pay attention to the fact that the exact coordinates for the lateral 
points Sle and Ste are unknown but we know that they are positioned on the two 
leading and trailing edge circles, meaning:  
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Also, the c-spline of the suction side contains these two points: 
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If we calculate the number of unknowns we will count 4(n+2), the a 
coefficients of the polynomial functions from equation (10) and 4 coordinates (2 
for Sle and 2 for Ste), equals (4n+12) unknowns. The count for the equations is 
now 2(n+2) from equation (11), 2(n+1) from equation (12), 2 from equation (13) 
and 2 from equation (14), equals to (4n+10). We see that two equations are still 
missing. These equations come from the conditions for Sle and Ste to be in the 
second and first quadrants of their respective circles, meaning:  
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The conditions from equation (15) make the difference between curves 1, 
the correct one, and 2, the wrong one, from Figure 6.  

 

Fig. 6. Example of the condition  from equation (15) for the leading edge  
(curve 1 is the correct c-spline for the suction side) 

 
  Having the complete system with (4n+12) unknowns and equations one 

can solve it using a predefined system of equations solver from a developer 
resource [8] and therefore determine the entire suction side and respectively the 
pressure side. It is clear that the obtained solution is unique this giving an 
important attribute to the technique: it creates a biunivoque relation between the 
six parameters defining the parabola and the resulting geometry if some additional 
constraints are imposed: the chord, two radii, and the maximum thickness.  

5. Application 

This section illustrates a short example of constructing a bi-dimensional 
contour to be verified and confirmed as airfoils starting from the six parameters 
described above and the constraints on its general dimensions. The constraints are 
related to technological issues when speaking about the trailing edge radius r, 
stress evaluation when speaking about the maximum thickness tmax, general 
dimensions of the desired geometry when speaking about the chord ca, 
aerodynamic efficiency for off-design functional points when speaking about the 
leading edge radius R etc. 

Let’s consider the following values for the six parameters defining the two 
parabola portions:  

..C;.B;.A;.C;.B;.A 903080906030 222111 ======            (16) 
The two parabola portions will have the exact shape displayed in Figure 7, 

with defined starting and ending points as previously shown.  
We impose for the possible aerodynamic profile the chord ca, radius of the 

leading edge R and of the trailing edge r and the maximum thickness tmax:  
..t;.r;.R;c maxa 09000500301 ====                        (17) 

From the data obtained so far we can calculate the scales sc1 and sc2 and 
the angle of rotation α obtaining the following values:  
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..;.sc;.sc 0
21 41732112502256122 === α                    (18) 

 

Fig. 7. Two parabola portions obtained using the parameters from the example 
 

Now, we present the construction of the bi-dimensional contour into a 
CAD software using its features to draw the necessary geometry and n=12 the 
number of equal curves on the camber line, Figure 8.  

Step 1- camber line drawing, scaling by the calculated scale sc1 and 
drawing of the two circles from the leading and trailing edge; 

Step 2- scaling of the thicknesses and placement of the respective 
segments perpendicular in the calculated points to the scaled camber line; 

Step 3- drawing of the c-splines for the suction and pressure sides, rotation 
and translation of the geometry near the origin. 

 

Fig. 8. Steps for creating the airfoil geometry using a CAD software 

6. Conclusions 

The technique presented in the paper is dedicated to the creation of bi-
dimensional contours shaping possible aerodynamic profiles starting from six 
parameters.  
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An obtained contour can be evaluated from aerodynamic point of view 
using classical analytical methods, own algorithms based on numerical methods 
for fluid dynamics [9] or using Computational Fluid Dynamics tools. 

Moreover, the proposed technique can be easily used for design 
optimization with evolutionary algorithms [10] since it provides a clear and 
biunivoque relation between the obtained geometry and the set of six parameters 
along with the chord, the leading and trailing edge radii and the maximum 
thickness of the possible aerodynamic profile. 

In practice, before proceeding to the optimization algorithm, the design 
space offered by the proposed technique must be carefully examined. Some 
constraints onto the six parameters will result or, before calling the evaluation tool 
for aerodynamics, the obtained geometry must be somehow checked. These steps 
are necessary in order to avoid unnecessary evaluations for obvious wrong 
geometries. 

Also, its application with the help of CAD software makes it easy to use 
with Computational Fluid Dynamics environments where the geometry needs to 
be inserted into the solver as it was created by the designer.  
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