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HOMOTOPY PERTURBATION SOLUTION FOR FLOW OF A

THIRD-GRADE FLUID IN HELICAL SCREW RHEOMETER

M. Zeb1, T. Haroon2, A. M. Siddiqui3

This paper provides a theoretical study of steady flow of an incom-
pressible third grade fluid in helical screw rheometer. The model developed in
cylindrical coordinates pertains to second order nonlinear coupled differential equa-
tions that are solved using homotopy perturbation method. Expressions for velocity
components in θ and z−direction are obtained. The volume flow rates are calcu-
lated for the azimuthal and axial components of velocity profiles by introducing
the effect of flights. The results have been discussed with the help of graphs. It is
noticed that extrusion process depends on the involved non-Newtonian parameter
and pressure gradients.
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1. Introduction

Extrusion process is widely used in food processing. Food processing is the set
of methods and techniques used to transform raw ingredients into food or to trans-
form food into other forms for consumption by humans or animals either at home
or by the food processing industry. Food processing typically takes clean, harvested
crops or butchered animal products and uses these to produce attractive, marketable
and often long shelf-life food products. Various food items such as cookie dough,
sevai, pastas, breakfast cereals, French fries, baby food, ready to eat snacks and dry
pet food are most commonly manufactured using the extrusion process. The fluids
used in the extrusion process are mostly non-Newtonian.

The classical Navier-Stokes equations have been proved inadequate to describe
complete characteristics of non-Newtonian fluids. To study these fluids different
models have been proposed [1, 2] called constitutive equations. In the literature
there exist rare exact solutions for these constitutive equations of non-Newtonian
fluids. This is because such equations are highly nonlinear. For the solution of such
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complicated equations, analytical techniques are mostly used to obtain the approx-
imate solutions [6].

Literature survey show that Carley et. al.[7], Mohr and Mallouk [8], Booy[4],
Squires [9], Tadmor and Klein [10], Tadmor and Gogos [11], Rauwendaal [12], an-
alyze Newtonian and power law fluids in the geometry of Single screw extruder.
Tamura et. al.[5], had done successfully, the preceding analysis in the geometry of
Helical Screw Rheometer, for Newtonian and power law fluids.

Recently, non-Newtonian fluids are become of great importance due to their
wide use in food industry, chemical process industry, construction engineering, power
engineering, petroleum production, commercial and technological applications etc.
These applications are strong motivations to study the flow of non-Newtonian fluids
in Helical Screw Rheometer (HSR). In the present work for simplicity we take the
fluid based on third-grade model. For this we choose the cylindrical coordinate sys-
tem (r, θ, z) which seems to be a more natural choice due to the geometry of HSR.
The expressions for the v−component and w−component of velocity profiles are
obtained from the solution of developed second order nonlinear coupled differential
equations by using homotopy perturbation method [6, 13, 14, 15, 16, 17]. Volume
flow rates are calculated by introducing the effect of flights. The behavior of the
velocity profiles are presented through graphs and discussed.

The paper is organized as follows. Section 2 contains the governing equations
of the fluid model. In Section 3 the problem under consideration is formulated.
Section 4, devoted to the description of homotopy perturbation method. Section
5, concerns with the solution of the problem. In Section 6 discussion about the
behavior of the velocity profiles is given. Section 7 contains conclusion.

2. Basic Equations

The basic equations governing the motion of an isothermal, homogeneous and
incompressible fluid are:

divV = 0, (1)

ρ
DV

Dt
= ρf + divT, (2)

where ρ is the constant fluid density, V is the velocity vector, f is the body force

per unit mass,
D

Dt
denotes the material time derivative, and T is the Cauchy stress

tensor expressed as

T = −P I+ S, (3)

where P denotes the dynamic pressure, I the unit tensor and S denotes the extra
stress tensor. For third grade fluid S is given by [3]

S = µA1 + α1A2 + α2A
2
1 + β1A3 + β2(A1A2 +A2A1) + β3(trA

2
1)A1, (4)
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where µ is the coefficient of shear viscosity, α1, α2, β1, β2 and β3 are the material
constants and

A1 = (gradV) + (gradV)T ,

An+1 =
DAn

Dt
+ [An(gradV) + (gradV)TAn], (n = 1, 2),

are the first three Rivlin-Ericksen tensors.

3. Problem Formulation

Consider steady flow of an incompressible, homogeneous and isothermal third
grade fluid through a Helical Screw Rheometer (HSR). The screwed channel is as-
sumed to be bounded by the barrel and screw root surfaces and by the two sides of a
helical flight as shown in Fig.1. The geometry is approximated as a shallow infinite
channel, by assuming the width B of the channel large compared with the depth h

i.e.,
h

B
<< 1. So that the side effects can be ignored. We choose the cylindrical

coordinate system (r, θ, z) which is more suitable choice for the flow analysis in HSR.
A congruent velocity distribution is assumed at parallel cross sections through the
channel. We also assumed that the flow is uniform, laminar and viscosity of the
fluid is constant. The outer barrel of radius r2 is assumed to be stationary and the
screw root of radius r1 rotates with angular velocity Ω [4].
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Figure 1: Geometry of the problem.

The boundary conditions are

v = Ωr1, w = 0, at r = r1,
v = 0, w = 0, at r = r2.

(5)

The flow is assumed fully developed in the θ and the z−directions so that

V = [0, v(r), w(r)], S = S(r), (6)

where v and w are azimuthal and axial velocity components, respectively. For highly
viscous fluids the effect of acceleration of fluid and body forces can be ignored [4].
Equation (2) for slow flow becomes

0 = divT = div(−P I+ S). (7)
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The assumption
h

B
<< 1 and the congruent velocity distribution at parallel cross

sections, imply
∂P

∂r
= 0 [4].

In view of our assumption (6) equation (1) is satisfied identically and (7) in its
component form results in

0 =
1

r

d

dr
[r {(2α1 + α2)M}]− α2

r

(
dv

dr
− v

r

)2

, (8)

1

r

∂P

∂θ
=

1

r2
d

dr

[
r2 {µ+ 2 (β2 + β3)M}

(
dv

dr
− v

r

)]
, (9)

∂P

∂z
=

1

r

d

dr

[
r {µ+ 2 (β2 + β3)M} dw

dr

]
. (10)

where M =

(
dv

dr
− v

r

)2

+

(
dw

dr

)2

. The equations (9) and (10), imply that P =

P (θ, z), but the right sides of equations (9) and (10) are functions of r alone and

P ̸= P (r), means that
∂P

∂θ
= constant and

∂P

∂z
= constant. Our concentration is on

azimuthal and axial flow, so only equations (9) and (10) are considered.
By introducing dimensionless parameters

r∗ =
r

r1
, z∗ =

z

r1
, v∗ =

v

Ωr1
, w∗ =

w

Ωr1
, P ∗ =

P

µ(Ω)
,

in equations (9) and (10), yield after dropping “ ∗ ”,

d

dr

[
r2

{
1 + β

((
dv

dr
− v

r

)2

+

(
dw

dr

)2
)}(

dv

dr
− v

r

)]
= rP,θ, (11)

d

dr

[
r

{
1 + β

((
dv

dr
− v

r

)2

+

(
dw

dr

)2
)}

dw

dr

]
= rP,z, (12)

where β =
2(β2 + β3)Ω

2

µ
, P,θ =

∂P

∂θ
and P,z =

∂P

∂z
, and boundary conditions (5)

become,
v = 1, w = 0, at r = 1,
v = 0, w = 0, at r = δ,

(13)

where δ =
r2
r1

> 1.

Equations (11) and (12) are coupled second order nonlinear ordinary differential
equations, the exact solution seems to be difficult. We use homotopy perturbation
method (HPM) to obtain approximate solution by using the symbolic computation
software Wolfram Mathematica 7.

4. Homotopy Perturbation Method

To illustrate the basic idea of this method, we consider the following nonlinear
differential equation:

A(u)− f(r) = 0, r ∈ Ω (14)
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with the boundary condition

℘

(
u,

∂u

∂n

)
= 0, r ∈ Γ, (15)

where A is a general differential operator, ℘ a boundary operator, f(r) a known

analytical function and Γ is the boundary of the domain Ω and
∂

∂n
denotes differ-

entiation along the normal drawn outwards from Ω. The operator A can be divide
into two parts of G and N , where G is the linear operator, while N is a nonlinear
one. Equation (14) can, therfore, be rewritten as:

G(v) +N(v)− f(r) = 0. (16)

By the homotpy technique, we construct a homotopy as v(r, p) : Ω × [0, 1] −→ ℜ
which satisfies:

H(v, p) = (1− p)[G(v)−G(u0)] + p[G(v) +N(v)− f(r)] = 0, p ∈ [0, 1], r ∈ Ω,
(17)

or

H(v, p) = G(v)−G(u0) + p[G(u0) +N(v)− f(r)] = 0, (18)

where p ∈ [0, 1], is an embedding parameter and u0 is an initial approximation which
satisfies the boundary conditions. Now equation (18) implies

H(v, 0) = G(v)−G(u0) = 0,

H(v, 1) = G(v) +N(v)− f(r) = 0,

the changing process of p from zero to unity is just that of v(r, p) from u0(r) to u(r).
In topology, this is called deformation, and G(v)−G(u0) and G(v)+N(v)−f(r) are
called homotopic. Here the embedding parameter p ∈ [0, 1] is introduced much more
naturally, unaffected by artificial factors. So the solution of (17) can be written as
a power series in p [17] :

v =

∞∑
i=0

pivi = v0 + pv1 + p2v2 + · · · (19)

As p → 1, approximate solution of (17) becomes

u = lim
p−→1

v = v0 + v1 + v2 + · · · (20)

5. Solution of the problem

With the help of equation (18) equations (11-12) can be written in the form

G1(v)−G1(vθ) + pG1(vθ)

+p

[
β
d

dr

{
r2
(
dv

dr
− v

r

)3

+ r2
(
dw

dr

)2(dv

dr
− v

r

)}
− rP,θ

]
= 0, (21)

G2(w)−G2(wz) + pG2(wz)

+p

[
β
d

dr

{
r

(
dv

dr
− v

r

)2 dw

dr
+ r

(
dw

dr

)3
}

− rP,z

]
= 0. (22)
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Here G1 = r2
d2

dr2
+ r

d

dr
−1 and G2 = r

d2

dr2
+

d

dr
are linear operators and let us take

vθ =
Θ1

r
+Θ2r +Θ3r ln(r), (23)

wz = Ψ1 +Ψ1r
2 +Ψ2 ln(r), (24)

as initial guess approximations where Θ1Θ2, Θ3, Ψ1 and Ψ2 are constant coefficients.
On substituting series (19) equations (21) and (22) become

G1

( ∞∑
i=0

pivi

)
−G1(vθ) + pG1(vθ) + p

β d

dr

r2

(
d

dr

( ∞∑
i=0

pivi

)
− 1

r

∞∑
i=0

pivi

)3

+r2

(
d

dr

( ∞∑
i=0

piwi

))2(
d

dr

( ∞∑
i=0

pivi

)
− 1

r

∞∑
i=0

pivi

)− rP,θ

 = 0, (25)

G2

( ∞∑
i=0

piwi

)
−G2(wz) + pG2(wz) + p

[
β
d

dr

{
r

(
d

dr

( ∞∑
i=0

pivi

)

− 1

r

∞∑
i=0

pivi

)2
d

dr

( ∞∑
i=0

piwi

)
+ r

(
d

dr

( ∞∑
i=0

piwi

))3
− rP,z

 = 0, (26)

and the boundary conditions (13) become

∞∑
i=0

pivi = 1,
∞∑
i=0

piwi = 0, at r = 1, (27)

∞∑
i=0

pivi = 0,
∞∑
i=0

piwi = 0, at r = δ. (28)

5.1. Zeroth order problem

Zeroth order linear differential equations

G1(v0)−G1(vθ) = 0, (29)

G2(w0)−G2(wz) = 0, (30)

together with boundary conditions

v0(1) = 1 w0(1) = 0, v0(δ) = w0(δ) = 0,

has the solution

v0 =
Θ1

r
+Θ2r +Θ3r ln(r), (31)

w0 = Ψ1 +Ψ1r
2 +Ψ2 ln(r), (32)

where Θ1, Θ2, Θ3, Ψ1 and Ψ2 are constant coefficients.
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5.2. First order problem

First order linear differential equations

G1(v1) +G1(vθ)

+β
d

dr

{
r2
(
dv0
dr

− v0
r

)3

+ r2
(
dw0

dr

)2(dv0
dr

− v0
r

)}
− rP,θ = 0, (33)

G2(w1) +G2(wz) + β
d

dr

{
r

(
dv0
dr

− v0
r

)2 dw0

dr
+ r

(
dw0

dr

)3
}

− rP,z = 0, (34)

along with boundary conditions

v1(1) = w1(1) = 0, v1(δ) = w1(δ) = 0,

result in

v1 = β

(
Θ4

r5
+

Θ5

r3
+

Θ6

r
+Θ7r +Θ8r ln(r) + Θ9r

3

)
, (35)

w1 = β

(
Ψ3

r4
+

Ψ4

r2
+Ψ5 +Ψ6 ln(r) + Ψ7 ln(r)

2 +Ψ8r
2 +Ψ9r

4

)
, (36)

where Θi, Ψj , i = 4, · · · , 9, j = 3, · · · , 9 are constant coefficients.

5.3. Second order problem

Second order linear differential equations

G1(v2) + β
d

dr

{
3r2
(
dv0
dr

− v0
r

)2(dv1
dr

− v1
r

)
+ 2r2

(
dw0

dr

)(
dw1

dr

)(
dv0
dr

− v0
r

)

+ r2
(
dw0

dr

)2(dv1
dr

− v1
r

)}
= 0, (37)

G2(w2) + β
d

dr

{
r

(
dv0
dr

− v0
r

)2 dw1

dr
+ 2r

(
dv0
dr

− v0
r

)(
dv1
dr

− v1
r

)
dw0

dr

+ 3r

(
dw0

dr

)2(dw1

dr

)}
= 0, (38)

together with their corresponding boundary conditions

v2(1) = w2(1) = 0, v2(δ) = w2(δ) = 0.
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Solving the above in conjunction with corresponding boundary conditions give

v2 = β2

(
Θ10

r9
+

Θ11

r7
+

Θ12

r5
+

Θ13

r3
+

Θ14

r3
ln(r) +

Θ15

r
+

Θ16

r
ln(r)

+ Θ17r +Θ18r ln(r) + Θ19r ln(r)
2 +Θ20r

3 +Θ21r
5
)
, (39)

w2 = β2

(
Ψ10

r9
+

Ψ11

r8
+

Ψ12

r7
+

Ψ13

r6
+

Ψ14

r5
+

Ψ15

r5
ln(r) +

Ψ16

r4
+

Ψ17

r4
ln(r)

+
Ψ18

r3
+

Ψ19

r3
ln(r) +

Ψ20

r2
+

Ψ21

r2
ln(r) +

Ψ22

r
+

Ψ23

r
ln(r) + Ψ24

+ Ψ25 ln(r) + Ψ26 ln(r)
2 +Ψ27 ln(r)

3 +Ψ28r +Ψ29r
2

+ Ψ30r
2 ln(r) + Ψ31r

3 +Ψ32r
4 +Ψ33r

6
)
, (40)

where Θi, Ψj , i = 10, · · · , 21, j = 10, · · · , 33 are constant coefficients.

5.4. Velocity profile

5.4.1. Velocity profile in θ−direction. Considering equations (31), (35) and (39) the
HPM solution for the velocity profile in the θ−direction upto second order is,

v = (Θ1 + βΘ6 + β2Θ15)
1

r
+ (Θ2 + βΘ7 + β2Θ17)r + (Θ3 + βΘ8 + β2Θ18)r ln(r)

+ (βΘ4 + β2Θ12)
1

r5
+ (βΘ5 + β2Θ13)

1

r3
+ (βΘ9 + β2Θ20)r

3

+ β2Θ10

r9
+ β2Θ11

r7
+ β2Θ14

r3
ln(r) + β2Θ16

r
ln(r)

+ β2Θ19r ln(r)
2 + β2Θ21r

5. (41)

5.4.2. Velocity profile in z−direction. Equations (32), (36) and (40) give the HPM
solution for the velocity profile in the z−direction upto second order as,

w = (Ψ1 + βΨ5 + β2Ψ24) + (Ψ1 + βΨ8 + β2Ψ29)r
2 + (Ψ2 + βΨ6 + β2G25) ln(r)

+
(
βΨ3 + β2Ψ16

) 1

r4
+ (βΨ4 + β2G20)

1

r2
+ (βΨ7 + β2Ψ26) ln(r)

2

+ (βΨ9 + β2Ψ32)r
4 + β2Ψ10

r9
+ β2Ψ11

r8
+ β2Ψ12

r7
+ β2Ψ13

r6
+ β2Ψ14

r5

+ β2Ψ15

r5
ln(r) + β2Ψ17

r4
ln(r) + β2Ψ18

r3
+ β2Ψ19

r3
ln(r) + β2Ψ21

r2
ln(r)

+ β2Ψ22

r
+ β2Ψ23

r
ln(r) + β2Ψ27 ln(r)

3 + β2Ψ28r

+ β2Ψ30r
2 ln(r) + β2Ψ31r

3 + β2Ψ33r
6. (42)

5.5. Volume flow rate in θ-direction

Volume flow rate in dimensionless form is

Q∗
θ = 2πδ tanϕ

∫ δ

1
v dr, where Q∗

θ =
Qθ

Ωr31
. (43)
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Dropping “ ∗ ” we get

Qθ = 2πδ tanϕ

{
(Θ1 + βΘ6 + β2Θ15)lnδ +

1

2
(Θ2 + βΘ7 + β2Θ17)(δ

2 − 1)

− 1

4
(Θ3 + βΘ8 + β2Θ18)(δ

2 − 1) +
1

2
(L3 + βΘ8 + β2Θ18)δ

2 ln δ

− 1

4
(βΘ4 + β2Θ12)(

1

δ4
− 1)− 1

2
(βΘ5 + β2Θ13)(

1

δ2
− 1)

+
1

4
(βΘ9 + β2Θ20)(δ

4 − 1)− β2Θ10

8
(
1

δ8
− 1)− β2Θ11

6
(
1

δ6
− 1)

− β2Θ14

4
(
1

δ6
− 1)− β2Θ14

ln δ

8δ2
+ β2Θ16

2
ln δ2 − β2Θ19

2
(δ2 − 1)

+ β2Θ19

2
δ2 ln(δ2) + β2Θ21

6
(δ6 − 1)

}
. (44)

5.6. Volume flow rate in z-direction

Dimensionless volume flow rate in z-direction is

Q∗
z = 2π

∫ δ

1
wrdr, where Q∗

z =
Qz

Ωr31
(45)

Now, dropping “ ∗ ” we get

Qz = 2π

{
1

2
(Ψ1 + βΨ5 + β2Ψ24)(δ

2 − 1) +
1

4
(Ψ1 + βΨ8 + β2Ψ29)(δ

4 − 1)

− 1

4
(Ψ2 + βΨ6 + β2Ψ25)(δ

2 − 1)− 1

2
(Ψ2 + βΨ6 + β2Ψ25)δ

2 ln δ

− 1

2
(βΨ3 + β2Ψ16)(

1

δ2
− 1) + (βΨ4 + β2Ψ20) ln δ −

1

2
(βΨ7 + β2Ψ26)(δ

2 − 1)

+
1

2
(βΨ7 + β2Ψ26)δ

2 ln δ2 +
1

6
(βΨ9 + β2Ψ32)(δ

6 − 1)− β2Ψ10

7
(
1

δ7
− 1)

− β2Ψ11

6
(
1

δ6
− 1)− β2Ψ12

5
(
1

δ5
− 1)− β2Ψ13

4
(
1

δ4
− 1)− β2Ψ14

3
(
1

δ3
− 1)

− β2Ψ15

9
(
1

δ3
− 1)− β2Ψ15

3

ln δ

δ3
− β2Ψ17

4
(
1

δ2
− 1)− β2Ψ17

2

ln δ

δ2

− β2Ψ18(
1

δ
− 1)− β2Ψ19(

1

δ
− 1)− β2Ψ19

ln δ

δ
+ β2Ψ21

2
ln δ2 + β2Ψ22(δ − 1)

− β2Ψ23(δ − 1) + β2Ψ23δ ln δ −
3

4
β2Ψ27(δ

2 − 1) + β2Ψ27

2
δ2 ln δ3

+ β2Ψ28

3
(δ3 − 1)− β2Ψ30

16
(δ4 − 1) + β2Ψ30

4
δ4 ln δ

+ β2Ψ31

5
(δ5 − 1) + β2Ψ33

8
(δ8 − 1)

}
. (46)

6. Results and Discussion

In the present work we have considered steady flow of an incompressible third
grade fluid through HSR. We obtained coupled second order nonlinear ODEs. Using
HPM expressions for azimuthal and axial velocity components are derived. The
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volume flow rates in θ and z−directions are also calculated. Here we discussed the
effect of involved flow parameters on the velocity profiles with the help of graphical
representation. Figure 2(a) is plotted for the velocity v for different values of fluid
parameter β, steadily increase observed in the velocity from screw toward barrel
and the velocity attains maximum values in between the channel which show shear
thinning due to increases in the value of β. Figure 2(b) is sketched for the velocity

profile w for different values of β̃, the velocity profile is seem to be parabolic in
nature. The velocity w takes the fluid toward the exit. Figures 3(a) and 3(b)
are shown for the velocity v for different values of pressure gradients P,θ and P,z

respectively, it can be seen that velocity v increases with the increase in pressure
gradients. It is noticed that P,z resist the velocity v as graphs show the smaller
magnitude of v for P,z. Similarly figures 4(a) and 4(b) are plotted for the velocity
w for different values of P,θ and P,z. With the increase in the value of P,θ and P,z,
increase in the w is observed, however the effect of P,θ is observed less on w which
show P,θ try to resist the flow in axial direction.

Figure 2: (a) v(r) for different values of β, keeping P,θ = −4.0 , P,z = −4.0 and δ = 2. (b) w(r) for different

values of β, keeping P,θ = −4.0, P,z = −4.0 and δ = 2.

Figure 3: (a) v(r) for different values of P,θ, keeping β = 0.4, P,z = −4.0 and δ = 2. (b) v(r) for different values

of P,z , keeping β = 0.4, P,θ = −4.0 and δ = 2.
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Figure 4: (a) w(r) for different values of P,θ, keeping β = 0.4, P,z = −4.0 and δ = 2. (b) w(r) for different values

of P,z , keeping β = 0.4, P,θ = −4.0 and δ = 2.

7. conclusion

The steady flow of an isothermal, homogeneous and incompressible third-grade
fluid is investigated in HSR. We choose the cylindrical coordinate system (r, θ, z)
which seems to be a more natural choice due to the geometry of HSR. The model
developed in cylindrical coordinates pertains to second order non linear coupled
differential equations. Using HPM the analytical expressions are obtained for the
flow properties i.e., velocities, volume flow rates, shear and normal stresses, the
shear stresses exerted by the fluid on the screw and average velocity. Graphical
discussion is given for the velocity profiles and shear stresses. It is observed that
fluid velocity can be controlled with the proper choice of the values of the non-
Newtonian parameter and pressure gradients.
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