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SOLVING SO2 DISPERSION FROM COMBUSTION FLUE 
GAS USING PLUME REFLECTION ON THE GROUND FOR 

CONTINUOUS POINT SOURCE MODEL 

Dana-Cristina TONCU1, Alina BOGOI2, Virgil STANCIU3, Sterian DANAILA4 

În aceastǎ lucrare se prezintǎ calculul concentraţiei maxime de SO2  la sol şi 
al distanţei, pe direcţia vântului, la care concentraţia este maximǎ, pentru gazele de 
coş pentru cuptoarele din industria de prelucrare a petrolului cu modelul penei, cu 
sursǎ punctiformǎ continuǎ, reflectatǎ. 

In this study, SO2 maximum ground concentration and the distance, on wind 
direction, at which SO2 ground concentration is maximum are presented, for the 
case of combustion flue gas released by a petroleum industry furnace using plume 
reflected virtual continuous point source dispersion model. 

Keywords: SO2 dispersion, combustion gas, diffusion equation, numerical 
solution. 

1. Introduction 

Air pollution is a major environmental problem affecting the whole world. 
The prevalence of increasingly high levels of atmospheric pollutants, particularly 
sulfates, especially over industrial regions, has received the required attention, 
becoming research subject studying its causes, nature and effects. Also, the 
release of sulpfur compounds by power plants and industrial complexes has 
gained particular concern, mainly due to their conversion. Substantial SO2 
amounts are believed to result from long-range transport lasting one or more days. 

Numerous efforts were done to develop mathematical models to simulate 
long range SO2 transport, from steady-state models to regional ones, such as large 
plumes dispersed throughout the mesoscale layer and contacting ground, in which 
source height and emission rate determine pollutant distribution. Strong stability 
preserving properties of Runge-Kutta time discretization methods were developed 
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[1], finite difference schemes were improved for evaluating high order derivatives 
[2], most of the previous studies focused on passive gas dispersion [4], while 
source and transport approaches tried to better fit prediction [5]. Few 3-
dimensional advection-diffusion equations of air pollution were solved [6], some 
of them by using cubic spline interpolation [7]. 

Diagnostic plume models aim to correctly identify and characterize 
pollutant emission and transmission. The goal of this paper is to use the diffusion 
plume model in an integrated phenomenological-mathematical research. The 
specific objectives of such an approach are: identification of  the best calculus 
method for SO2 concentration from combustion flue gas and 3-D representation of 
SO2 concentration. 

2. Problem formulation 

Usually, combustion inside furnace is complete and thus there is no CO in 
combustion gas. In the case of fuels containing sulfur, combustion gas encloses 
SO2, which is its main noxious constituent. 

Due to inertia, combustion gas initially has an ascendant motion when 
evacuated, and then is taken by wind, on its direction, still occurring horizontal 
and vertical dispersion. 

Combustion gas elevation above furnace is given by the following 
equation [3]: 
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                                              (1) 
in which: D  – inner furnace diameter (at the top), m; ω  – speed of burnt gas at 

the top of the furnace, m/s; 10ω  – wind speed at 10 m above ground, m/s; ch  – 
quotation of top of furnace, m; n  – turbulence index for air. 

It is recommended to use in calculus sm /3...210 =ω , taking into account 
that higher speed favors dispersion. 

Turbulence index depends upon atmospheric state, and is already 
mentioned in literature. 

It is recommended to use for such calculus 25.0=n , which corresponds to 
stable atmospheric state. 

The altitude at which dispersion starts has the value [3]: 
hhh cd Δ+= .     (2) 

Evacuated flow of SO2 through combustion gas is given by [3]: 
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in which: B  – fuel mass, kg/h; s  – sulfur mass fraction in fuel. 

2.1. Diffusion equation 

Most mathematical models are based on two important representations: 
puff and plume diffusion. Both of them are taking into account mass balance 
equation and the source type. In this paper, a continuous injection in uniform flow 
is used to correspond to furnace, from time 0=t  to the current time t . Fig.1 
shows the graphical representation for the plume model, with coordinates’ origin 
at furnace bottom, wind in x -direction and gas flow (plume) rising from the 
source, moving on x0  and spreading both x0  and y0  directions. 

 
Fig.1. Graphical representation of plume dispersion model 

 

 
Fig.3. Scheme of the used approach 

2.2. The turbulent advection-diffusion equation 

 In order to derive an advection-diffusion equation for turbulence, the 
Reynolds decomposition is substituted into the normal equation for advection-
diffusion. The Reynolds decomposition analogy for the concentration is [5]: 

  ( ) ( ) ( ) 3, , ,c t c c t′= + ∈x x x x R     (4) 
where the time average concentration is defined by the following equation: 
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( ) ( )1 , dlim
t T
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and ( ),c t′ x  is the fluctuating concentration. We replace the time average by the 
approximation: 
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 Being interested in the long-term average behavior of diffusion 
phenomenon, after substituting the Reynolds decomposition, a time average is 
taken into account. Considering the time-average mass flux in the x - direction: 

  ( )( ) ' ' ' 'uc u u c c uc uc u c u c′ ′= + + = + + +    (7) 
where c  is the average fluctuation velocity. 

Applying the formula (6), the average of the fluctuating properties 
becomes 0u c′ ′= = , and thus uc u c u c′ ′= + , where c c= . 

In order to substitute the Reynolds decomposition into the governing 
advection-diffusion equation, the first step is to integrate over the integral time 
scale reft . 
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Moving the terms in iu c′ ′  to the right side, the left becomes: 
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The unsteady term for the mean concentration (first term on the LHS) has 
been retained even though it can be set zero according to Eq.(6). Retaining this 
term is thus not needed for physical reasons, but is instead included to allow the 
PDE to be conveniently solved with a time-marching scheme. 

A model is needed for iu c′ ′ , which is a fluctuating mass flux (mass flux 
associated with the turbulence). The turbulent component is qualitatively 
described as a form of rapid mixing (molecular diffusion analogy).  

The average turbulent diffusion time scale is reftt =Δ , and the average 
turbulent diffusion length scale is refrefref ltux ==Δ . The model becomes valid for 

reftt > . Applying a gradient law to turbulent diffusion phenomenon, it results the 
following: 
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     (10), 

where ,t iK  is the turbulent diffusion transport coefficient. 
 Substituting the average turbulent diffusive transport and dropping the 
over-bar notation, it follows that: 
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In the previous equation, t  index states for turbulence and m  for molecular. 

Usually, mt KK >>  and so it becomes: 
2

, 2i t i
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Or, in 3-dimension extended form, the advection-diffusion equation on an 
arbitrary domain 3Ω∈ �R  is given by: 
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where: ( )zyxc ,, –SO2 concentration in point of  ( )zyx ,,  coordinates at time t ; 
wvu ,, – wind components; 

zyx KKK ,, – diffusion coefficients (turbulent or molecular diffusion 
coefficient). 

The dispersion eq. (13) is accompanied with initial and boundary 
conditions, which can depend on specific problem. Here, ∂Ω  is lateral boundary 
of a certain domain Ω . 

In order to solve the above-mentioned time-dependent partial differential 
equation, the non-dimensional form was obtained with the aid of the following 
functions: 

Non-dimensional time: 
T
tt = , where t  – current time, T  – characteristic 

time; 

Non-dimensional space variable on x -axis: 
maxx
xx = , where x  – current 

space, maxx  – characteristic longitudinal variable ; 
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Non-dimensional space variable on y -axis: 
max

yy
y

= , where y  – current 

variable, maxy  – characteristic length ; 

Non-dimensional space variable on z -axis: 
max

zz
z

= , where z  – current 

space on z0 , maxz  – maximum height; 

Non-dimensional concentration: 
maxc
cc = , where c  – current 

concentration, maxc  – maximum concentration admitted by law (10 mg/m3 air). 
The equation below is obtained: 
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      In what follows the over-bar notation will be dropped and the computation will 
be performed in non-dimensional form. 

3. The numerical scheme 

The purpose of this paper is to determine the maximum SO2 concentration 
at ground level and the distance, on wind direction, at which SO2 ground 
concentration is maximum. The initial data is given in Table 1. 

Meteorological conditions for horizontal convection (wind advection) is 
higher than vertical and lateral convection and therefore it results that: 

,c c cv w u
y z x
∂ ∂ ∂

<<
∂ ∂ ∂ ;         (17) 

In order to avoid ground level boundary conditions, for a continuous point 
source at high dh h=  on z0 , a second virtual, symmetrical source was imagined, 
and the boundary condition (13’) is replaced by a more convenient condition for 
the numerical point of view: 
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( ) ( )( , , , ) 0, , 0,c x y t x y
z
∂

−∞ = ∈ ∞ ×
∂

R ;  (13’) 

Table 1 
Calculus data 

Technical characteristic Value 
Fuel flow B [kg/h] 2304 
Sulfur mass fraction in fuel s 0.01 
Funnel top quote hc [m] 45 
Inner funnel diameter D [m] 1.5 
Combustion gas speed at top funnel w [m/s] 8.604 
Wind speed at 10 m altitude w10 [m/s] 2.5 

Maximum concentration admitted (mg/m3 air). 10 
Turbulence index for stable state atmosphere n 0.25 

 
 Neglecting terms from (14), the mathematical formulation becomes: 
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where 0c  is the initial SO2 concentration, A  is the evacuation surface area of the 
furnace, with diameter D . 

3.1. 2D-Formulation 

For different boundary conditions and values of u , xK , yK , zK , time 
dependent solutions for arbitrary parameters are still unknown. For further 
simplification, a uniform evolution is assumed for concentration along y0 , so that 
diffusion on this axis is eliminated, leading to the following equation:  
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We assume that the wind speed u  and the diffusion coefficients ,x zK K  
are constant. 
 The problem written on infinite domain is replaced by a non-dimensional 
problem with finite boundaries such that: 
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The choice of the lateral boundary conditions is important to avoid 
absorption or reflection from these boundaries. Therefore, at the lateral 
boundaries, no advection and diffusion flux was assumed (zero gradients). For 
outgoing boundary, the flow was assumed free of diffusion whereas for ingoing 
flux, null concentrations were set, except only the issuing source point.  

3.2. Spatial scheme 

 In this work, a first-order explicit upwind numerical scheme was used for 
interior points and for the boundary the classical asymmetric schemes of 
increasing order starting with first node up to the fifth node.  
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 The diffusion terms are evaluated using tenth order schemes. The spatial 
derivative ,i xxc   for the boundaries can be approximated using Taylor expansions 
by 12 -point stencil: 

   

2

2 2

1 R

i j i j
j Li

c c
x x

α + +
=−

∂
=

∂ Δ ∑
        (21) 

where xΔ is the spacing of uniform mesh. The above formula involves 1R L+ +  
constants (i.e. the sum between the order of finite-difference scheme and the order 
of derivative).  

Table 2 
Coefficients of boundary schemes for second derivative at the boundary nodes (1-5) 

iα  (Node 1) 
11; 0R L= =  

(Node 2) 
10; 1R L= =

(Node 3) 
9; 2R L= =

(Node 4) 
8; 3R L= =

(Node 5) 
7; 4R L= =  

ic  190553/25200. 671./1260. -419./12600. 31./6300. -29./25200. 

1ic +  -55991/1260 29513./25200. 5869./6300. -1163./12600. 59./3150. 

2ic +  69851/504 -2341./252. -737./720. 1583./1260. -53./315. 

3ic +  -74471/252 3601./168. -829./420. -2123./1008. -317./210. 

4ic +  76781./168. -4021./126. 2089./420. 97./210. -6743./2520. 

5ic +  -78167./150. 4231./120. -2509./450. 323./300. 103./75. 

6ic +  79091./180. -4357./150. 2719./600. -463./450.; 1./75. 

7ic +  -11393./42. 4441./252. -569./210. 533./840. -37./315. 

8ic +  40123./336. -643./84. 2929./2520. -23./84. 109./1680. 

9ic +  -8959./252. 2273./1008. -61./180. 67./840. -13./630. 

10ic +  80939./12600. -509./1260. 1517./25200. -89./6300. 2./525. 

11ic +  -671./1260. 419./12600. -31./6300. 29./25200. -1./3150. 
  

For interior points the expression of the scheme is symmetric ( R L= ). 
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Table 3 
Coefficients of interior schemes for second derivative 

iα  (Node i) 
5; 5R L= =

ic  

1./3150 5ic −  

-5./1008 4ic −  

5./126 3ic −  

-5./21 2ic −  

5./3 1ic −  

-5269./1800 ic  

5./3 1ic +  

-5./21 2ic +  

5./126 3ic +  

-5./1008 4ic +  

1./3150 5ic +  

3.3. Temporal scheme 

 After the application of the finite differences schemes to equation (16), the 
expression can be reduced to a set of ordinary differential equations in time. Then 
the governing equation becomes: 

( ) ( )
( )

1, ,n n

n n

d L t t t
dt

t

+= ∈

=

c c

c c
     (22) 

where L  indicates a spatial differential operator and ( )0 1, ,...,n n n n
Nc c c=c . Each 

spatial derivative on the right hand side of equation (19) was computed using the 
present schemes and then the semi-discrete equation (19) was solved using a 
particularly simple Runge-Kutta time integrator introduced by Jameson-Schmidt-
Turkel: 
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1
4

, 1,4
5

=

=
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i i

n

dt L i
i −

+

= + =
−

c c

c c c

c c    (23) 
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4. Numerical results 

 We chose the following characteristic quantities: max 8000x m= , 
53dh m= , max 4 dz h= , max /T x u= . The simulation time is 5400finalt s= . The 

computational domain in non-dimensional formulation was discretized by a 
100×100 grid. The initial SO2 concentration and the maximum concentration 
admitted are -3 3

0 17 10 /c mg m air= ⋅  and 3
max 10 /c mg m air= . 

  The considered diffusion coefficients are 0.115x zK K= = . We propose 
the following  function for the initial sulpfur dioxide concentration: 

( ) ( )2 2
0 0

2

-5000.[ ( - ) ]
SO max 0 max, /c / cx x y y

initc x z c e c− += +  (24) 
where 

( )
2

2SO 2 / 4
SOQ

c
u Dπ

=     (25) 

and 
2

0.0128 /SOQ kg s= is the mass flow rate, 2.5 /u m s= , the horizontal wind 
velocity and 1.5D m=  the inner furnace diameter at the top. 
 Figs. 4-5 show 2D-evolution of SO2 concentration for 5400 s due to a 
continuous source point. After 4000s the concentration in the entire domain is 
stabilized. As mentioned before, the scope of this paper is to correctly estimate the 
ground concentration, as well as its subsequent transmission through the 
atmosphere. In figs.6-7 the simulations show that the profile of the concentration 
is an increasing curve and becomes stable in each point after a specific period of 
time. 

 
Fig.4. SO2 concentration at t = 800 s and t = 1600 s 
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Fig.5. SO2 concentration at t = 2400 and t= 5400 s 

 
Fig.6. Concentration profile at t=1600s and t=2400s 

 
Fig.7. Stabilized curve shape at t=5400s and the entire evolution of the concentration of SO2 at the 

ground 
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Fig.8. Concentration profile at a fixed point max/ 0.5=x x  and max/ 0.98=x x  

5. Conclusions 

SO2 dispersion from flue gas was well simulated by using Reynolds 
decomposition for turbulent advection-diffusion equation substituted into the 
classical form, average time scale, for a continuous point source, while imaging a 
second virtual asymmetrical source. Numerical scheme involved first-order 
upwind method for interior points and asymmetric scheme of increasing order 
starting with first node up to the fifth node for the boundary. 

Two -dimensional simulation for SO2 emission from a continuous source 
point revealed stabilization in the entire domain. Concentration profiles are 
increasing curves which become stable in each point after a specific period of 
time. Therefore, it can be concluded that the present approach correctly estimates 
the SO2 ground concentration, as well as its subsequent transmission through the 
atmosphere. 
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