

A NUMERICAL STUDY OF LAMINAR NATURAL CONVECTIVE HEAT TRANSFER INSIDE A CLOSED CAVITY WITH DIFFERENT ASPECT RATIO

Paritosh BHATTACHARYA¹, Sangita DAS²

Two dimensional steady state laminar natural convection was studied numerically for differentially heated air filled closed cavity with adiabatic top and bottom walls. The temperature of the left heated wall and cooled right wall were assumed to be constant. The governing equations were iteratively solved using the control volume approach. In this paper, the effects of the Rayleigh number and the aspect ratio were examined. Flow and thermal fields were exhibited by means of streamlines and isotherms, respectively. Variations of the maximum stream function and the average Heat Transfer Coefficient were also shown.

The average Nusselt number was correlated to the Rayleigh number based on curve fitting for each aspect ratio. The investigation covers the range $10^4 \leq Ra \leq 10^7$ was done at Prandtl number equal to 0.693. The result shows the average Nusselt number is the increasing function of Rayleigh number. As aspect ratio increases Nusselt number decreases along the hot wall of the cavity. As Rayleigh number increases Nusselt number increases. Result indicates that at constant aspect ratio, with increase in Rayleigh number heat transfer rate increases.

Keywords: Natural convection, aspect ratio, heat transfer coefficient, finite volume method, closed cavity.

1. Introduction

Natural convection in enclosures is a topic of contemporary importance because enclosures filled with fluid are central components in a long list of engineering and geophysical systems with various geometries. The flow and heat transfer induced, for example, in the air space of a double-pane window system differs fundamentally from the external natural convection in which boundary layer considered. There have been numerous investigations conducted on natural convection in empty cavities under various configurations and boundary conditions [1-3]. Buoyancy induced flows are more complex because of the coupling between the flow and transport the first unified and comprehensive review of this subject made by Ostrach[4,5]. Lo et al. studied convection in cavities heated from left vertical wall and cooled from opposite vertical wall with both horizontal walls insulated using differential quadrature method. Numerical results are reported for several values of width-to-height aspect ratio of enclosure and Rayleigh number [6]. Basak et al have studied the effect of uniform

¹ Associate. Professor, Dept. of Mathematics, National Institute of Technology Agartala, India

² Research Scholar Department of Mathematics, National Institute of Technology, Agartala, India

and non uniform temperature at the bottom wall on natural convection in square cavity for Rayleigh numbers from 10^3 to 10^5 using Galarkin finite element method [7]. They reported that the uniform temperature gives more heat transfer than the non uniform temperature.

Natural convection is discussed in details for uniform heating at below or side of the square cavity in the references [8-15]. Corcione studied natural convection in a rectangular cavity heated from below and cooled from top as well as sides for variety of thermal boundary conditions. Numerical results are reported for several values of both aspect ratios of enclosure and Rayleigh Numbers [16]. The objective of this paper is to document the numerical data of steady state laminar natural convective heat transfer inside closed cavities filled with air having heated left wall and cooled right wall for the range of Ra from 10^4 to 10^7 for aspect ratios ranging from 1 to 3. The top and bottom walls of the cavities are adiabatic. The cavity illustrated in Fig.1 is chosen for simulating natural convective flow and heat transfer characteristics. It consists of dimensions $L \times H$. The gravitational force is acting downwards. The aspect ratio of the cavity is defined as $= H/L$. The top and bottom walls are adiabatic.

Stream function

Stream function is defined as the scalar function of space and time, such that its partial derivatives w.r.t. any direction gives the velocity components u & v at right angles to that direction. It is denoted as ψ (psi).

$$u = \frac{\partial \psi}{\partial y} \quad v = -\frac{\partial \psi}{\partial x}$$

2. Mathematical formulation

The cavity of length (L) & height (H) has a hot left wall with and cold right wall at constant temperature T_h and T_c respectively. The top and bottom walls are adiabatic. The gravitational force is acting downwards. A buoyancy flow develops because of thermally induced density gradient. Heat is transferred from the hot wall to cold wall. The governing equations for natural convection flow are conservation of mass, momentum and energy can be written as:

$$\text{Continuity: } \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \quad (1)$$

$$\text{X-momentum: } u \frac{\partial u}{\partial x} + v \frac{\partial v}{\partial y} = -\frac{1}{\rho} \frac{\partial p}{\partial x} + \nu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) \quad (2)$$

$$\text{Ymomentum} u \frac{\partial u}{\partial x} + v \frac{\partial v}{\partial y} = - \frac{1}{\rho} \frac{\partial p}{\partial y} + \nu \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right) + g \beta (T - T_c) \quad (3)$$

$$\text{Energy Equation: } u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} = \alpha \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right) \quad (4)$$

$$\text{Rayleigh Number: } Ra = \frac{g \beta \Delta T L^3}{\alpha y}$$

The thermo physical properties of air are evaluated at the reference temperature that is the average of the two wall temperatures. In this study with $\text{Pr}=0.693$. The effects of the Rayleigh number which is varied from 10^4 to 10^7 , are of great interest in this study.

Boundary conditions:

Temperature:

$$\begin{aligned} \text{At left wall} & \quad T(0, y) = T_h \\ \text{At right wall} & \quad T(L, y) = T_c \\ \text{At the top wall} & \quad \frac{\partial T}{\partial y}(x, H) = 0; \\ \text{At the bottom wall} & \quad \frac{\partial T}{\partial y}(x, 0) = 0; \end{aligned}$$

Velocity:

$$\begin{aligned} u(x, 0) &= u(x, L) = u(0, y) = u(L, y) = 0 \\ v(x, 0) &= v(x, L) = v(0, y) \\ &= v(L, y) = 0 \end{aligned}$$

Here x and y are the distances measured along the horizontal and vertical directions, respectively; u and v are velocity components in the x -and y -directions, respectively; T denotes the temperature; p is the pressure and ρ is the density; T_h and T_c are the temperature at the hot and cold walls, respectively; L is the length of the cavity and H be the height of the cavity.

3. Numerical scheme

In the present investigation, the set of governing equations are integrated over the control volumes, which produces a set of algebraic equations. The SIMPLE algorithm is used to solve the coupled system of governing equations. Discretization of the momentum and energy equations is performed by a second order upwind scheme and pressure interpolation is provided by PRESTO scheme. Convergence criterion considered as residuals is admitted 10^{-3} for momentum and continuity equations and for the energy equation it is lower than 10^{-6} . The

calculations are carried out using the FLUENT 6.3 commercial code. The uniform grid system of 110×110 is adopted here.

4. Result and Discussion

Different cases with the vertical left hot wall of the closed cavity were studied. The effects of the Rayleigh number from 10^4 to 10^7 and aspect ratio $L/H=1, 1.5, 2, 3$ were systematically investigated. Comparisons of the flow field and overall heat transfer rates among different aspect ratio were presented. When Ra greater than critical value, the buoyant force overcomes the fluid resistance and initiates natural convection currents, under certain boundary conditions which are observed to be in the form of hexagonal cells called Bénard cells. In the next phase of the work the study will be validated with experimental results.

4.1 Effects of Rayleigh number

4.1.1. Flow patterns and flow intensity

The flow fields are shown by means of streamlines shown below. Due to the buoyant effects caused by the temperature difference between the left hot wall and right cold wall, recirculating vortices are formed which are clearly demonstrated by the closed streamlines.

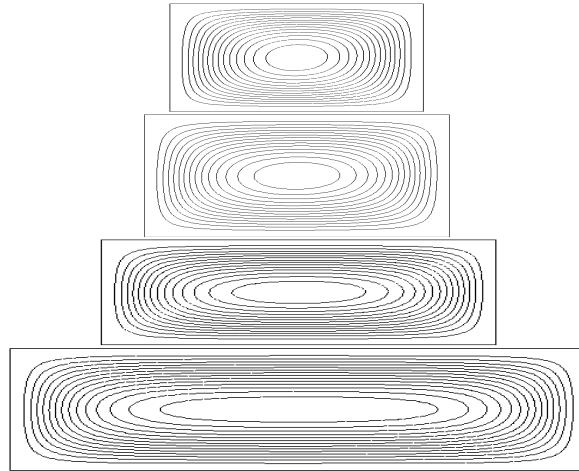


Fig 2 . Streamlines of aspect ratio AR= 1, 1.5, 2 , 3 at $Ra=2 \times 10^4$

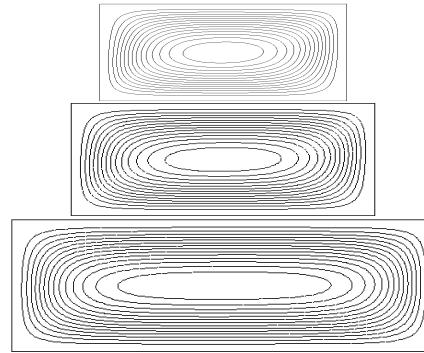


Fig 3. Streamlines of aspect ratio AR= 1, 1.5, 2,3 at $\text{Ra}=3.5 \times 10^5$.

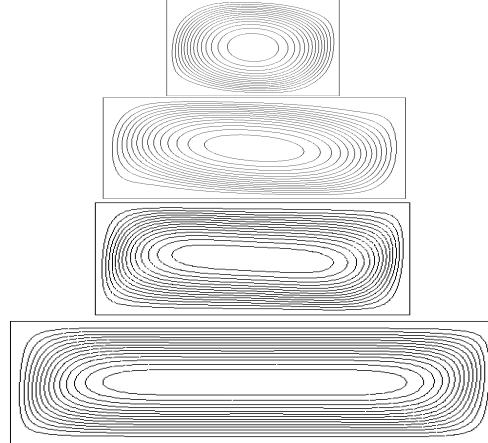


Fig 4. Streamlines of aspect ratio AR= 1, 1.5, 2, 3 at $\text{Ra}=5 \times 10^6$.

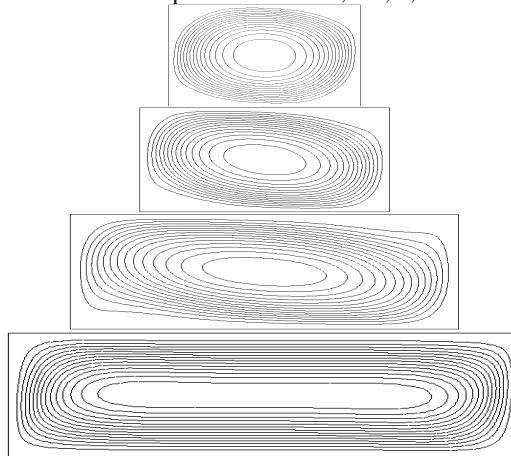


Fig 5. Streamlines of aspect ratio AR= 1, 1.5, 2, 3 at $\text{Ra}=10^7$.

In the above figures we observe that at different values of Ra as aspect ratio increases the central vortices changes its shape from circular to ellipse. As

Rayleigh number increases streamlines become more densely packed next to the walls. Also at constant values of aspect ratio as Ra increases the core of the vortices become larger.

On the other hand, the flow intensity is examined through the maximum value of the dimensionless stream function, ψ , whose variation versus the Rayleigh number is shown in Fig.6. As expected, the maximum steam function is significantly increased with increased in Rayleigh number due to enhanced buoyancy-driven convection. Since the Rayleigh number is based on the length (L) of the closed cavity. Therefore, at constant Rayleigh number, the maximum stream function becomes greater as the aspect ratio L/H is decreased due to enlarged flow area. As indicated by Moukalled and Acharya [17], the increment of flow area also enhances the various frictions that tend to decay the flow intensity. As Rayleigh number increases the enhanced natural convection becomes dominant and the additional friction is negligible, leading to that the maximum stream functions at lower aspect ratio are apparently greater than those at higher aspect ratios.

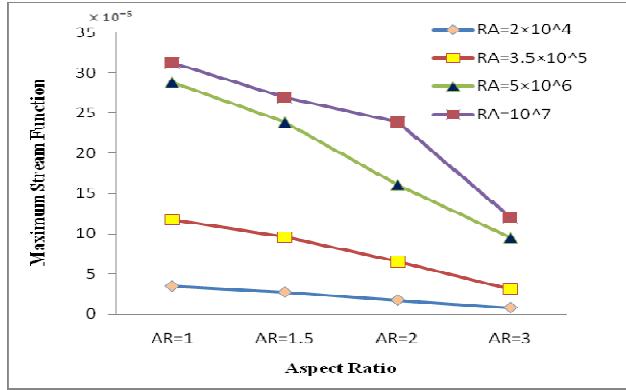


Fig 6.The maximum value of the Stream Function for different aspect ratio and Rayleigh numbers.

4.1.2. Heat Transfer:

The thermal fields are presented in the form of isotherms in figures shown below with same arrangement as in Fig.2, Fig3, Fig.4, and Fig.5. The isotherms pattern reveals that as Rayleigh number increases the packing of isotherms near the active walls become prominent implying rise in Nusselt number. The isotherms are orthogonal at the insulated walls ensure that the heat transfer rate becomes zero. As Rayleigh number increases heat transfer rate increases, velocity increases and the isotherms are no longer orthogonal, they bends. Here temperature of the left wall =910K and =790K.

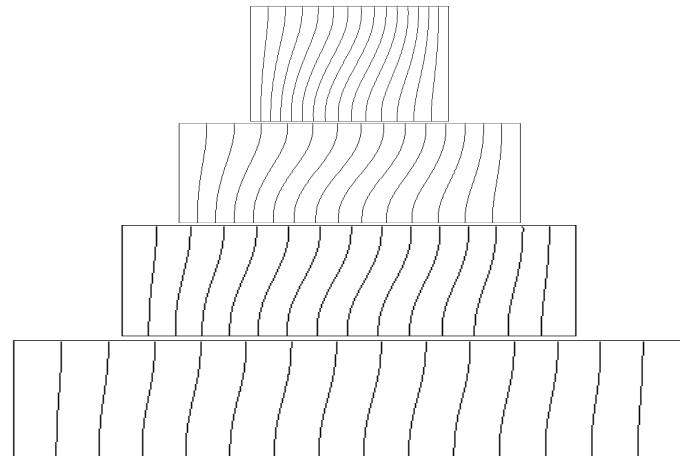


Fig 7. Isotherms of aspect ratio AR= 1, 1.5,2, 3 at $\text{Ra}=2 \times 10^4$ ($T_h=910\text{K}$ and $T_c=790\text{K}$)

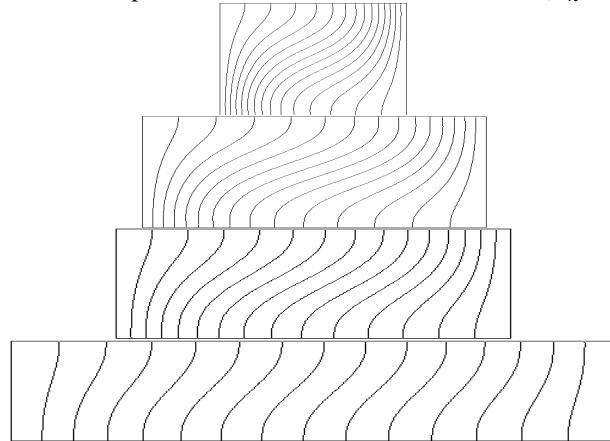


Fig 8. Isotherms of aspect ratio AR= 1, 1.5,2, 3 at $\text{Ra}=3.5 \times 10^5$ ($T_h=910\text{K}$ and $T_c=790\text{K}$.)

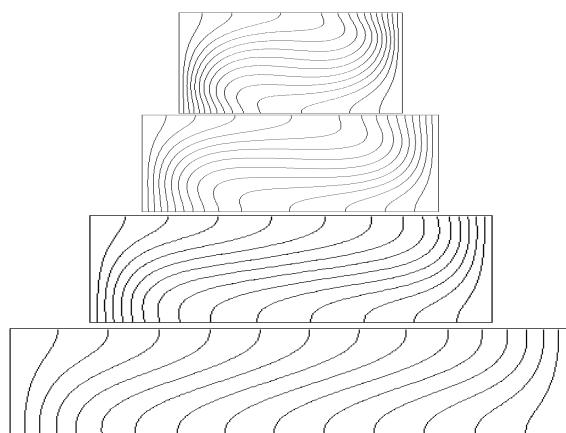


Fig 9. Isotherms of aspect ratio AR= 1, 1.5,2, 3 at $\text{Ra}=5 \times 10^6$ ($T_h=910\text{K}$ and $T_c=790\text{K}$)

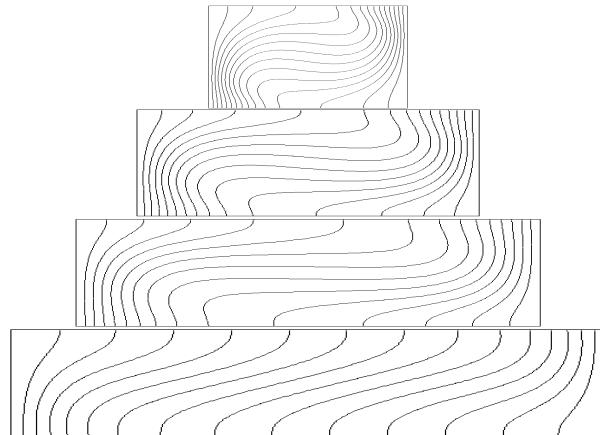


Fig 10. Isotherms of aspect ratio AR= 1, 1.5, 2, 3 at Ra= ∞ ($T_w = 910K$ and $T_b = 790K$)

Variation s of average heat transfer coefficient along the hot wall of the cavity for different aspect ratios and Rayleigh number are plotted in Fig.11. As Rayleigh number increases heat transfer rate along the hot wall of the cavity increases at constant aspect ratio but at constant Rayleigh number heat transfer rate along the same decreases as aspect ratio increases.

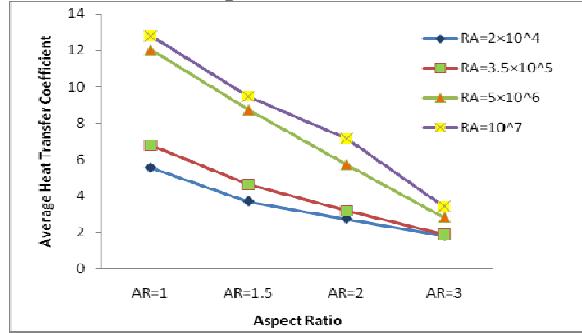


Fig11. Variation of average heat transfer coefficient along hot wall of cavity for different aspect ratio and Rayleigh number.

4.2 Correlation of average Nusselt number with Rayleigh number:

The variations of Average Nusselt numbers for different aspect ratios and Rayleigh numbers are plotted in the graph shown below in Fig.12. Thus, the equations were obtained that demonstrate the behavior of the Nusselt number as a function of Rayleigh number are given in the Table1.

Table 1

Correlation of average Nusselt number with Rayleigh number

AR=1	AR=1.5	AR=2	AR=3

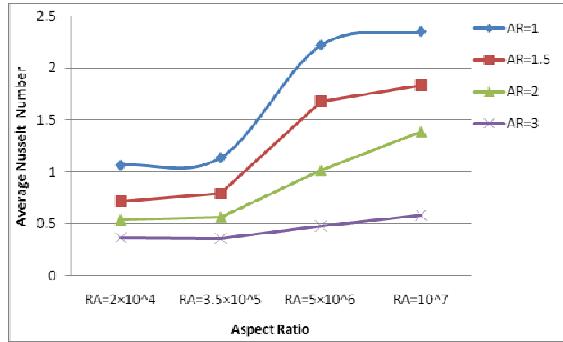


Fig 12. Variation of average Nusselt number along hot wall of cavity for different aspect ratio and Rayleigh number

5. Conclusions

A numerical study on steady laminar natural convective heat transfer inside a closed cavity filled with air was carried out. The effects of Rayleigh number, aspect ratio on the flow and heat transfer were systematically studied. From the result and discussion we conclude that as Rayleigh number increases streamlines become more densely packed next to the walls. Also at constant values of aspect ratio as Ra increases the core of the vortices become larger. As Rayleigh number increases the enhanced natural convection becomes dominant and the additional friction is negligible, leading to that the maximum stream functions at lower aspect ratios are apparently greater than those at higher aspect ratios. As Rayleigh number increases heat transfer rate increases, velocity increases and the isotherms are no longer orthogonal, they bends. Result indicates that at constant aspect ratio as Rayleigh Number increases Nusselt number increases along the hot wall of the cavity and heat transfer rate also increases but at constant Rayleigh number as Aspect ratio increases Nusselt number decreases along the same.

R E F E R E N C E S

- [1]. *De Vahl Davis G.*, Natural convection of air in a square cavity: a benchmark numerical solution, *Int.J. Numer. Methods Fluids*, 03, 227-248, 1983.
- [2]. *Freitas C.J., Street R. L., Fidikakis A.N. Koseff J R.*, Numerical simulation of three dimensional flow in a cavity. *Int. J. Numer. Meth. Fluids*, 5, 561-575, 1985.
- [3]. *Paolucci S, Chenoweth D R.*, Natural convection in shallow enclosures with differentially heated end walls, *J. Heat Transfer*, 110, 625-634, 1988.

[4]. *S. Ostrach*, Laminar flows with body force, High Speed Aerodynamics and Jet Propulsion, 4 (1964) , Princeton University press, 528-718.

[5]. *S. Ostrach*, Natural convection in enclosures, Advances in Heat Transfer, Vol. VII Academic press, New York, 1972,p.161-227.

[6]. *LO D C., Young,D . L. Tsai C.C.*, High resolution of 2D natural convection in cavity by DQ method, J. of computational and Applied Mathematics, 203,(2004) 219-236.

[7]. *T. Basak, S. Roy and A.R. Balakrishnan*, effects of thermal boundary conditions on natural convection flows within square cavity , International Journal of Heat and Mass Transfer, 49 (2006), 4525-4535.

[8]. *T. Fusegi, J. M. Hyun, K.Kuwahara*, natural convection in a differentially heated square cavity with internal heat generation, Numerical Heat Transfer Part A, 21(1992),215-229.

[9]. *J.L.Lage,A.Benjan*, The Ra-Pr domain of laminar natural convection in a enclosure heated from the side, Numerical Heat Transfer Part A, 19(1991),21-41.

[10]. *J.L.Lage,A.Benjan*, The resonance of natural convection in a enclosure heated periodically from the side, International Journal of Heat and Mass Transfer,36(1993),2027-2038.

[11]. *C.Xia, J.Y.Murthy*, Buoyancy-driven flow transitions in deep cavities heated from below, ASME Trans.Journal of Heat Transfer,124(2002),650-659.

[12]. *M.November,M.W.Nansteel*, Natural convection in rectangular enclosures heated from below and cooled along one side, International Journal of Heat and Mass Transfer, 30 (1987), 2433-2440.

[13]. *J.D Hall, A .Bejan, J.B. Chaddock*,Transient natural convection in rectangular enclosure with one heated side wall, International Journal of fluid flow,9(1988)396-404.

[14]. *J. M. Hyun, J W. Lee*, Numerical solutions of transient natural convection in a square cavity with different side wall temperature, International Journal of fluid flow,10(1989),146-151.

[15]. *I.E. Sarris,I.Lekakis, and N.S. Vlachos*, Natural convection in a rectangular tanks heated locally from below, International Journal of Heat and Mass Transfer, 47(2004),3549-3563.

[16]. *M. Corcione, ,* Effects of the thermal boundary conditions at the sidewalls upon natural convection in rectangular enclosures heated from below and cooled from above. Int. J. Therm. Sci. 42(2003)199-208.

[17]. *F. Moukalled,S.Acharya*,Natural convection in the annulus between concentric horizontal circular and square cylinders, AIAA J. Thermophys.Heat Transfer .10(1996),524-531.

[18]. *Ravi Kumarsingh,K.B.Sahu,Thakur Debasis Mishra*,Analysis of Heat Transfer and Flow due to Natural Convection in Air around Heated Square Cylinders of Different Sizes inside an Enclosure, International Journal of Engineering Research and Applications (IJERA)ISSN:2248-9622,3,(2013)766-771.

[19]. *Wu, W. and C.Y.Ching.*“ The effect of the top wall temperature on the laminar natural convection in rectangular cavities with different aspect ratios”, J. Heat Transfer, 131, (2009)1–11.

[20]. *P. K. Bose, D. Sen, R. Panua and A. K. Das*, Numerical analysis of laminar natural convection in a quadrant cavity with a solid adiabatic fin attached to the hot vertical wall,Journal of Applied Fluid Mechanics, 6,(2013).501-510.

[21]. *A.K. Hussein and S. H. Hussain* ,Mixed convection through a lid-driven air-filled square cavity with a hot wavy wall,International Journal of Mechanical and Materials Engineering (IJMME), 5 (2010), 222-235.

[22]. *Tanmay Basak, S. Roy, T. Paul, I. Pop*, Natural Convection in a Square Cavity filled with a porous Media: Effects of various thermal boundary conditions. International Journal of Heat and Mass Transfer, 49(2006)1430-1441.