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PERSONNEL TRACKING OF POWER CONSTRUCTION
SITE METHOD BASED ON F-TRACKTOR++

Zihao LIU", Jining ZHAO, Haifeng LIU, Rong MENG, Zhilong ZHAO

With the increasing dispersion of power construction sites, increasing
intelligence of construction equipment, and upgrading of management personnel's
demand for recording construction process, intelligent methods are needed to monitor
and record the trajectories of construction personnel. To address this, the Tracktor++
algorithm is improved to be the Feature-enhanced Tracktor++ (F-Tracktor++)
algorithm for power construction. First, target recognition is optimized by using
Resnet-50 and feature pyramid module, and the SimAM attention mechanism is
introduced. Then the motion estimation part is replaced with Kalman filter for
processing. Finally, the network structure of the re-identification part is improved by
taking ResNeXt as the backbone network and a batch normalization neck network as
the detection head. After validation, compared with the original Tracktor++ net-work,
the improved Tracktor++ algorithm can achieve a 3.2% reduction in the overall false
positive value, a 12.3% reduction in identity switches, and a 90% increase in
successful tracking ratio. The accuracy of tracking trajectory can be ensured through
improving the accuracy of personnel identification and recognition greatly. The
improved Tracktor++ algorithm has good performance in personnel positioning and
tracking at power construction sites, achieving automatic positioning and accurate
tracking of personnel.

Keywords: Transmission engine, deep learning, convolutional neural network,
target tracking

1. Introduction

The increasing demand for electricity in daily life and industry has posed
great challenges to the reliability and safety of the distribution system. According
to the specifications of power operation, construction personnel should construct in
the specified range [1-2]. If construction personnel mistakenly enter an unsafe space
during construction, safety accidents may occur, endangering the safety of
personnel and equipment operation. Therefore, it is necessary for safety supervisors
or construction managers to monitor the location of construction personnel in real
time. This work is mainly completed through on-site supervision by supervisors or
managers. With the development of power construction, construction sites have
shown the characteristics of large quantity, wide scope, and complex and different
environment. At the same time, the demnadfor controlling construction costs and
recording construction processes is also increasing [3]. It is necessary to adopt non-
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manual, intelligent methods to monitor and record the activities of construction
workers.

There are often two common non-artificial positioning tracking methods:
hardware positioning tracking and visual positioning tracking. Madavarapu used
the Global Positioning System (GPS) technology to continuously collect the
location of personnel for tracking [4]. Sarmento et al. used the Ultra Wide Band
(UWB) technology to calculate the distance and position of personnel wearing tag
devices by measuring the time difference of signal transmission between base
stations and tag devices, achieving the ability of robots to follow humans. Yang et
al. collected data using millimeter wave radar and generated human motion
trajectories based on the maximum energy using beam forming algorithm [6]. The
above methods partially meet the requirements of on-site positioning and tracking,
but with high cost. In addition, other technologies such as GPSand UWB all use
wireless signals for positioning, which are easily affected by electromagnetic
interference and obstacles [7]. The method of locating and tracking construction
personnel through hardware implementation has certain drawbacks.

Visual positioning and tracking methods use cameras placed at the
construction site to capture videos. The positioning and tracking algorithms can
provide positioning and tracking functions for construction personnel. Traditional
target tracking algorithms are generally composed of manually designed features
and shallow appearance models. The aim is to use simple and effective visual
features and shallow matching or classification models to design fast and robust
tracking algorithms. For example, a histogram of silhouettes and optical flow is
created to extract the shape and motion information of human bodies in images, and
an improved support vector machine algorithm is used for feature fusion [1]. In
various complex scenarios, due to the interference such as lighting changes and
personnel movement, the same targets have different patterns in different images
[8]. The tracking accuracy of traditional algorithms are greatly limited.

Deep learning methods have achieved optimal feature modeling ability in
object detection and tracking. Some scholars have used deep learning methods to
improve the intelligence of power safety monitoring. Miao et al. combined shuffle
attention and Focal IoU loss function to improve the performance of YOLOVS [8].
The method can achieve the detection and classification of personnel behavior.
However, it cannot distinguish different individuals, as well as track and record
personnel trajectories. Further research is needed on personnel detection and
tracking methods.

Based on the real situation of power construction site, the Tracktor++
algorithm [9] is improved to the Feature-enhanced Tracktor++ algorithm (F-
Tracktor++) for personnel positioning and tracking on power construction sites.
The target detection part of the Tracktor++ algorithm is first optimized by using
Resnet-50 and Feature Pyramid Networks (FPN) [10], and the SimAM attention
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module [11] is introduced. Then the motion estimation part is improved by using a
Kalman filter. Finally, the re-identification (RelD) network structure of the
Tracktor++ algorithm is modified to introduce the ResNeXt network as the
backbone network and the Batch Normalize Neck (BNNeck) as the detection head,
further improving the stability of recognition.

The dataset obtained from the electric power construction site is used for
training and experiments. The experimental results showed that compared with the
original Tracktor++network, the False Positive (FP) value of the F-Tracktor++
algorithm is reduced by 3.2%; the Identity Switches (IDs) value is reduced by
12.3%, and the Mostly Tracked (MT) ratio is increased to 90%.

2. Material and Research Method
2.1 Tracktor++ Algorithm

Commonly used target tracking algorithms such as SORT [12], DeepSort
[13] and StrongSort [14] are plagued by high complexity and computation. To
address these limitations, Bergmann et al. [9] proposed the Tracktor algorithm for
multi-object tracking (MOT), which integrates detection and tracking into a unified
network framework while embedding detection and identity features. This design
enables multi-task learning through shared components, thereby improving the
performance of the tracker. The tracking process of the Tracktor algorithm is mainly
divided into two parts, as shown in Fig. 1.
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Fig. 1 St_e;)saC Tracktor++ for multi-object tracking

The first part is targeting box regression, as indicated by the blue arrow in
Fig. 1. The bounding box regression is performed on the target of frame t-1 to obtain
the new position of the target in frame t. Using the Faster-RCNN [10] as the target
detection network, region of interest pooling is conducted with the target boxes in
frame t-1, and then the target boxes are regressed in the feature map of frame t.
After regression, the classification score Skt is compared with the set threshold to
determine whether to keep the target boxes. The second part is trajectory
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initialization, as indicated by the red arrow in Fig. 1. For newly appeared
trajectories, based on the detection results of the current frame provided by the
target detector, the intersection over union (IoU) is calculated between the predicted
bounding box set Bt and Dt. Bounding boxes with an IoU greater than the threshold
new Anew are filtered out, and the remaining bounding boxes are added as the first
frame of the new trajectory to the active trajectories, forming the trajectory of the
moving target.

In the above process, based on the bounding box frame of the video target,
direct regression of the Tracktor algorithm should guarantee two assumptions: the
camera does not have severe movement (or the construction personnel do not have
severe movement); the video frame rate cannot be too low. These two points may
not necessarily be satisfied in practice. Bergmann et al. [9] added two additional
contents to form the Tracktor++ algorithm for this situation. First, a camera motion
estimation compensation model based on Enhanced Correlation Coefficient (ECC)
is used for camera movement compensation. In addition, a constant velocity model
was adopted to calculate the position of time t based on the central coordinates of
time t-2 and t-1, and then the Tracktor algorithm was used for regression. To reduce
identity switches, the algorithm integrates a parallel re-identification network
implemented by a Siamese CNN [15]. This component generates discriminative
feature embeddings for personnel images and performs similarity measurement in
the learned feature space to ensure target identity consistency throughout the
tracking process.

2.2 Algorithm Feature Enhancement Tracktor++ Algorithm

Although the Tracktor++ algorithm has optimal design concepts, it cannot
be directly applied to the electric power construction with changing environments
and intense personnel movement. To enhance its performance in electric power
construction, target improvements have been made to its target recognition
network, motion compensation part, and re-identification network.

2.2.1 Attention Enhanced Object Detection Network

Regarding the specific task of locating and tracking personnel at power
construction sites, the environmental background of personnel may vary
significantly with seasons. Key factors such as lighting conditions, target sizes, and
significant changes in personnel position and orientation angles all impose high
demands on positioning and detection capabilities of the model. Tracktor++, which
adopts the Faster-RCNN as the target detection part of the network structure, is not
suitable for complex environments.

Without increasing the complexity of the model, the network should
adaptively pay more attention to construction workers and improve the ability to
locate targets. The main network in Faster-RCNN is first replaced with a more
efficient Resnet-50 network, and then the feature pyramid structure (Feature
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Pyramid Network, FPN) is introduced. In addition, a SImAM attention module is
introduced at four output positions of the main network to optimize features
extraction. The attention mechanism-enhanced object detection network after
improvement is shown in Fig. 2. C represents the convolutional layer; M represents
the merge layer, and P represents the predicted feature map.
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Fig. 2 The structure of the improved detection network with SimAM and FPN

The SimAM self-attention mechanism is used to enhances feature
representation of small personnel targets and mitigates background interference,
thereby improving personnel detection accuracy while preserving a certain level of
detection efficiency. The SimAM structure is shown in Fig. 3.
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Fig. 3 The structure of SImAM

SimAM is established based on the visual neuroscience theory: neurons
exhibiting spatial suppression effects are more critical than their neighboring
neurons [16]. In personnel positioning tasks on construction sites, these neurons
often extract key personnel features and require higher weights. The SimAM
module without parameters is as follows:

Y = Sigmoid(ﬁ) 0 x )

where E(x) is the energy function of all channels. The design of the energy function
inspired by neuroscience theory aims to quantify the linear separation between

neurons, enabling the identification of critical neurons. For each input neuron, the
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energy function e, is defined as shown in Eq. 2. The smaller e;, the higher the ability
to distinguish of the neuron to its neighboring neurons.

4o+ 2
e(x)= (z 2
(x,—p) +20° +24
WxH
gty 2)
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ol =—— X —
— 21:( )

where x; represents the target neuron of the input feature in the current channel. The
average and variance of all neurons in this channel are set as x and ¢°. The weight
constant A is set to 0.0001 [11].

The SimAM module is integrated at the connection between the backbone
network and the FPN structure. Unlike embedding the SImAM module with the
backbone network, placing it at this junction allows the network to fully leverage
the pre-trained weights from large-scale datasets (such as ImageNet-1K [17] and
MS COCO [18]), eliminating the need for extensive on-site construction data to
learn human target features and significantly reducing training costs.

2.2.2 Kalman filter motion compensation

Tracktor++ employs the camera motion compensation (CMC) of the
Enhanced Correlation Coefficient (ECC) method. However, commonly used safety
monitoring cameras on construction sites are usually fixed on tripods, indicating
camera movement is rare in such scenarios. On the other hand, construction workers
have far more intense movement than ordinary individuals, resulting in the
maximum frame rate of the camera being lower than the number of frames required
for individuals.

Therefore, it is necessary to design a new motion estimation algorithm that
takes into account the minimal camera displacement and rotation of significant and
unpredictable personnel movement on construction sites. An eight-dimensional
space is employed to describe the motion state of an object, derived from a
positioning algorithm x= (u, v, 3, h, u’, v’, ¥, h’). (u, v) is the center coordinates of
the target bounding box. y denotes the aspect ratio of various image objects, and 4
represents the target height. The remaining terms correspond to the time derivatives
of the above quantities. A Kalman filter is then used to predict and update the object

trajectory x “in frame #+1 based on Eq. 3.
x'=Fx

p|E diag(%) (1
0 E
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where x represents the state at time ¢, and F is the state transition matrix. We
perform regression on the personnel positions in the inference-derived trajectory x'
for frame t+1.

2.2.3 Re-identification network with the ResNeXt and batch
normalization neck

Re-identification (Re-ID) networks, which enable differentiation between
distinct individuals, are pivotal to tracking the movement trajectories of
construction personnel. Their recognition performance directly determines the
reliability of such tracking [19]. To enhance tracking effectiveness, it is essential to
optimize Re-ID networks by leveraging the significant height variations of
personnel in construction site videos, thereby strengthening their discriminative
capability for individual differentiation.

To re-identify construction workers with different heights, algorithms
should possess robust multi-layer feature fusion capabilities to capture multi-scale
features of workers. The Tracktor++ algorithm uses the ResNet [20] network as the
re-identification backbone, but its feature extraction capability is somewhat limited.
To address this, we adopt ResNeXt [21] as the backbone for re-identification.

Compared with ResNet, ResNeXt has a deeper and wider architecture, and
more effective target feature extraction without increasing hyper parameters. The
basic building blocks of ResNeXt and ResNet are compared as shown in Fig. 4.
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Fig. 4 Residual blocks of Resnet and ResNeXt

As shown in Fig. 4, ResNeXt first reduces the channel dimension of the
input feature matrix from 256 to 128 via a 1x1 convolution. Then the feature map
is split into 32 groups, each processed by a 3x3 convolution. The outputs of these
groups are then concatenated to aggregate the extracted features. Finally, the
concatenated features are up sampled back to the original dimension using a 1 X
1 convolution, and a residual connection is applied before the final output is
activated by a ReLU function. The aggregation transformation of the ResNeXt
network is as follows:
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Y=X+iT,.(X) (2)

i=1

where, ¥ denotes the output; X denotes the input; C denotes the size of the
aggregation transformation set, and 7;(X) represents the convolution on X. The
layer structure of ResNeXt-50 is shown in Tab. 1, comprising a total of 5
convolutional layers. First, a 7x7 convolution is used for down-sampling in
convolution layer 1, and then a 3x3 convolution kernel is used for down-sampling
in convolution layer 2. These stacked blocks are then repeated 3, 4, 6, and 3 times
respectively.

In the Tracktor++ algorithm, the re-identification network employs a linear
recognition head (Liner Head) as the recognition head, as shown in Fig. 5(a). This
head only consists of one or multiple fully connected layersaiming to transform
feature vectors output by the backbone network into one-hot encoding. These
encodings are then used to construct identity recognition loss values (such as cross-
entropy loss). To optimize the model, identity loss and triplet loss are jointly
employed.

Table 1
Structure of ResNeXt-50
Layers Output size

Convolution layer 1 112x112

Max pooling layer 112x112
Convolution layer 2 56x56
Convolution layer 3 28x28
Convolution layer 4 14x14
Convolution layer 5 Tx7
Mean pooling layer 1x1

SphereFace algorithm [22] and SphereRelD [23] algorithm have shown that
networks using linear detection heads may suffer from asynchronous convergence
between identity recognition loss and triplet loss. Specifically, when one loss value
continues to converge and decrease and the other first increases and then decreases
at a certain stage, the gradient directions between the two tasks become inconsistent
during updating. To address the above issues, the Batch Normalize Neck (BNNeck)
[24] is used to constrain the feature map of the triplet loss in a free Euclidean space,
and the identity recognition loss can be constrained to a hypersphere. The structure
of BNNeck is shown in Fig. 5(b). The workflow of BNNeck is as follows: the
network first calculates the triplet loss directly on the feature maps extracted from
the backbone; then batch normalization is applied to make these features distribute
approximately near the hypersphere; finally, the normalized feature vectors are
input into the fully connected layer to compute the identity loss.
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Fig. 5 The structure of Liner head versus the BNNeck head

The structure of the re-identification network after introducing ResNeXt and
BNNeck is shown in Fig. 6. The newly detected and deactivated targets are
respectively input into two ResNeXt-50 networks with shared weights. The output
feature maps of these two networks are input into a BNNeck network to connect to
a fully connected layer after batch normalization. This process generates one-hot
encodings for the newly detected and deactivated targets. Cross-entropy loss is
calculated based on these encodings to quantify the similarity score between the
newly detected and deactivated targets. If the score is higher than the threshold, the
new object is assigned the same identity number as the inactive object; otherwise,

it uses a new number.
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Fig. 6 The improved RelD network using ResNeXt backbone and BNNeck head

3. Results and analysis

3.1 Dataset

To validate the effectiveness of the F-Tracktor++ algorithm, a dataset for
object recognition and tracking in power construction sites was collected using
cameras deployed at the power construction site. The video frame rate is 25 frames
per second (FPS), and the resolution is 1920x1080. Capturing scenarios from
various construction sites, locations were carefully selected to align with typical
camera positions and pitch angles in real-world construction. In addition, the
videos were filmed under different weather conditions to obtain a wide range of
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samples. The dataset is publicly available in https://github.com/zhanghay/POWER-
CONSTRUCTION-SITE-.

The annotation software is used to annotate the positions and identity the
information of construction personnel frame by frame. Finally, according to the file
organization style of the MOT-17 [25] dataset, the construction site personnel
tracking dataset is formed, as shown in Fig. 7.

3.2 Training Settings

The experiment runs on the Ubuntu 22.04 LTS operating system by using
two NVIDIA RTX 1080Ti GPUs. The pytorch 1.10.1 and CUDA 11.3 are used as
the deep learning framework.

Fig. 7 Four example screenshots of the on-site dataset for power construction

The weights of the target recognition network are first trained. The
backbone network adopts the parameters of the pre-trained ResNet-50 network in
the MS COCO dataset and fine-tuned on the construction site dataset. For fine-
tuning, the first residual layer is frozen, and the mean and variance of the
normalization layer are fixed. The classification loss in the RPN detection head uses
cross-entropy loss, and the bounding box loss uses smooth L1 loss. Both loss values
have a weight of 1.0. The fully connected layer of the ROI detection head has 1024
nodes and outputs 1 classification. The classification loss uses cross-entropy loss,
and the target bounding box loss uses smooth L1 loss. The weights of the two losses
are both 1.0. Then, the weight of the re-identification network is trained. ResNeXt-
50 inherits from the ImageNet-1K pre-trained model, which contains 4 residual
modules and selects the last layer as the output. The fully connected layer of
BNNeck has 1024 nodes, and the output channel is 128. The loss function uses
cross-entropy loss, and the activation function uses ReL.U activation function.

Fig. 8(a) shows the training loss curve of the target detection network, and
Fig. 8(b) shows the curve of the loss function of the re-identification network. As
shown in Fig. 8, both networks have converged to a stable state after training.
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3.3 Experimental Indicators

To track multiple construction personnel, it is necessary to use multi-target
tracking evaluation indicators to measure the tracking performance of multi-target
tracking algorithms. These metrics include: False Positive (FP), which means the
target is not in the ground truth but in the trajectory generated by the tracking
algorithm; False Negative (FN), the target is in the ground truth but there is no
matching target in the results of the tracking algorithm; total number of identity
switches (IDs): the number of times that the same target is identified with different
IDs; Mostly Tracked (MT): the number of trajectories where 80% of the targets are
successfully tracked; Mostly Lost (ML): the number of trajectories where at least
80% of the targets are lost. Identification Precision (IDP) refers to the accuracy of
identifying the identity in the target box, which is the proportion of samples
identified as positive that are actually positive.

3.4 Experimental Results and Discussion

To verify the effect of the improved strategy on the Tracktor++ algorithm,
the following ablation experiments are designed after applying different
improvement measures. The results of the ablation experiments are shown in Tab.
2.

Table 2
Results of ablation experiment

Methods FP FN IDs MT ML IDP

Tracktor++ 3346 3954 664 232 28 0.57

Use feature enhanced 3240 3899 664 234 26 0.57

detection network

Use motion estimation

with Kalman filte 3239 3895 664 234 26 0.57

F-Tracktor++ 3239 3895 582 234 26 0.65
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As shown in Table 2, adding the attention module to the network can reduce
the false positive and negative values, indicating more accurate target recognition.
This can reduce the probability of missing and false alarms, as well as slightly
increasing the success rate of target tracking. On this basis, introducing Kalman
filter as motion estimation can slightly improves false positives and negatives. The
improvement in re-identification can reduce the total number of identity exchanges
and increase the accuracy of identity recognition. This indicates that the improved
Tracktor++ module demonstrates enhanced precision in personnel identity
discrimination. Compared with the Tracktor++ algorithm, the comprehensive
optimization strategy achieves a 3.2% reduction in the overall false positive rate, a
12.3% decrease in the total identity switches, and a 90% success tracking rate.
Based on the improved accuracy of personnel identification and recognition, the
accuracy of tracking trajectory is ensured, which helps to improve the accuracy of
personnel positioning and tracking in construction sites.

The F-Tracktor++ algorithm is compared with the UWA [26] algorithm and
the DeepSORT [13] algorithm, as shown in Tab. 3.

Table 3
Result of comparative experiments
Methods FP FN IDs MT ML IDP
Tracktor++ 3346 3954 664 232 28 0.57
UMA 3540 4299 973 134 126 0.34
DeepSORT 3831 4271 831 221 39 0.42
F-Tracktor++ 3239 3895 582 234 26 0.65

Fig. 9 shows the localization and tracking results in the test set, with
construction workers marked by target bounding boxes. The numbers in the top left
corner of the bounding boxes indicate personnel identity and confidence. The point-
like marks represent the movement trajectories of each construction worker. The
dataset includes instances of partial occlusion and person crossing, where the
occlusion area is relatively small (occlusion area < 20%), as shown in Fig. 9, and
the occlusion duration is brief (occlusion duration < 3 s). Under these conditions,
the proposed algorithm is robust and can achieve accurate target identification and
tracking.
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Since the original dataset lacked variations in illumination, a low-brightness
subset was synthesized using image processing techniques. Brightness and contrast
were artificially reduced in the test set to generate a low-light subset (representative
frames shown in Fig. 10). When evaluated on this subset, the F-Tracktor++
algorithm achieved the following metrics: FP = 3265, FN = 3926, IDs = 593, MT
=233, ML = 27, and IDP = 0.62. The results indicate that compared with normal
lighting conditions, the recognition accuracy decreased. The number of identity
switches (IDs) significantly increased by 9, indicating that low-light conditions will
significantly affect the reliability of target identification.

To evaluate the industrial applicability of the proposed algorithm, especially
its real-time diagnostic capability, the algorithm model is converted to a TensorRT
format and deployed on the experimental setup, as shown in Fig. 11. It employs an
NVIDIA Jetson NX as the computing device for inference. The experimental results
show that the inference speed of the device is 16 Frames Per Second (FPS), meeting
the basic requirements of real-time processing.

Fig. 10 Example of low brightness dataset images
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Fig. 11 Equipment used for testing
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4. Conclusion

A construction site video dataset is established. Based on the original
Tracktor++ framework, the SimAM attention module is introduced to further
improve the feature extraction and fusion capabilities of target recognition. The
Kalman filter is introduced in the motion estimation to improve the tracking ability
of moving personnel. To address the requirements of personnel identity feature
extraction, ResNeXt is adopted as the backbone network, and BNNeck serves as
the detection head for the re-identification (Re-ID) module. Subsequently, transfer
learning and optimized training strategies are employed to accelerate model
convergence, ensuring efficient training without compromising performance. In
testing, the improved algorithm outperforms the original Tracktor++ by a 3.2%
reduction in the overall false positive rate, a 12.3% decrease in total identity
switches, and a 90% successful tracking rate. Based on the improvement in the
accuracy of personnel identification and recognition, the accuracy of tracking
trajectories is guaranteed. Furthermore, experimental validation demonstrates that
the proposed algorithm achieves a 16 FPS frame rate on edge computing devices,
meeting the requirements of real-time industrial diagnostics.

The comprehensive experimental results show that the improved
Tracktor++ algorithms perform well in personnel positioning and tracking on the
electric power construction site. There is still room for improvement in identifying
smaller targets and tracking obscured individuals. This is may be limited by the
structure of the Faster-RCNN target recognition network, and further research
would focus on addressing this problem.
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