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COMMON FIXED POINT THEOREMS VIA INTEGRAL TYPE
CONTRACTION IN MODULAR METRIC SPACE

Hanaa Kerim', Wasfi Shatanawi*?, and Abdalla Tallafha®

The Banach fized point theory is one of the important results in pure math-
ematics that Banach proved in 1922. This theory was expanded by several authors in
different areas by introducing different contraction conditions. In this work, we extend
the Banach fized point theorem in modular metric spaces by investigating contractive
conditions itnvolving integral types. More precisely, we prove some existence and unique-
ness theorems of a common fized point of self mappings satisfying contraction conditions
of the integral type. Then, we state some corollaries, and examples to illustrate the va-
lidity of our results.
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1. Introduction

The Banach fixed point Theorem [6] is the first result in the fixed point theory formu-
lated and proven in mathematics by the pioneering mathematician Banach. In functional
analysis, a lot of research has contained fixed point theory in different spaces. For some
works in fixed point theory, see the following references [2, 3, 4, 5, 9, 16, 18, 24, 26, 27, 28,
29, 30, 31, 32, 35]. In 2002, Branciari [7] presented a new idea for the contraction condition
of a fixed point theorem. He proved the existence of a fixed point for mapping satisfying a
general contractive condition of integral type on a complete metric space. Then after, Liu,
Li, Kang and Cho [22] expanded the idea of Branciari by giving a new result and stated
illustrative examples. In 2012, Gupta et al. [16] introduced the idea of a common fixed
point theorem for contraction of integral type as below:

Theorem 1.1. [16] Let S,T : X — X be self compatible maps of a complete metric space
(X, d) satisfying the following conditions:
(1) S(X) € T(X),

(2)
/Od(s:p,s;/)w(t)dt - /Od(Tw’Ty)w(t)dt - ¢(/Od(T$’Ty)90(t)dt>
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Va,y € X, where, ¢ : [0,4+00) = [0,400) is a Lebesgue integrable function which is summa-
ble, non negative, and foega(t)dt >0 for alle >0, ¢ : [0,400) = [0,+00) is a lower semi
continuous and non decreasing function, such that, ¢(t) = 0 if and only if t = 0.

Then S and T have a unique common fixed point.

For the first time, Chistyakov [10] defined the notion of modular space and presented
some ideal applications. He used the theory of modular metric space. Later, several math-
ematicians extended their study of a fixed point theory in modular metric space, see for
examples [8, 11, 12, 13, 14, 15, 21, 25, 33, 34].

In this paper, we investigate some existence and uniqueness theorems of the common fixed
point for mappings satisfying contractive condition of the integral type on complete modular
metric space.

2. Preliminaries

Definition 2.1. [10] A metric modular on a non empty set X is a function w : (0,00) X
X x X — [0,00) that will be written as w,(z,y) = w(v,z,y); for all x,y,z € X and for all
v > 0, satisfies the following three conditions:

(1) wy(z,y) =04f and only if x =y, Vv > 0 and z,y € X.

(2) wy(z,y) =w,(y,x), Vv >0 and z,y € X.

(3) wpto(x,y) Swy(z,2) +wo(z,y); for allv,o >0 and z,y,z € X.

Remark 2.1. Let w be a modular on a set X. Then for given x,y € X, the function
0<v—=w(z,y) € (0,00) is non increasing on (0,00).
In fact if 0 < v < o, then by above definition

wg(x, y) < wo’—l/(xvx) + OJl/(-r7 y) = WV(‘/E) y)
for all z,y,z € X.

Definition 2.2. [12] Given a modular w on X, a sequence {Tp}nen in X, is said to be
modular convergent to an element x € X, if there exists a number v > 0, possibly depending
on {xn} and xz, such that lim, oo wy(zn,x) =0. i.e x, = T as n — o0.

Definition 2.3. [12] Given a modular w on X, a sequence {xp}nen in X, is said to be
modular Cauchy if there exists a number v =v({xz,}) > 0, such that

lim  wy(zp,Tm) =0.
n,m— o0
Definition 2.4. [12] A modular space X,, is said to be modular complete if each Cauchy
sequence in X,, is modular convergent. In fact, if {z,} C X, and there exists v = v({z,}) >
0 such that

lim  wy,(zn, zm) =0,
n,1Mm—00

then there exists x € X,,, such that lim,_, . w,(Tn,x) = 0.
The definition of the coincidence point is given as follows:

Definition 2.5. Let S and T be two self maps on a set X. If Sx = Tx for some z € X,
then x is called a coincidence point of S and T .

Definition 2.6. [19, 20] Let S and T be two self maps on a set X. Then S and T are said to
be weakly compatiable if they commute at their coincidence point. i.e T'Sx = STx whenever
Tx = Sz.

Lemma 2.1. [19, 20] Let S and T be weakly compatiable self mappings on a set X. If S
and T have a unique point of coincidence u, then w is the unique common fixed point of S
and T.
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Notation:
In the rest of this paper, we will consider the following notations:
e d; is denoted to the family of all functions ¢ : [0, +00) — [0, +00) such that:
(1) ¢ is continuous and nondecreasing.
(2) ¢(t) =0 if and only if t = 0.
e O, is denoted to the set of all functions ¢ : [0,4+00) — [0, +00) such that:
¢ is a Lebesgue integrable function which is summable, non negative, and [, “p(t)dt >
0 for all € > 0.
e &3 is denoted to the family of all functions 1) : [0, +00) — [0, +00) such that: (0) = 0.

Lemma 2.2. [17] Let ¢ € ®3 and {cy}nen be a sequence with non negative real numbers
and ¢, — ¢ as n — 0o. Then

Cn

im [ o(t)dt = /O Co()dt.

n—oo 0

Lemma 2.3. [23] Let ¢ € 5 and {c,, }nen be a sequence, which is non negative with ¢, — ¢
asn — 0o. Then

Cn

lim [ p(t)dt =0 iff lim ¢, =0.
n (oo}

n— o0 0

Lemma 2.4. [23] Let ¢ € ®1. Then ¢(t) > 0<t > 0.

Definition 2.7. [1] A modular w on X is said to satisfy the As-condition if
lim,, o0 wy (T, ) =0, for some v > 0 implies that lim,, oo wy, (zn, z) = 0, for all v > 0.

Note that in this paper, we suppose that the modular w on X satisfies the As-condition
on X.

3. Common fixed point theorems for contractive mappings of integral type
in modular metric spaces.

Theorem 3.1. Let X, be a complete modular metric space. Let S,T : X, — X, be self
compatible mappings which satisfy

(1)
S(Xw) € T(Xw), (1)

2)
wy (Sz,Sy) wy (Tz,Ty) wy (Tz,Ty)
/ P(B)de < ol (T Ty) [ et —o [ o) ()

Yo,y € X,,, where (¢, ) € (P1,P2) and a: RY — [0,1) 4s a function with
limsup a(s) <1, Vt > 0. (3)

s—t

Then S and T have a unique common fixed point u € X,,.

Proof. Let xp be an arbitrary point in X,. Since S(X,) C T(X,), we choose =1 € X,
such that Szo = Tx;. Continuing this process, we construct a sequence (,41) such that
Yn =Txpy1 = Sz, forn=20,1,2..

Taking = x,, and y = Zp,41.Then (2) implies

w,,(Sz,L,Sz,L+1) wr/(yvuy7z+1)
/ p(t)dt = / p(t)dt
0 0

wy (Txy,TTpt1) wy (Txy,TTpt1)
< a(wy (T2, T2p11)) / p(t)dt - o / e(t)dt)
0 0
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= alenlvasm) [ T e — o / ) (4)

‘*’V(yn—layn)
S/ p(t)dt, ¥Yn e N.
0

Wy (ymyn,ﬂ) Wy (Yn—1,Yn)
/ o< [ p(t)dt.
0 0

Now, we will prove that

Thus

Wy (Y, Yn+1) < o (Yn—1,Yn), Yn € N. (5)

Let assume (5) is not true. Then there exists ng € N such that

wu(ynofla yno) S Wu(yno ) yno+1)'

W (Yng—1,Yng) Wy (Yng1Yng+1)
/ o(t)dt < / o(t)dt
0 0

Wu(ynofl 7yn0) Wy (ynofl 71/710)
< a1, | oo —o( [ (1))
0

0

Wy (yno —1,Yng )
< / p(t)dt,
0

Therefore,

a contradiction. So, we have

Wy (Yn, Ynt1) < Wy (Yn—1,Yn), YR €N,

Hence, we deduce that {w,(yn, yn+1)} is a non increasing sequence. Therefor, there exists a
constant ag > 0 such that,

Jim Wy (Yns Ynt1) = ao-

Suppose that ag > 0, taking limit sup in (4). Then (2) and Lemma (2.2) imply that

ag W (YnYn+1)
0< / p(t)dt = lim sup/ p(t)dt
0 0

n—oo

. Wy (y”, 1 7y'n) Wy (ynf 1 7yn)
< timsup [a(e, (r1,00) | ettt —o | )

n— oo

‘-‘)V(ynflayn) W (ynflayn)
< lim sup a(wy, (Yn—1, yn)) lim sup/ p(t)dt — lim sup (b(/ go(t)dt)
0 0

n— o0 n— oo n— o0
ao
< / o(t)dt,
0

which is impossible. Hence ag = 0; that is,
lim wu(y'rnynJrl) = 0. (6)
n—o0

Now, we will prove that {y,} is a Cauchy sequence. Assume not, then there exists € > 0
and two subsequences {y,(;)} and {yy(;)} such that let n(i) is the smallest integer exceeding
m(3) with n(i) > m(i) > ¢ and

Wu(yn(i)aym(i)) > € wl/(yn(i)—lu ym(i)) <e, Vi € N. (7)
Note that Vi € N, we have
Wy (Yn(i), Ym(i)) < WL (Un(i)s Yn()—1) T 9% (Yni)—1, Ym(i));
W (Yn(iys Ym(i)+1) < WL Yn(i)s Ym(i)) T 9% Ym(i)s Ym(i)+1);
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W2 (Yn(i)+15 Yn(s)) T WL (Un(i)s Ym(i)+1);

wu(yn(z)Jrlvym(Z)Jrl)
W (Yn ()41 Ym()+1) < WL (Ym(o) 115 Ym(i)+2) T WL (Ym(i)+25 Yn(i)+1)- (8)
That give us:
< Wy (Yn(i)s Ym(i)) < W Un(i)s Yn(i)—1) T WL (Un(i) =15 Ym(i));
|wu (Yn(iys Ym(i)+1) — W2 (Un(iys Ym()] < Wr Ym()s Ym(i)+1);
|wu (Yn(i)+15 Ym(i)+1) = WL YUn(i)s Ym@)+1)] < W2 (Yno)+15 Yn(@));
(9)

|wu(yn(z)+lvym )+1) £ \Ym( )+27yn(i)+1)| Swg(ym(i)+1,ym(i)+2)-
Now by definition of As-condition, (6), (7) and (9), we obtain that

—we(
)
€= lim wu(yn(i)vym(i)) = 113& wu(yn(i)7ym(i)+1)

= Hm @, (Yni)+1: Ym@y+1) = B0 W0 (Y120 Yn(i)+1)-

Then by (2), we have
wu(yn(i)+17ynL(i)+2)
/ o(t)dt
0

Wo (Yn (i) sYm(i)+1) Wy (Yn (i) sYm (i)+1)
< a(wu(yn(i)aym(i)+1))/() p(t)dt — ¢(/0 SD(t)dt)-

Taking limit sup in the above inequality, we obtain

€ W (Yn (i)+1-Ym (i)+2)
0< / (t)dt = lim sup/ p(t)dt
0 i 0

71— 00

W (Yn (i) sYm(i)+1) Wo (Yn (1) sYm(i)+1)
e 1) | et —o | olt)it)]

< limsup |«
i—00

i—00

W (Yn () sYm(i)+1) Wo (Yn (1) sYm(i)+1)
< i 54D (0 (U Y1) s | p(t)dt-timsupo( [ plt)dt)
i i—oo Jo 0

1—> 00
< lim sup a(r)/ o(t)dt
0

rT—€

</ by,

which is impossible. Hence {y,} is a Cauchy sequence
is a complete modular metric space, therefore there exists u € X, such that

Since X, i
Sz, — uand Tz, — u as n — oo. Thus we can take k € X, such that Tk = u. Now

wy (Sy,Sk) wy (Txy,Tk) wy (Txy,Tk)
/ o(t)dt < a(w,,(T;vn,Tk))/ o(t)dt — ¢(/ cp(t)dt).
0 0 0

Letting n — oo, we obtain
wy (u,Sk)
/ p(t)dt = 0.
0

By Lemma (2.3), we have
wy(u,Sk) =0= Sk = u.

Hence u is the point of coincidence of S and T'.
Finally, we show that w is unique. Assume not, then there exists v # u and there exists w
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such that S(w) = T'(w) = v.

By (2), we have
wy (Tu, Tw) wy (Su,Sw)
/ oty = [ o(t)dt
0 0

< afeu (T Tu) [ T e o / T ).

wy (Tu, Tw) wy (Tu, Tw)
/ p(t)dt < / (b,

0 0
which is impossible. Hence v = v. Then Lemma (2.1) implies that S and T have a unique

common fixed point. O

Thus

Theorem 3.2. Let X, be a complete modular metric space. Let S,T : X, — X, be self
compatible mappings satisfy

(1)
S(X,) CT(Xy). (10)

(2)

¢(AMASLSw¢@yﬁ)g<uwyuhgTwa(AWJTLTwwﬁﬁﬁ)+3@w(T%7W»¢(ZfAT%Sw¢@ﬁﬁ)

(11)
V‘T7y € qu where (¢790a7//) € ((1)17(1)27(1)3)7 1/}(1) S ¢(l)7 vi S IR+7 04,6 : R+ - [071) are
functions with limsup,_,, B(s) < 1, limsup,_,, a(s) < 1, (0) =0, Vt> 0.

: a(s)
1 — <1, Vi . 12
H?j?pl—ﬂ(s)< , V>0 (12)

Then S and T have a unique common fixed point u € X,.

Proof. Let x¢ be an arbitrary point in X,,. Since S(X,,) C T'(X,), we choose 1 € X, such
that Szg = Tz;. Continuing this process, we construct a sequence (z,+1) in X, such that
Yn = Txpy1 = Sz, forn=20,1,2..

Taking = x,, and y = x,,41 in (11), we have

¢(/Owu(Srcn,Sran)sp(t))dt _ ¢(/Owu(ymyn+1)(p(t>dt)

<atatum([ " e0m) e[ ).
Then

0= st sme( [ o) < im0 pwa)

Hence

¢<AwU(yn,yn+l)@(t)dt) < iy(g(l;igjj,gynl_,ly:ly)i))w</0wu(yn17yn)‘p(t)dt>. (13)

¢(/Owy(y7“yn+l)<p(t)dt) < Qﬁ(/owy(yn_hyn)@(t)dt)-

Since ¢ is non decreasing, we have

wu (Yn,Yn+1) Wy (Yn—1,Yn)
/ o< [ p(t)dt.
0 0

Thus



Common fixed point theorems via integral type contraction in modular metric space. 131

Using the same method given in Theorem (3.1), we get {w, (Yn, Yn+1)} IS & non increasing
sequence and

lim wu(yna yn+1) =0
n— oo

Now, we will prove that {y,} is a Cauchy sequence. Assume not, then there exists e > 0
and two subsequences {¥,,,(;)} and {y,(;)} such that for each i € N, let n(i) be the smallest
integer exceeding m(¢) such that

W (Yn(iys Ym(i) > € W (Yn(i)—1>Ym@)) < € Vi€ N.
Hence by the same method given in Theorem (3.1), we have

e= lim W (Yn(i)s Ym(i)) = dim W (Yn(i)s Ym(i)+1)

=1 v Yn(i s Ym(a = li v\Ym(s yYn (e .
Jm wy (Yngoy 41 Ymeiy 1) = W0 @u (Yo 42, Yn(iy+1)

So in (11) implies that:

wu(yn(i)+17ym(i)+2) wu(yn('i)vym(i)+1)
of | PA0)t) < e o) olt)it)

Wy (ynL(iH»l 7y'm(i)+2)
+B(wy (Yn(s) ym(i)+1))¢(/o @(t>dt)~

Taking limit sup in the above inequality, we obtain

€ Wy (Yn (i) +1:Ym(i)+2)
0<o( [ wit)ar) =o(timsup [ o))
0 0

1—00

. wv(yn(i)vynl(i)+1)
< timsup [0 (o 2% plt)dt)

i—00

Wu(?/m(i,)+1»ym(i)+2)
+B(wo (Yn(i)» ym(i)+1))¢</o @(t)dt)}

< qb(/oew(t)dt),

a contradiction. Hence {y,} is a Cauchy sequence.

Since X, is a complete modular metric space, then there exists © € X, such that Sz, — u
and Tz, — u as n — oo. Thus we can take k € X, such that Tk = u.

By (11), we get

p ( /0 w”(sm"’Sk)¢(t)dt) < a(w, (Txy,, Tk)) ( /0 o go(t)dt) +B(wy (T, Tk)) ¢ ( /O wu(Tk’Sk)w(t)dt) :

Letting n — oo, we obtain
wy (u,Sk)
¢(/ gp(t)dt) = 0.
0

wy (u, Sk) =0 = Sk = u.
Hence, u is the point of coincidence of S and T
Finally, we show that u is unique. Assume not, then there exist v # u and w such that
S(w) =T (w) = v.
By (11), we have

By Lemma (2.3), we have

o[ T ) = o / T i)

<ataturanu( [ o) + sarnrane( [ o)



132 Hanaa Kerim, Wasfi Shatanawi, and Abdalla Tallafha

<o T ).

wy (Tu, Tw) wy (Tu, Tw)
/ O T
0 0

which is impossible, which give v = v. Thus Lemma (2.1) implies that S and T have a
unique common fixed point.

Thus

O
If we put ¢(z) = ¢p(x) = 2 on Theorem (3.2), we get the following corollaries:

Corollary 3.1. Let X, be a complete modular metric space. Let S,T : X, — X, be self
compatible mappings satisfy

(1) S(X,) CT(X,).
(2)
wy (Sz,Sy) wy (Tz,Ty) wy (Ty,Sy)
[ e <atmezg) [ s smn o) [ el
0 0 0
Va,y € X,, where ¢ € ®o, o, : RT — [0,1) are functions with limsup,_,, B(s) < 1,
limsup,_,, a(s) < 1, 8(0) =0, Vvt > 0.
limsup& <1, Vt>0.
s—t 1 — (5)
Then S and T have a unique common fixed point u € X,,.

Corollary 3.2. Let X, be a complete modular metric space. Let S, T : X, — X, be self
compatible mappings satisfy

(1) S(Xo) € T(Xo),
(2)

wy (Sz,Sy) wy (Tx,y) wy (Ty,Sy)
[ e e ( [ emars [ o)
0 0 0

Vao,y € X, where ¢ € &g, A : RT — [0, %) is a function with

. Als)
1 7
TP T=A(s)

Then S and T have a unique common fized point u € X,,.

<1, Vt>0.

In this example, we illustrate the equality for theorem (3.1).

Example 3.1. Let X, = RT and w,(x,y) = @ Let S, T : RT — R be two mappings,
a: RT — [0,1) and (¢,p) € (®1,P2) defined by S(x) = T(z) = %, Vr € RY,
alt) =1, ¢(t) =1L, and o(t) = 2t, Vt € RT.

By definition of T and S we can easily check that is T and S are self compatible mappings
and S(X,) CT(Xy).

Now, we have:

z
Tz’
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14 (@2 1L 4 (@—y’
T2 21+ 2)2(1+y)?2 40 2(1+2)2(1+y)2

— a(w, (T2, Ty)) /0 wy(Tm’Ty)@(t)dt - ¢( /0 WV(TI’Ty)gp(t)dt).

Then S and T have a unique common fixed point 0 € X,,,.

Example 3.2. Let X,, = [1,7] be a modular metric space with w,(x,y) = =41

Let S,T : [1,7] — [1,7] be two mappings, (¢, p,) € (P1,Ps, P3), and a7ﬂu: Rt — [0,1),
define by

1 for xz€[l,4)
S(z) = { T for xe[4,7
[ 1 for z€[1,3)
T(w) = { g for xze[3,7] "

and p(t) = 2t, ¢(t) = P(t) =t, a(t) =

By definition of T and S we can easily check that is T and S are self compatible mappings

and we have:

S(Xu) ={1}U L, 3] =1,1) € [1,%] = T(X,). So we obtain S(X,,) C T(X.). Also we
have (1) < ¢(1),Vi € RT, limsup,_,, % < 1,vt > 0.

To verify (11), we divided the example to the different case as follow:

Casel: x,y € [4,7) and © < y. Note that

/WV(SI,sm ® -5l 1 ( %
<ptdt=/ 2tdt = Yy—x);
i ! (4v)?
/w,,(Tm,Ty) ( ) %‘%_§‘ 1 ( )2
i g (B0)?

wu (Ty,Sy) 11—y 1 2
Hdt = 2tdt:(—).
/0 ) / oy

wv (5%:5%) 1 150 1
dt = ——(y—2)> < — X ——(y —2)?
| e = = < 5 ¢ =)

_9x1646 1
S Bk

So, we have

— g 1 _ 2 E 1 _ 2
=16 X @Y T T X a

<2XL( —$)2+EX(L )2
=16 " (32" 16~ \12,Y

wy (Tz,Ty) wu (Ty,Sy)
=ataTe Ty [ eta) + sreTie( [ elar).
Case2: z,y € [1,3). Notice that T(z) = S(z) =T (y) = S(y) = 1. It follows that

wy (Sz,Sy)
/ p(t)dt =0
0

<atatamy( [ sw) s s rye( [T o).
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Case3: x,y € [3,4). Notice that S(x) = S(y) =1, T(x) = § and T(y) = 4. It follows that

wy (Sx,Sy)
/ o()dt = 0
0

wy (Tz,Ty) wy (Ty,Sy)
vz, d v(Tz, dt ).
<a@a ([ eta) + sratie( [ enar)
Case4: x € [1,3) and y € [4,7]. Note that

w, (Sz,Sy) 11y 1
/ o(t)dt = / 2tdt = S(y —4)%
0 0 v

e

S—
€
<
~
=
0

&
S
—~
-
S~—"
u
S
I
S—
N
ol
|
NS
[\
~
U
S
Il
~~
‘ -
<
——
N

So, we have

9%x16+6 1 ,
- ~3
6z <@ Y

9 2 6 2
TR A R TR ST FA A

Nej
—

6 1 2
<2 —3)2 4 x
ST X @eW Y (12#’)

— ey [ o) s e [T o),

0
Case5: x € [3,4) and y € [4,7]. Note that

/wu(Sw,Sy) ® s14-1] 1 ( )2
gotdt::/ 2tdt = y—4)%
0 0 (4v)?

So, we have
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— ey [ o) s e [ o),

For y < x we use the same method.

Then S and T have a unique common fized point 1 € X,,,.

Conclusion: In this paper, we formulated and proved many common fixed point results
for mappings satisfying contractive conditions of integral forms over modular metric spaces.
Some examples have been constructed to show the validity of our results.
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