

COMMON FIXED POINT THEOREMS VIA INTEGRAL TYPE CONTRACTION IN MODULAR METRIC SPACE

Hanaa Kerim¹, Wasfi Shatanawi^{*2}, and Abdalla Tallafha³

The Banach fixed point theory is one of the important results in pure mathematics that Banach proved in 1922. This theory was expanded by several authors in different areas by introducing different contraction conditions. In this work, we extend the Banach fixed point theorem in modular metric spaces by investigating contractive conditions involving integral types. More precisely, we prove some existence and uniqueness theorems of a common fixed point of self mappings satisfying contraction conditions of the integral type. Then, we state some corollaries, and examples to illustrate the validity of our results.

Keywords: Contraction mappings of integral types, Complete modular metric space, Fixed point, Common fixed point.

MSC2010: 54H25, 47H10

1. Introduction

The Banach fixed point Theorem [6] is the first result in the fixed point theory formulated and proven in mathematics by the pioneering mathematician Banach. In functional analysis, a lot of research has contained fixed point theory in different spaces. For some works in fixed point theory, see the following references [2, 3, 4, 5, 9, 16, 18, 24, 26, 27, 28, 29, 30, 31, 32, 35]. In 2002, Branciari [7] presented a new idea for the contraction condition of a fixed point theorem. He proved the existence of a fixed point for mapping satisfying a general contractive condition of integral type on a complete metric space. Then after, Liu, Li, Kang and Cho [22] expanded the idea of Branciari by giving a new result and stated illustrative examples. In 2012, Gupta et al. [16] introduced the idea of a common fixed point theorem for contraction of integral type as below:

Theorem 1.1. [16] *Let $S, T : X \rightarrow X$ be self compatible maps of a complete metric space (X, d) satisfying the following conditions:*

(1) $S(X) \subseteq T(X)$,
 (2)

$$\int_0^{d(Sx, Sy)} \varphi(t) dt \leq \int_0^{d(Tx, Ty)} \varphi(t) dt - \phi \left(\int_0^{d(Tx, Ty)} \varphi(t) dt \right)$$

¹Department of Mathematics, The University of Jordan, Amman, Jordan, e-mail: hna9170455@ju.edu.jo, kerim.hanaa@gmail.com

² Department of Mathematics and general courses, Prince Sultan University, Riyadh, Saudi Arabia, e-mail: wshatanawi@psu.edu.sa

Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan.

Department of Mathematics, Faculty of Science, Hashemite University, Zarqa, Jordan e-mail: swasfi@hu.edu.jo

³Department of Mathematics, The University of Jordan, Amman, Jordan, e-mail: a.tallafha@ju.edu.jo, atallafha@gmail.com

$\forall x, y \in X$, where, $\varphi : [0, +\infty) \rightarrow [0, +\infty)$ is a Lebesgue integrable function which is summable, non negative, and $\int_0^\epsilon \varphi(t) dt > 0$ for all $\epsilon > 0$, $\phi : [0, +\infty) \rightarrow [0, +\infty)$ is a lower semi continuous and non decreasing function, such that, $\phi(t) = 0$ if and only if $t = 0$.

Then S and T have a unique common fixed point.

For the first time, Chistyakov [10] defined the notion of modular space and presented some ideal applications. He used the theory of modular metric space. Later, several mathematicians extended their study of a fixed point theory in modular metric space, see for examples [8, 11, 12, 13, 14, 15, 21, 25, 33, 34].

In this paper, we investigate some existence and uniqueness theorems of the common fixed point for mappings satisfying contractive condition of the integral type on complete modular metric space.

2. Preliminaries

Definition 2.1. [10] A metric modular on a non empty set X is a function $\omega : (0, \infty) \times X \times X \rightarrow [0, \infty)$ that will be written as $\omega_\nu(x, y) = \omega(\nu, x, y)$; for all $x, y, z \in X$ and for all $\nu > 0$, satisfies the following three conditions:

- (1) $\omega_\nu(x, y) = 0$ if and only if $x = y$, $\forall \nu > 0$ and $x, y \in X$.
- (2) $\omega_\nu(x, y) = \omega_\nu(y, x)$, $\forall \nu > 0$ and $x, y \in X$.
- (3) $\omega_{\nu+\sigma}(x, y) \leq \omega_\nu(x, z) + \omega_\sigma(z, y)$; for all $\nu, \sigma > 0$ and $x, y, z \in X$.

Remark 2.1. Let ω be a modular on a set X . Then for given $x, y \in X$, the function $0 < \nu \rightarrow \omega_\nu(x, y) \in (0, \infty)$ is non increasing on $(0, \infty)$.

In fact if $0 < \nu < \sigma$, then by above definition

$$\omega_\sigma(x, y) \leq \omega_{\sigma-\nu}(x, x) + \omega_\nu(x, y) = \omega_\nu(x, y)$$

for all $x, y, z \in X$.

Definition 2.2. [12] Given a modular ω on X , a sequence $\{x_n\}_{n \in \mathbb{N}}$ in X_ω is said to be modular convergent to an element $x \in X_\omega$ if there exists a number $\nu > 0$, possibly depending on $\{x_n\}$ and x , such that $\lim_{n \rightarrow \infty} \omega_\nu(x_n, x) = 0$. i.e $x_n \rightarrow x$ as $n \rightarrow \infty$.

Definition 2.3. [12] Given a modular ω on X , a sequence $\{x_n\}_{n \in \mathbb{N}}$ in X_ω is said to be modular Cauchy if there exists a number $\nu = \nu(\{x_n\}) > 0$, such that

$$\lim_{n, m \rightarrow \infty} \omega_\nu(x_n, x_m) = 0.$$

Definition 2.4. [12] A modular space X_ω is said to be modular complete if each Cauchy sequence in X_ω is modular convergent. In fact, if $\{x_n\} \subset X_\omega$ and there exists $\nu = \nu(\{x_n\}) > 0$ such that

$$\lim_{n, m \rightarrow \infty} \omega_\nu(x_n, x_m) = 0,$$

then there exists $x \in X_\omega$, such that $\lim_{n \rightarrow \infty} \omega_\nu(x_n, x) = 0$.

The definition of the coincidence point is given as follows:

Definition 2.5. Let S and T be two self maps on a set X . If $Sx = Tx$ for some $x \in X$, then x is called a coincidence point of S and T .

Definition 2.6. [19, 20] Let S and T be two self maps on a set X . Then S and T are said to be weakly compatible if they commute at their coincidence point. i.e $TSx = STx$ whenever $Tx = Sx$.

Lemma 2.1. [19, 20] Let S and T be weakly compatible self mappings on a set X . If S and T have a unique point of coincidence u , then u is the unique common fixed point of S and T .

Notation:

In the rest of this paper, we will consider the following notations:

- Φ_1 is denoted to the family of all functions $\phi : [0, +\infty) \rightarrow [0, +\infty)$ such that:
 - (1) ϕ is continuous and nondecreasing.
 - (2) $\phi(t) = 0$ if and only if $t = 0$.
- Φ_2 is denoted to the set of all functions $\varphi : [0, +\infty) \rightarrow [0, +\infty)$ such that:
 φ is a Lebesgue integrable function which is summable, non negative, and $\int_0^\epsilon \varphi(t)dt > 0$ for all $\epsilon > 0$.
- Φ_3 is denoted to the family of all functions $\psi : [0, +\infty) \rightarrow [0, +\infty)$ such that: $\psi(0) = 0$.

Lemma 2.2. [17] *Let $\varphi \in \Phi_2$ and $\{c_n\}_{n \in \mathbb{N}}$ be a sequence with non negative real numbers and $c_n \rightarrow c$ as $n \rightarrow \infty$. Then*

$$\lim_{n \rightarrow \infty} \int_0^{c_n} \varphi(t)dt = \int_0^c \varphi(t)dt.$$

Lemma 2.3. [23] *Let $\varphi \in \Phi_2$ and $\{c_n\}_{n \in \mathbb{N}}$ be a sequence, which is non negative with $c_n \rightarrow c$ as $n \rightarrow \infty$. Then*

$$\lim_{n \rightarrow \infty} \int_0^{c_n} \varphi(t)dt = 0 \text{ iff } \lim_{n \rightarrow \infty} c_n = 0.$$

Lemma 2.4. [23] *Let $\phi \in \Phi_1$. Then $\phi(t) > 0 \Leftrightarrow t > 0$.*

Definition 2.7. [1] *A modular ω on X is said to satisfy the Δ_2 -condition if $\lim_{n \rightarrow \infty} \omega_\nu(x_n, x) = 0$, for some $\nu > 0$ implies that $\lim_{n \rightarrow \infty} \omega_\nu(x_n, x) = 0$, for all $\nu > 0$.*

Note that in this paper, we suppose that the modular ω on X satisfies the Δ_2 -condition on X .

3. Common fixed point theorems for contractive mappings of integral type in modular metric spaces.

Theorem 3.1. *Let X_ω be a complete modular metric space. Let $S, T : X_\omega \rightarrow X_\omega$ be self compatible mappings which satisfy*

(1)

$$S(X_\omega) \subseteq T(X_\omega), \quad (1)$$

(2)

$$\int_0^{\omega_\nu(Sx, Sy)} \varphi(t)dt \leq \alpha(\omega_\nu(Tx, Ty)) \int_0^{\omega_\nu(Tx, Ty)} \varphi(t)dt - \phi \left(\int_0^{\omega_\nu(Tx, Ty)} \varphi(t)dt \right) \quad (2)$$

$\forall x, y \in X_\omega$, where $(\phi, \varphi) \in (\Phi_1, \Phi_2)$ and $\alpha : \mathbb{R}^+ \rightarrow [0, 1)$ is a function with

$$\limsup_{s \rightarrow t} \alpha(s) < 1, \quad \forall t > 0. \quad (3)$$

Then S and T have a unique common fixed point $u \in X_\omega$.

Proof. Let x_0 be an arbitrary point in X_ω . Since $S(X_\omega) \subseteq T(X_\omega)$, we choose $x_1 \in X_\omega$ such that $Sx_0 = Tx_1$. Continuing this process, we construct a sequence (x_{n+1}) such that $y_n = Tx_{n+1} = Sx_n$, for $n = 0, 1, 2, \dots$.

Taking $x = x_n$ and $y = x_{n+1}$. Then (2) implies

$$\begin{aligned} & \int_0^{\omega_\nu(Sx_n, Sx_{n+1})} \varphi(t)dt = \int_0^{\omega_\nu(y_n, y_{n+1})} \varphi(t)dt \\ & \leq \alpha(\omega_\nu(Tx_n, Tx_{n+1})) \int_0^{\omega_\nu(Tx_n, Tx_{n+1})} \varphi(t)dt - \phi \left(\int_0^{\omega_\nu(Tx_n, Tx_{n+1})} \varphi(t)dt \right) \end{aligned}$$

$$\begin{aligned}
&= \alpha(\omega_\nu(y_{n-1}, y_n)) \int_0^{\omega_\nu(y_{n-1}, y_n)} \varphi(t) dt - \phi \left(\int_0^{\omega_\nu(y_{n-1}, y_n)} \varphi(t) dt \right) \\
&\leq \int_0^{\omega_\nu(y_{n-1}, y_n)} \varphi(t) dt, \quad \forall n \in \mathbb{N}.
\end{aligned} \tag{4}$$

Thus

$$\int_0^{\omega_\nu(y_n, y_{n+1})} \varphi(t) dt \leq \int_0^{\omega_\nu(y_{n-1}, y_n)} \varphi(t) dt.$$

Now, we will prove that

$$\omega_\nu(y_n, y_{n+1}) \leq \omega_\nu(y_{n-1}, y_n), \quad \forall n \in \mathbb{N}. \tag{5}$$

Let assume (5) is not true. Then there exists $n_0 \in \mathbb{N}$ such that

$$\omega_\nu(y_{n_0-1}, y_{n_0}) \leq \omega_\nu(y_{n_0}, y_{n_0+1}).$$

Therefore,

$$\begin{aligned}
&\int_0^{\omega_\nu(y_{n_0-1}, y_{n_0})} \varphi(t) dt \leq \int_0^{\omega_\nu(y_{n_0}, y_{n_0+1})} \varphi(t) dt \\
&\leq \alpha(\omega_\nu(y_{n_0-1}, y_{n_0})) \int_0^{\omega_\nu(y_{n_0-1}, y_{n_0})} \varphi(t) dt - \phi \left(\int_0^{\omega_\nu(y_{n_0-1}, y_{n_0})} \varphi(t) dt \right) \\
&< \int_0^{\omega_\nu(y_{n_0-1}, y_{n_0})} \varphi(t) dt,
\end{aligned}$$

a contradiction. So, we have

$$\omega_\nu(y_n, y_{n+1}) \leq \omega_\nu(y_{n-1}, y_n), \quad \forall n \in \mathbb{N}.$$

Hence, we deduce that $\{\omega_\nu(y_n, y_{n+1})\}$ is a non increasing sequence. Therefor, there exists a constant $a_0 \geq 0$ such that,

$$\lim_{n \rightarrow \infty} \omega_\nu(y_n, y_{n+1}) = a_0.$$

Suppose that $a_0 > 0$, taking limit sup in (4). Then (2) and Lemma (2.2) imply that

$$\begin{aligned}
0 &< \int_0^{a_0} \varphi(t) dt = \limsup_{n \rightarrow \infty} \int_0^{\omega_\nu(y_n, y_{n+1})} \varphi(t) dt \\
&\leq \limsup_{n \rightarrow \infty} \left[\alpha(\omega_\nu(y_{n-1}, y_n)) \int_0^{\omega_\nu(y_{n-1}, y_n)} \varphi(t) dt - \phi \left(\int_0^{\omega_\nu(y_{n-1}, y_n)} \varphi(t) dt \right) \right] \\
&\leq \limsup_{n \rightarrow \infty} \alpha(\omega_\nu(y_{n-1}, y_n)) \limsup_{n \rightarrow \infty} \int_0^{\omega_\nu(y_{n-1}, y_n)} \varphi(t) dt - \limsup_{n \rightarrow \infty} \phi \left(\int_0^{\omega_\nu(y_{n-1}, y_n)} \varphi(t) dt \right) \\
&< \int_0^{a_0} \varphi(t) dt,
\end{aligned}$$

which is impossible. Hence $a_0 = 0$; that is,

$$\lim_{n \rightarrow \infty} \omega_\nu(y_n, y_{n+1}) = 0. \tag{6}$$

Now, we will prove that $\{y_n\}$ is a Cauchy sequence. Assume not, then there exists $\epsilon > 0$ and two subsequences $\{y_{m(i)}\}$ and $\{y_{n(i)}\}$ such that let $n(i)$ is the smallest integer exceeding $m(i)$ with $n(i) > m(i) > i$ and

$$\omega_\nu(y_{n(i)}, y_{m(i)}) > \epsilon, \quad \omega_\nu(y_{n(i)-1}, y_{m(i)}) \leq \epsilon, \quad \forall i \in \mathbb{N}. \tag{7}$$

Note that $\forall i \in \mathbb{N}$, we have

$$\begin{aligned}
\omega_\nu(y_{n(i)}, y_{m(i)}) &\leq \omega_{\frac{\nu}{2}}(y_{n(i)}, y_{n(i)-1}) + \omega_{\frac{\nu}{2}}(y_{n(i)-1}, y_{m(i)}); \\
\omega_\nu(y_{n(i)}, y_{m(i)+1}) &\leq \omega_{\frac{\nu}{2}}(y_{n(i)}, y_{m(i)}) + \omega_{\frac{\nu}{2}}(y_{m(i)}, y_{m(i)+1});
\end{aligned}$$

$$\begin{aligned}\omega_\nu(y_{n(i)+1}, y_{m(i)+1}) &\leq \omega_{\frac{\nu}{2}}(y_{n(i)+1}, y_{n(i)}) + \omega_{\frac{\nu}{2}}(y_{n(i)}, y_{m(i)+1}); \\ \omega_\nu(y_{n(i)+1}, y_{m(i)+1}) &\leq \omega_{\frac{\nu}{2}}(y_{m(i)+1}, y_{m(i)+2}) + \omega_{\frac{\nu}{2}}(y_{m(i)+2}, y_{n(i)+1}).\end{aligned}\quad (8)$$

That give us:

$$\begin{aligned}\epsilon &\leq \omega_\nu(y_{n(i)}, y_{m(i)}) \leq \omega_{\frac{\nu}{2}}(y_{n(i)}, y_{n(i)-1}) + \omega_{\frac{\nu}{2}}(y_{n(i)-1}, y_{m(i)}); \\ |\omega_\nu(y_{n(i)}, y_{m(i)+1}) - \omega_{\frac{\nu}{2}}(y_{n(i)}, y_{m(i)})| &\leq \omega_{\frac{\nu}{2}}(y_{m(i)}, y_{m(i)+1}); \\ |\omega_\nu(y_{n(i)+1}, y_{m(i)+1}) - \omega_{\frac{\nu}{2}}(y_{n(i)}, y_{m(i)+1})| &\leq \omega_{\frac{\nu}{2}}(y_{n(i)+1}, y_{n(i)}); \\ |\omega_\nu(y_{n(i)+1}, y_{m(i)+1}) - \omega_{\frac{\nu}{2}}(y_{m(i)+2}, y_{n(i)+1})| &\leq \omega_{\frac{\nu}{2}}(y_{m(i)+1}, y_{m(i)+2}).\end{aligned}\quad (9)$$

Now by definition of Δ_2 -condition, (6), (7) and (9), we obtain that

$$\begin{aligned}\epsilon &= \lim_{i \rightarrow \infty} \omega_\nu(y_{n(i)}, y_{m(i)}) = \lim_{i \rightarrow \infty} \omega_\nu(y_{n(i)}, y_{m(i)+1}) \\ &= \lim_{i \rightarrow \infty} \omega_\nu(y_{n(i)+1}, y_{m(i)+1}) = \lim_{i \rightarrow \infty} \omega_\nu(y_{m(i)+2}, y_{n(i)+1}).\end{aligned}$$

Then by (2), we have

$$\begin{aligned}&\int_0^{\omega_\nu(y_{n(i)+1}, y_{m(i)+2})} \varphi(t) dt \\ &\leq \alpha(\omega_\nu(y_{n(i)}, y_{m(i)+1})) \int_0^{\omega_\nu(y_{n(i)}, y_{m(i)+1})} \varphi(t) dt - \phi \left(\int_0^{\omega_\nu(y_{n(i)}, y_{m(i)+1})} \varphi(t) dt \right).\end{aligned}$$

Taking limit sup in the above inequality, we obtain

$$\begin{aligned}0 &< \int_0^\epsilon \varphi(t) dt = \limsup_{i \rightarrow \infty} \int_0^{\omega_\nu(y_{n(i)+1}, y_{m(i)+2})} \varphi(t) dt \\ &\leq \limsup_{i \rightarrow \infty} \left[\alpha(\omega_\nu(y_{n(i)}, y_{m(i)+1})) \int_0^{\omega_\nu(y_{n(i)}, y_{m(i)+1})} \varphi(t) dt - \phi \left(\int_0^{\omega_\nu(y_{n(i)}, y_{m(i)+1})} \varphi(t) dt \right) \right] \\ &\leq \limsup_{i \rightarrow \infty} \alpha(\omega_\nu(y_{n(i)}, y_{m(i)+1})) \limsup_{i \rightarrow \infty} \int_0^{\omega_\nu(y_{n(i)}, y_{m(i)+1})} \varphi(t) dt - \limsup_{i \rightarrow \infty} \phi \left(\int_0^{\omega_\nu(y_{n(i)}, y_{m(i)+1})} \varphi(t) dt \right) \\ &\leq \limsup_{r \rightarrow \epsilon} \alpha(r) \int_0^\epsilon \varphi(t) dt \\ &< \int_0^\epsilon \varphi(t) dt,\end{aligned}$$

which is impossible. Hence $\{y_n\}$ is a Cauchy sequence.

Since X_ω is a complete modular metric space, therefore there exists $u \in X_\omega$ such that, $Sx_n \rightarrow u$ and $Tx_n \rightarrow u$ as $n \rightarrow \infty$. Thus we can take $k \in X_\omega$ such that $Tk = u$. Now

$$\int_0^{\omega_\nu(Sx_n, Sk)} \varphi(t) dt \leq \alpha(\omega_\nu(Tx_n, Tk)) \int_0^{\omega_\nu(Tx_n, Tk)} \varphi(t) dt - \phi \left(\int_0^{\omega_\nu(Tx_n, Tk)} \varphi(t) dt \right).$$

Letting $n \rightarrow \infty$, we obtain

$$\int_0^{\omega_\nu(u, Sk)} \varphi(t) dt = 0.$$

By Lemma (2.3), we have

$$\omega_\nu(u, Sk) = 0 \Rightarrow Sk = u.$$

Hence u is the point of coincidence of S and T .

Finally, we show that u is unique. Assume not, then there exists $v \neq u$ and there exists w

such that $S(w) = T(w) = v$.

By (2), we have

$$\begin{aligned} & \int_0^{\omega_\nu(Tu, Tw)} \varphi(t) dt = \int_0^{\omega_\nu(Su, Sw)} \varphi(t) dt \\ & \leq \alpha(\omega_\nu(Tu, Tw)) \int_0^{\omega_\nu(Tu, Tw)} \varphi(t) dt - \phi \left(\int_0^{\omega_\nu(Tu, Tw)} \varphi(t) dt \right). \end{aligned}$$

Thus

$$\int_0^{\omega_\nu(Tu, Tw)} \varphi(t) dt < \int_0^{\omega_\nu(Tu, Tw)} \varphi(t) dt,$$

which is impossible. Hence $u = v$. Then Lemma (2.1) implies that S and T have a unique common fixed point. \square

Theorem 3.2. *Let X_ω be a complete modular metric space. Let $S, T : X_\omega \rightarrow X_\omega$ be self compatible mappings satisfy*

(1)

$$S(X_\omega) \subseteq T(X_\omega). \quad (10)$$

(2)

$$\phi \left(\int_0^{\omega_\nu(Sx, Sy)} \varphi(t) dt \right) \leq \alpha(\omega_\nu(Tx, Ty)) \psi \left(\int_0^{\omega_\nu(Tx, Ty)} \varphi(t) dt \right) + \beta(\omega_\nu(Tx, Ty)) \phi \left(\int_0^{\omega_\nu(Ty, Sy)} \varphi(t) dt \right) \quad (11)$$

$\forall x, y \in X_\omega$, where $(\phi, \varphi, \psi) \in (\Phi_1, \Phi_2, \Phi_3)$, $\psi(l) \leq \phi(l)$, $\forall l \in \mathbb{R}^+$, $\alpha, \beta : \mathbb{R}^+ \rightarrow [0, 1]$ are functions with $\limsup_{s \rightarrow t} \beta(s) < 1$, $\limsup_{s \rightarrow t} \alpha(s) < 1$, $\beta(0) = 0$, $\forall t > 0$.

$$\limsup_{s \rightarrow t} \frac{\alpha(s)}{1 - \beta(s)} < 1, \quad \forall t > 0. \quad (12)$$

Then S and T have a unique common fixed point $u \in X_\omega$.

Proof. Let x_0 be an arbitrary point in X_ω . Since $S(X_\omega) \subseteq T(X_\omega)$, we choose $x_1 \in X_\omega$ such that $Sx_0 = Tx_1$. Continuing this process, we construct a sequence (x_{n+1}) in X_ω such that $y_n = Tx_{n+1} = Sx_n$, for $n = 0, 1, 2, \dots$.

Taking $x = x_n$ and $y = x_{n+1}$ in (11), we have

$$\begin{aligned} & \phi \left(\int_0^{\omega_\nu(Sx_n, Sx_{n+1})} \varphi(t) dt \right) = \phi \left(\int_0^{\omega_\nu(y_n, y_{n+1})} \varphi(t) dt \right) \\ & \leq \alpha(\omega_\nu(y_{n-1}, y_n)) \psi \left(\int_0^{\omega_\nu(y_{n-1}, y_n)} \varphi(t) dt \right) + \beta(\omega_\nu(y_{n-1}, y_n)) \phi \left(\int_0^{\omega_\nu(y_n, y_{n+1})} \varphi(t) dt \right). \end{aligned}$$

Then

$$(1 - \beta(\omega_\nu(y_{n-1}, y_n))) \phi \left(\int_0^{\omega_\nu(y_n, y_{n+1})} \varphi(t) dt \right) \leq \alpha(\omega_\nu(y_{n-1}, y_n)) \psi \left(\int_0^{\omega_\nu(y_{n-1}, y_n)} \varphi(t) dt \right).$$

Hence

$$\phi \left(\int_0^{\omega_\nu(y_n, y_{n+1})} \varphi(t) dt \right) \leq \frac{\alpha(\omega_\nu(y_{n-1}, y_n))}{1 - \beta(\omega_\nu(y_{n-1}, y_n))} \psi \left(\int_0^{\omega_\nu(y_{n-1}, y_n)} \varphi(t) dt \right). \quad (13)$$

Thus

$$\phi \left(\int_0^{\omega_\nu(y_n, y_{n+1})} \varphi(t) dt \right) \leq \phi \left(\int_0^{\omega_\nu(y_{n-1}, y_n)} \varphi(t) dt \right).$$

Since ϕ is non decreasing, we have

$$\int_0^{\omega_\nu(y_n, y_{n+1})} \varphi(t) dt \leq \int_0^{\omega_\nu(y_{n-1}, y_n)} \varphi(t) dt.$$

Using the same method given in Theorem (3.1), we get $\{\omega_\nu(y_n, y_{n+1})\}$ is a non increasing sequence and

$$\lim_{n \rightarrow \infty} \omega_\nu(y_n, y_{n+1}) = 0$$

Now, we will prove that $\{y_n\}$ is a Cauchy sequence. Assume not, then there exists $\epsilon > 0$ and two subsequences $\{y_{m(i)}\}$ and $\{y_{n(i)}\}$ such that for each $i \in \mathbb{N}$, let $n(i)$ be the smallest integer exceeding $m(i)$ such that

$$\omega_\nu(y_{n(i)}, y_{m(i)}) > \epsilon, \quad \omega_\nu(y_{n(i)-1}, y_{m(i)}) \leq \epsilon, \quad \forall i \in \mathbb{N}.$$

Hence by the same method given in Theorem (3.1), we have

$$\begin{aligned} \epsilon &= \lim_{i \rightarrow \infty} \omega_\nu(y_{n(i)}, y_{m(i)}) = \lim_{i \rightarrow \infty} \omega_\nu(y_{n(i)}, y_{m(i)+1}) \\ &= \lim_{i \rightarrow \infty} \omega_\nu(y_{n(i)+1}, y_{m(i)+1}) = \lim_{i \rightarrow \infty} \omega_\nu(y_{m(i)+2}, y_{n(i)+1}). \end{aligned}$$

So in (11) implies that:

$$\begin{aligned} \phi \left(\int_0^{\omega_\nu(y_{n(i)+1}, y_{m(i)+2})} \varphi(t) dt \right) &\leq \alpha(\omega_\nu(y_{n(i)}, y_{m(i)+1})) \psi \left(\int_0^{\omega_\nu(y_{n(i)}, y_{m(i)+1})} \varphi(t) dt \right) \\ &\quad + \beta(\omega_\nu(y_{n(i)}, y_{m(i)+1})) \phi \left(\int_0^{\omega_\nu(y_{m(i)+1}, y_{m(i)+2})} \varphi(t) dt \right). \end{aligned}$$

Taking limit sup in the above inequality, we obtain

$$\begin{aligned} 0 &< \phi \left(\int_0^\epsilon \varphi(t) dt \right) = \phi \left(\limsup_{i \rightarrow \infty} \int_0^{\omega_\nu(y_{n(i)+1}, y_{m(i)+2})} \varphi(t) dt \right) \\ &\leq \limsup_{i \rightarrow \infty} \left[\alpha(\omega_\nu(y_{n(i)}, y_{m(i)+1})) \psi \left(\int_0^{\omega_\nu(y_{n(i)}, y_{m(i)+1})} \varphi(t) dt \right) \right. \\ &\quad \left. + \beta(\omega_\nu(y_{n(i)}, y_{m(i)+1})) \phi \left(\int_0^{\omega_\nu(y_{m(i)+1}, y_{m(i)+2})} \varphi(t) dt \right) \right] \\ &< \phi \left(\int_0^\epsilon \varphi(t) dt \right), \end{aligned}$$

a contradiction. Hence $\{y_n\}$ is a Cauchy sequence.

Since X_ω is a complete modular metric space, then there exists $u \in X_\omega$ such that $Sx_n \rightarrow u$ and $Tx_n \rightarrow u$ as $n \rightarrow \infty$. Thus we can take $k \in X_\omega$ such that $Tk = u$.

By (11), we get

$$\phi \left(\int_0^{\omega_\nu(Sx_n, Sk)} \varphi(t) dt \right) \leq \alpha(\omega_\nu(Tx_n, Tk)) \psi \left(\int_0^{\omega_\nu(Tx_n, Tk)} \varphi(t) dt \right) + \beta(\omega_\nu(Tx_n, Tk)) \phi \left(\int_0^{\omega_\nu(Tk, Sk)} \varphi(t) dt \right).$$

Letting $n \rightarrow \infty$, we obtain

$$\phi \left(\int_0^{\omega_\nu(u, Sk)} \varphi(t) dt \right) = 0.$$

By Lemma (2.3), we have

$$\omega_\nu(u, Sk) = 0 \Rightarrow Sk = u.$$

Hence, u is the point of coincidence of S and T .

Finally, we show that u is unique. Assume not, then there exist $v \neq u$ and w such that $S(w) = T(w) = v$.

By (11), we have

$$\begin{aligned} \phi \left(\int_0^{\omega_\nu(Tu, Tw)} \varphi(t) dt \right) &= \phi \left(\int_0^{\omega_\nu(Su, Sw)} \varphi(t) dt \right) \\ &\leq \alpha(\omega_\nu(Tu, Tw)) \psi \left(\int_0^{\omega_\nu(Tu, Tw)} \varphi(t) dt \right) + \beta(\omega_\nu(Tu, Tw)) \phi \left(\int_0^{\omega_\nu(Tw, Sw)} \varphi(t) dt \right) \end{aligned}$$

$$\leq \phi \left(\int_0^{\omega_\nu(Tu, Sw)} \varphi(t) dt \right).$$

Thus

$$\int_0^{\omega_\nu(Tu, Tw)} \varphi(t) dt < \int_0^{\omega_\nu(Tu, Tw)} \varphi(t) dt,$$

which is impossible, which give $u = v$. Thus Lemma (2.1) implies that S and T have a unique common fixed point. \square

If we put $\phi(x) = \psi(x) = x$ on Theorem (3.2), we get the following corollaries:

Corollary 3.1. *Let X_ω be a complete modular metric space. Let $S, T : X_\omega \rightarrow X_\omega$ be self compatible mappings satisfy*

- (1) $S(X_\omega) \subseteq T(X_\omega)$.
- (2)

$$\int_0^{\omega_\nu(Sx, Sy)} \varphi(t) dt \leq \alpha(\omega_\nu(Tx, Ty)) \int_0^{\omega_\nu(Tx, Ty)} \varphi(t) dt + \beta(\omega_\nu(Tx, Ty)) \int_0^{\omega_\nu(Ty, Sy)} \varphi(t) dt$$

$\forall x, y \in X_\omega$, where $\varphi \in \Phi_2$, $\alpha, \beta : \mathbb{R}^+ \rightarrow [0, 1)$ are functions with $\limsup_{s \rightarrow t} \beta(s) < 1$, $\limsup_{s \rightarrow t} \alpha(s) < 1$, $\beta(0) = 0$, $\forall t > 0$.

$$\limsup_{s \rightarrow t} \frac{\alpha(s)}{1 - \beta(s)} < 1, \quad \forall t > 0.$$

Then S and T have a unique common fixed point $u \in X_\omega$.

Corollary 3.2. *Let X_ω be a complete modular metric space. Let $S, T : X_\omega \rightarrow X_\omega$ be self compatible mappings satisfy*

- (1) $S(X_\omega) \subseteq T(X_\omega)$,
- (2)

$$\int_0^{\omega_\nu(Sx, Sy)} \varphi(t) dt \leq \lambda(\omega_\nu(Tx, Ty)) \left(\int_0^{\omega_\nu(Tx, y)} \varphi(t) dt + \int_0^{\omega_\nu(Ty, Sy)} \varphi(t) dt \right)$$

$\forall x, y \in X_\omega$, where $\varphi \in \Phi_2$, $\lambda : \mathbb{R}^+ \rightarrow [0, \frac{1}{2})$ is a function with

$$\limsup_{s \rightarrow t} \frac{\lambda(s)}{1 - \lambda(s)} < 1, \quad \forall t > 0.$$

Then S and T have a unique common fixed point $u \in X_\omega$.

In this example, we illustrate the equality for theorem (3.1).

Example 3.1. *Let $X_\omega = \mathbb{R}^+$ and $\omega_\nu(x, y) = \frac{|x-y|}{\nu}$. Let $S, T : \mathbb{R}^+ \rightarrow \mathbb{R}^+$ be two mappings, $\alpha : \mathbb{R}^+ \rightarrow [0, 1)$ and $(\phi, \varphi) \in (\Phi_1, \Phi_2)$ defined by $S(x) = \frac{x}{1+x}$, $T(x) = \frac{2x}{1+x}$, $\forall x \in \mathbb{R}^+$, $\alpha(t) = \frac{1}{2}$, $\phi(t) = \frac{t}{4}$, and $\varphi(t) = 2t$, $\forall t \in \mathbb{R}^+$.*

By definition of T and S we can easily check that is T and S are self compatible mappings and $S(X_\omega) \subseteq T(X_\omega)$.

Now, we have:

$$\begin{aligned} \int_0^{\omega_\nu(Sx, Sy)} \varphi(t) dt &= \int_0^{\frac{1}{\nu} \left| \frac{x}{1+x} - \frac{y}{1+y} \right|} 2t dt \\ &= \frac{1}{\nu^2} \left(\frac{x-y}{(1+x)(1+y)} \right)^2 \\ &= \frac{2}{\nu^2} \frac{(x-y)^2}{(1+x)^2(1+y)^2} - \frac{1}{\nu^2} \frac{(x-y)^2}{(1+x)^2(1+y)^2} \end{aligned}$$

$$\begin{aligned}
&= \frac{1}{2} \times \frac{4}{\nu^2} \frac{(x-y)^2}{(1+x)^2(1+y)^2} - \frac{1}{4} \times \frac{4}{\nu^2} \frac{(x-y)^2}{(1+x)^2(1+y)^2} \\
&= \alpha(\omega_\nu(Tx, Ty)) \int_0^{\omega_\nu(Tx, Ty)} \varphi(t) dt - \phi \left(\int_0^{\omega_\nu(Tx, Ty)} \varphi(t) dt \right).
\end{aligned}$$

Then S and T have a unique common fixed point $0 \in X_\omega$.

Example 3.2. Let $X_\omega = [1, 7]$ be a modular metric space with $\omega_\nu(x, y) = \frac{|x-y|}{\nu}$.

Let $S, T : [1, 7] \rightarrow [1, 7]$ be two mappings, $(\phi, \varphi, \psi) \in (\Phi_1, \Phi_2, \Phi_3)$, and $\alpha, \beta : \mathbb{R}^+ \rightarrow [0, 1]$, define by

$$\begin{aligned}
S(x) &= \begin{cases} 1 & \text{for } x \in [1, 4) \\ \frac{x}{4} & \text{for } x \in [4, 7] \end{cases}, \\
T(x) &= \begin{cases} 1 & \text{for } x \in [1, 3) \\ \frac{x}{3} & \text{for } x \in [3, 7] \end{cases},
\end{aligned}$$

and $\varphi(t) = 2t$, $\phi(t) = \psi(t) = t$, $\alpha(t) = \frac{9}{16}$ and

$$\beta(t) = \begin{cases} 0 & \text{for } t = 0 \\ \frac{6}{16} & \text{for } t \neq 0 \end{cases}.$$

By definition of T and S we can easily check that is T and S are self compatible mappings and we have:

$S(X_\omega) = \{1\} \cup [1, \frac{7}{4}] = [1, \frac{7}{4}] \subseteq [1, \frac{7}{3}] = T(X_\omega)$. So we obtain $S(X_\omega) \subseteq T(X_\omega)$. Also we have $\psi(l) \leq \phi(l)$, $\forall l \in \mathbb{R}^+$, $\limsup_{s \rightarrow t} \frac{\alpha(s)}{1-\beta(s)} < 1$, $\forall t > 0$.

To verify (11), we divided the example to the different case as follow:

Case1: $x, y \in [4, 7]$ and $x \leq y$. Note that

$$\begin{aligned}
\int_0^{\omega_\nu(Sx, Sy)} \varphi(t) dt &= \int_0^{\frac{1}{\nu}|\frac{y}{4} - \frac{x}{4}|} 2t dt = \frac{1}{(4\nu)^2} (y-x)^2; \\
\int_0^{\omega_\nu(Tx, Ty)} \varphi(t) dt &= \int_0^{\frac{1}{\nu}|\frac{y}{3} - \frac{x}{3}|} 2t dt = \frac{1}{(3\nu)^2} (y-x)^2; \\
\int_0^{\omega_\nu(Ty, Sy)} \varphi(t) dt &= \int_0^{\frac{1}{\nu}|\frac{y}{3} - \frac{y}{4}|} 2t dt = \left(\frac{1}{12\nu}y\right)^2.
\end{aligned}$$

So, we have

$$\begin{aligned}
\int_0^{\omega_\nu(Sx, Sy)} \varphi(t) dt &= \frac{1}{(4\nu)^2} (y-x)^2 \leq \frac{150}{256} \times \frac{1}{(3\nu)^2} (y-x)^2 \\
&= \frac{9 \times 16 + 6}{16^2} \times \frac{1}{(3\nu)^2} (y-x)^2 \\
&= \frac{9}{16} \times \frac{1}{(3\nu)^2} (y-x)^2 + \frac{6}{16} \times \frac{1}{(12\nu)^2} (y-x)^2 \\
&\leq \frac{9}{16} \times \frac{1}{(3\nu)^2} (y-x)^2 + \frac{6}{16} \times \left(\frac{1}{12\nu}y\right)^2 \\
&= \alpha(\omega_\nu(Tx, Ty))\psi \left(\int_0^{\omega_\nu(Tx, Ty)} \varphi(t) dt \right) + \beta(\omega_\nu(Tx, Ty))\phi \left(\int_0^{\omega_\nu(Ty, Sy)} \varphi(t) dt \right).
\end{aligned}$$

Case2: $x, y \in [1, 3]$. Notice that $T(x) = S(x) = T(y) = S(y) = 1$. It follows that

$$\begin{aligned}
&\int_0^{\omega_\nu(Sx, Sy)} \varphi(t) dt = 0 \\
&\leq \alpha(\omega_\nu(Tx, Ty))\psi \left(\int_0^{\omega_\nu(Tx, Ty)} \varphi(t) dt \right) + \beta(\omega_\nu(Tx, Ty))\phi \left(\int_0^{\omega_\nu(Ty, Sy)} \varphi(t) dt \right).
\end{aligned}$$

Case3: $x, y \in [3, 4]$. Notice that $S(x) = S(y) = 1$, $T(x) = \frac{x}{3}$ and $T(y) = \frac{y}{3}$. It follows that

$$\begin{aligned} & \int_0^{\omega_\nu(Sx, Sy)} \varphi(t) dt = 0 \\ & \leq \alpha(\omega_\nu(Tx, Ty))\psi\left(\int_0^{\omega_\nu(Tx, Ty)} \varphi(t) dt\right) + \beta(\omega_\nu(Tx, Ty))\phi\left(\int_0^{\omega_\nu(Ty, Sy)} \varphi(t) dt\right). \end{aligned}$$

Case4: $x \in [1, 3]$ and $y \in [4, 7]$. Note that

$$\begin{aligned} \int_0^{\omega_\nu(Sx, Sy)} \varphi(t) dt &= \int_0^{\frac{1}{\nu}|\frac{y}{4}-1|} 2tdt = \frac{1}{(4\nu)^2}(y-4)^2; \\ \int_0^{\omega_\nu(Tx, Ty)} \varphi(t) dt &= \int_0^{\frac{1}{\nu}|\frac{y}{3}-1|} 2tdt = \frac{1}{(3\nu)^2}(y-3)^2; \\ \int_0^{\omega_\nu(Ty, Sy)} \varphi(t) dt &= \int_0^{\frac{1}{\nu}|\frac{y}{3}-\frac{y}{4}|} 2tdt = \left(\frac{1}{12\nu}y\right)^2. \end{aligned}$$

So, we have

$$\begin{aligned} & \int_0^{\omega_\nu(Sx, Sy)} \varphi(t) dt = \frac{1}{(4\nu)^2}(y-4)^2 \leq \frac{1}{(4\nu)^2}(y-3)^2 \\ & \leq \frac{150}{256} \times \frac{1}{(3\nu)^2}(y-3)^2 \\ & = \frac{9 \times 16 + 6}{16^2} \times \frac{1}{(3\nu)^2}(y-3)^2 \\ & = \frac{9}{16} \times \frac{1}{(3\nu)^2}(y-3)^2 + \frac{6}{16} \times \frac{1}{(12\nu)^2}(y-3)^2 \\ & \leq \frac{9}{16} \times \frac{1}{(3\nu)^2}(y-3)^2 + \frac{6}{16} \times \left(\frac{1}{12\nu}y\right)^2 \\ & = \alpha(\omega_\nu(Tx, Ty))\psi\left(\int_0^{\omega_\nu(Tx, Ty)} \varphi(t) dt\right) + \beta(\omega_\nu(Tx, Ty))\phi\left(\int_0^{\omega_\nu(Ty, Sy)} \varphi(t) dt\right). \end{aligned}$$

Case5: $x \in [3, 4]$ and $y \in [4, 7]$. Note that

$$\begin{aligned} & \int_0^{\omega_\nu(Sx, Sy)} \varphi(t) dt = \int_0^{\frac{1}{\nu}|\frac{y}{4}-1|} 2tdt = \frac{1}{(4\nu)^2}(y-4)^2; \\ & \int_0^{\omega_\nu(Tx, Ty)} \varphi(t) dt = \int_0^{\frac{1}{\nu}|\frac{y}{3}-\frac{x}{3}|} 2tdt = \frac{1}{(3\nu)^2}(y-x)^2; \\ & \int_0^{\omega_\nu(Ty, Sy)} \varphi(t) dt = \int_0^{\frac{1}{\nu}|\frac{y}{3}-\frac{y}{4}|} 2tdt = \left(\frac{1}{12\nu}y\right)^2. \end{aligned}$$

So, we have

$$\begin{aligned} & \int_0^{\omega_\nu(Sx, Sy)} \varphi(t) dt = \frac{1}{(4\nu)^2}(y-4)^2 \leq \frac{1}{(4\nu)^2}(y-x)^2 \\ & \leq \frac{150}{256} \times \frac{1}{(3\nu)^2}(y-x)^2 \\ & = \frac{9 \times 16 + 6}{16^2} \times \frac{1}{(3\nu)^2}(y-x)^2 \\ & = \frac{9}{16} \times \frac{1}{(3\nu)^2}(y-x)^2 + \frac{6}{16} \times \frac{1}{(12\nu)^2}(y-x)^2 \\ & \leq \frac{9}{16} \times \frac{1}{(3\nu)^2}(y-x)^2 + \frac{6}{16} \times \left(\frac{1}{12\nu}y\right)^2 \end{aligned}$$

$$= \alpha(\omega_\nu(Tx, Ty))\psi\left(\int_0^{\omega_\nu(Tx, Ty)} \varphi(t)dt\right) + \beta(\omega_\nu(Tx, Ty))\phi\left(\int_0^{\omega_\nu(Ty, Sy)} \varphi(t)dt\right).$$

For $y \leq x$ we use the same method.

Then S and T have a unique common fixed point $1 \in X_\omega$.

Conclusion: In this paper, we formulated and proved many common fixed point results for mappings satisfying contractive conditions of integral forms over modular metric spaces. Some examples have been constructed to show the validity of our results.

Acknowledgement: The authors would like to thank the reviewers and the editor for their valuable comments and suggestions that helped in improving this article.

REFERENCES

- [1] *Abdou. A. A and Khamsi. M. A*, On the fixed points of nonexpansive mappings in modular metric spaces. *Fixed point theory and Appl.*, 2013:229 (2013), 1-13.
- [2] *Ali. M. U, Kamran. T and Postolache. M*, Fixed point theorems for multivalued G -contractions in Hausdorff b -Gauge spaces, *J. Nonlinear Sci. Appl.* 8 (2015), 847-855.
- [3] *Ali. M. U, Kamran. T and Postolache. M*, Solution of Volterra integral inclusion in b -metric spaces via new fixed point theorem, *Nonlinear Analysis: Modelling and Control*, Vol. 22, No. 1, 17-30, ISSN 1392-5113, <http://dx.doi.org/10.15388/NA.2017.1.2>.
- [4] *Aydi. H, Postolache. M and Shatanawi. W*, Coupled fixed point results for (ψ, ϕ) -weakly contractive mappings in ordered G -metric spaces, *Comput. Math. with Appl.*, 63(2012), 298-309.
- [5] *Aydi. H, Karapinar. E and Postolache. M*, Tripled coincidence point theorems for weak ϕ -contractions in partially ordered metric spaces, *Fixed Point Theory and Applications* 2012, 2012:44.
- [6] *Banach. S*, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, *Fundam. Math.* 3, 133-181 (1922)
- [7] *Branciari. A*, A fixed point theorem for mappings satisfying a general contractive condition of integral type, *Int. J. Math. Math. Sci.* 29(9) (2002), 531-536.
- [8] *Chaipunya. P, Mongkolkeha. C, Sintunavarat. W and Kumam. P*, Fixed Point Theorems for Multi-valued Mappings in Modular Metric Spaces, *Abstract and Applied Analysis* 2012 (2012), Article ID 503504, 14 pages doi:10.1155/2012/503504.
- [9] *Chandok. S and Postolache. M*, Fixed point theorem for weakly Chatterjea-type cyclic contractions, *Fixed Point Theory and Applications* 2013 2013:28.
- [10] *Chistyakov. V*, Modular metric spaces, I: Basic concepts, *Nonlinear Analysis* 72(2010)1-14, doi:10.1016/j.na.2009.04.057.
- [11] *Chistyakov. V*, Modular metric spaces, II: Application to superposition operators, *Nonlinear Analysis* 72(2010)15-30, doi:10.1016/j.na.2009.04.018.
- [12] *Chistyakov. V*, A fixed point theorem for contractions in modular metric spaces, arxiv (2011).
- [13] *Cho. Y, Saadati. R and Sadeghi. G*, Quasi-contraction mapping in modular metric spaces, *Journal of Applied Mathematics* 2012 (2012), Article ID 907951, 5 pages doi:10.1155/2012/907951.
- [14] *Dehghan. H, Gordji. M. E and Ebadian. A*, Comments on fixed point theorems for contraction mappings in modular metric spaces, *Fixed Point Theory*. (2012), 3 pages
- [15] *Ege. M. E and Alaca. C*, Fixed point results and an application to homotopy in modular metric space, *J. Nonlinear Sci. Appl.* 8(2015), 900-908.
- [16] *Gupta. V, Mani. N and Gulati. N*, A common fixed point theorem satisfying contractive condition of integral type, *IJREAS*, Vol 2, Issue 2 (2012), 2249-3905.

[17] Hussain *et al*, Weak contractive integral inequalities and fixed points in modular metric spaces, *J. Ineq. Appl.*, 2016:89 doi: 10.1186/s13660-016-1032-1 (2016), 1-20.

[18] Jungck. G, Compatible mappings and common fixed points, *Int. J. Math. Sci.*, 9, doi:10.1135/s0161171286000935. (1986), 771-779.

[19] Jungck. G, Common fixed points for noncontinuous nonself maps on non-metric spaces, *Far East J. Math. Sci.* 4(1996), 19-215.

[20] Jungck. G and Rhoades. B.E, Fixed point for set valued functions without continuity, *Indian J. Pure Appl. Math.* 29 (3) (1998) 227—238

[21] Kilinc. E and Alaca. C, A fixed point theorem in modular metric space. *Adv, Fixed Point Theory.* 4. (2014), 199-206.

[22] Liu. Z, Li. X, Kang. S. M and Cho. S. Y, Fixed point theorems for mappings satisfying contractive conditions of integral type and applications, *Fixed point theory and Appl.*, 2011, (2011), 1-18.

[23] Liu *et al*, Fixed point theorem for mappings satisfying contractive condition of integral type and applications, *Fixed Point Theory and Appl.*, 2013, (2013), 1-17.

[24] Miandaragh. M. A, Postolache. M and Rezapour. Sh, Some approximate fixed point results for generalized α -contractive mappings, *U.P.B. Sci. Bull., Series A*, Vol. 75, Iss. 2, 2013, ISSN 1223-7027

[25] Mongkolkeha. C, Sintunavarat. W and Kumam. P, Fixed point theorems for contraction mappings in modular metric spaces, *Fixed Point Theory and Applications*, 2011, 2011:93 doi:10.1186/1687-1812-2011-93.

[26] Nazama. M, Arshad. M and Postolache. M, Coincidence and common fixed point theorems for four mappings satisfying (α_s, F) -contraction, *Nonlinear Analysis: Modelling and Control*, 2018, Vol. 23, No. 5, 664–690 <https://doi.org/10.15388/NA.2018.5.3>, ISSN 1392-5113.

[27] Nazem. M, Arshad. M and Postolache. M, On common fixed point theorems in dualistic metric spaces, *Journal of Mathematical Analysis*, ISSN: 2217-3412, URL: <http://www.ilirias.com>.

[28] Shatanawi. W and Postolache. M, Common fixed point results for mappings under nonlinear contraction of cyclic form in ordered metric spaces, *Fixed Point Theory Appl.*, 2013 (2013), Article Number: 60, doi: 10.1186/1687-1812-2013-60.

[29] Shatanawi. W, On w-compatible mappings and common coupled coincidence point in cone metric spaces, *Appl. Math. Lett.*, 25 (2012), 925-931.

[30] Shatanawi. W, Chauhan. S, Postolache. M, Abbas. M and Radenovic. S, Common fixed points for contractive mappings of integral type in G -metric space, *J. Adv. Math. Stud.* Vol. 6(2013), No. 1, 53-72 <http://journal.fairpartners.ro>.

[31] Shatanawi. W and Postolache. M, Coincidence and fixed point results for generalized weak contractions in the sense of Berinde on partial metric spaces, *Fixed Point Theory Appl.*, 2013 (2013), Article Number: 54, <https://doi.org/10.1186/1687-1812-2013-54>

[32] Shatanawi. W, Postolache. M, Ansari. A. H and Kassab. W, Common fixed points of dominating and weak annihilators in ordered metric spaces via C -class functions, *Journal of Mathematical Analysis*, ISSN: 2217-3412, Vol. 8, Issue 3 (2017), Pages 54-68.

[33] Rahimpoor. H, Ebadian. A, Eshaghi Gordji. M and Zohri. A , fixed point theory for generalized quasi-contraction maps in modular metric spaces, *Journal of Mathematics and Computer Science*. 10(2014)54-60.

[34] Rahimpoor. H, Ebadian. A, Eshaghi Gordji. M and Zohri. A, Some fixed point theorems on modular metric spaces, *Acta Universitatis Apulensis* 37(2014)161-170.

[35] Rahimpoor. H, Ebadian. A, Gordji. M. E and Zohri. A , Common fixed point theorems in modular metric spaces. *Int. J. of Pure and Appl. Math.*, Vol.99, (2015), 373-383.