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OPTIMIZATION OF SCHEDULIG PROCESS IN GRID
ENVIRONMENTS

Florin POP?, Valentin CRISTEA?

Acest articol prezinta metodele de optimizare a planificarii in Grid. Sunt
descrise modelele de planificare si algoritmi de planificare folositi in medii Grid.
Este propusa, de asemenea, o taxonomie a algoritmilor de planificare, bazata pe
nivele functionale, care ofera o referinta pentru proiectarea unei solutii complete de
mai multe crierii. Analiza critica a algoritmilor de planificare evidentiaza aspectele
importante nerezolvate in acest domeniu §i constituie suportul metodelor de
optimizare. Comparatia instrumentelor de planificare existente in Grid evidentiaza
evolutia  sistemelor de planificare. Rezultatele experimentale prezentate
demonstreaza o imbundatdtire pentru echilibrarea incarcarii §i pentru timpul de
executie in cazul algoritmului genetic folosit pentru optimizare.

This article presents of the optimization of Grid scheduling problem. The
scheduling models of Grid scheduling algorithms are presented. The paper also
proposes a taxonomy of scheduling algorithms, based on functional levels, which
offers a reference for designing a complete solution for Grid scheduling. The
analyses of possibilities for multi-criteria optimization are presented. A critical
analysis of scheduling algorithms describes the open issues in this field and
represents the support of optimization methods design. The comparison of existing
Grid scheduling tools highlights the state of the art for scheduling in Grids. We
present the evaluation of some scheduling mechanism. The experimental results
demonstrate a very good improvement in load-balancing and execution time for
scheduling algorithm used for optimization.

Keywords: Grid Scheduling, Multi-criteria optimization, Genetic Algorithms
1. Introduction

Grid computing became a very important model for resource sharing in
Virtual Organizations (VOs). Grid systems allow the use of temporarily available
resources, the execution of large tasks that require high computing power and
large memory volumes. On the other side, resource sharing in grid systems
(generally, in very large distributed systems) is more complex and asks for more
complicated management policies and techniques. An important management
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function is task scheduling. In the case of Grid systems, task scheduling has two
objectives. One objective targets the efficient use of resources, similar with
schedulers found in traditional operating systems. The second objective, not less
important, is related to the VO concept and aims to respond to the requirements
stated by the users in a VO concerning the performance of tasks execution, such
as the response time. This is why the scheduling function has been distributed to
two components: one which is closer to the resources (the local scheduler), and a
second (the meta-scheduler) closer to the application. Scheduling in distributed
systems has been significantly improved due to innovations proposed in Grid
systems and VO management. The scheduling algorithms for large scale
distributed systems (LSDS), such as the Grid systems, are subject to recent
research. Also, Grid system scheduling tools evolved according to users'
requirements and system constraints to cope with important characteristics of
LSDS like heterogeneity, dynamicity, process distribution, and data distribution.

The scheduling in Grid systems is very complicated. The resource
heterogeneity, the size and number of tasks, the variety of policies, and the high
number of constraints are some of the main characteristics that contribute to this
complexity. The necessity of scheduling in Grid is sustained by the increasing of
number of users and applications. The design of scheduling algorithms for a
heterogeneous computing system interconnected with an arbitrary communication
network is one of the actual concerns in distributed system research.

2. Related Work

In this section it is presented a brief description of some Grid scheduling
systems, and then a comparison of existing (and presented) grid scheduling tools
is realized.

Condor is a specialized resource management system (RMS) developed at
the University of Wisconsin-Madison for compute-intensive tasks. Like other full
featured batch systems, Condor provides a task queuing mechanism, scheduling
policy, priority scheme, resource monitoring, and resource management. Users
submit their serial or parallel tasks to Condor, Condor places them into a queue,
chooses when and where to run the tasks based upon a policy, carefully monitors
their progress, and ultimately informs the user upon completion. Condor can be
used to manage a cluster of dedicated compute nodes. In addition, unique
mechanisms enable Condor to effectively harness wasted CPU power from
otherwise idle desktop workstations.

Condor-G [20] represents the link between two technologies: Condor and
the Globus toolkit [9]. With Condor-G it is possible to use Condor inside a Grid
environment. Condor-G can be used as a reliable submission and task
management service for one or more sites, Condor as the fabric management
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service and finally the Globus toolkit can be used as the bridge between them [4].
Another service of Condor is the Directed Acyclic Graph Manager (DAGMan) for
executing multiple tasks with dependencies described as DAGs. Each task is a
node in the graph and the edges identify their dependencies. DAGMan does not
support automatic intermediate data movement, so users have to specify data
movement transfer through pre-processing and post-processing commands
associated with processing task. The DAGMan meta-scheduler processes the
DAG dynamically, by sending to the condor scheduler the tasks as soon as their
dependencies are satisfied and they become ready to execute.

Another resource management project is PBS, which is available as open
source (TORQUE version) and provides control over batch tasks and distributed
compute nodes. It is a community effort based on the original PBS project and,
with more than 1,200 patches, has incorporated significant advances in the areas
of scalability, fault tolerance, and feature extensions contributed by NCSA, OSC,
USC, the U.S. Dept of Energy, Sandia, PNNL, U of Buffalo, TeraGrid, and many
other leading edge HPC organizations. Torque is a centralized system, in which a
controller is responsible for the system-wide decision-making and for estimating
the state of the system. The controller mediates access to distributed resources by
discovering suitable data sources for a given analysis scenario, suitable
computational resources, optimally mapping analysis tasks to resources,
deploying and monitoring task execution on selected resources, accessing data
from local or remote data source during task execution and collating and
presenting results [12].

In Moab, a cluster management solution that integrates scheduling,
managing, monitoring and reporting of cluster workloads, we find a simplified
and unified management across one or multiple hardware, operating system,
storage, network, license and resource manager environments. "lts task-oriented
graphical management and flexible policy capabilities provide an intelligent
management layer that guarantees service levels, speeds task processing and
easily accommodates additional resources”. The precursor to Moab is Maui, "an
optimized, configurable tool capable of supporting an array of scheduling policies,
dynamic priorities, extensive reservations, and fairs-hare capabilities”. Features
like virtual private clusters, basic trigger support, graphical administration tools,
and a Web-based user portal are present both in Moab and Maui.

Grids offer a dramatic increase in the number of available processing and
storing resources that can be delivered to applications. However, efficient task
submission and management continue being far from accessible to ordinary
scientists and engineers due to their dynamic and complex nature.

The aim of the GridWay project is to do the research and to develop the
technology required to automatically perform all the submission steps and also to
provide the runtime mechanisms needed for dynamically adapting the application
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execution. The GridWay framework has been developed to reduce the gap
between Grid middleware and application developers. The GridWay framework is
a component for meta-scheduling in the Grid Ecosystem intended for end users
and grid application developers. GridWay is a workload manager that performs
task execution management and resource brokering on a grid consisting of distinct
computing platforms managed by Globus services. GridWay allows unattended,
reliable, and efficient execution of single, array, or complex tasks on
heterogeneous and dynamic grids. GridWay performs all the task scheduling and
submission steps transparently to the end user and adapts task execution to
changing grid conditions by providing fault recovery mechanisms, dynamic
scheduling, migration on-request and opportunistic migration. GridWay on
Globus provides decoupling between applications and the underlying local
management systems [13].

AppLeS (Application Level Schedulers) is a hierarchical scheduler, using
predictive heuristics, online rescheduling, and fixed application oriented policy. It
has an agent based methodology for application level scheduling. AppLeS agents
are based on the application level scheduling paradigm, i.e. everything about the
system is evaluated in terms of its impact on the application. Each application has
its own AppLeS and each AppLeS combines both static and dynamic information
to determine a customized application specific schedule and implement that
schedule on the distributed resources [11]. The goal of the AppLeS project is to
develop software to assist and enhance the scheduling activities of the application
developer on a distributed meta-computing system.

3. General Characteristics of Grid Scheduling

Due to Grid systems' characteristics, the main issue for Grid scheduling is
to develop a Meta-Scheduling architecture that encompasses heterogeneous and
dynamic clusters. This architecture is a decentralized one and represents the
solution for the scheduling problem at a Global Grid level. At this level, the QoS
(quality of service) constraint is very important. The scheduling methods for
decentralized heterogeneous environment are based on heuristics that consider
complex applications. The tasks that compose these applications can have
different dimensions and can be based on diverse data and control patterns.

The optimization of scheduling process for Grid systems tries to provide
better solutions for the selection and allocation of resources to current tasks. The
scheduling optimization is very important because the scheduling is a main
building block for making Grids more available to user communities. The
optimization methods for Grid scheduling are the main subject of this paper. The
scheduling problem is NP-Complete. Consequently, approximation algorithms are
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considered, which are expected to quickly offer a solution, even if it is only near-
to-optimal.

QoS is a requirement for many Grid applications. QoS might refer to the
response time, the necessary memory, etc. It might happen that these requirements
are satisfied only by specific resources, so that they only these resources can be
assigned for that application. Situations might become more complex when there
are more tasks having QoS requirements, and several resources exist which satisfy
them. The resource allocation under QoS constrains is another subject for the
optimization process.

Scheduling in Grid computing must also take into account additional
issues such as the resource owners' requirements, the need to continuously adapt
to changes in the availability of resources, and so on. In these cases, a number of
challenging issues need to be addressed: maximization of system throughput and
user satisfaction, the sites' autonomy (the Grid is composed of resources owned by
different users, which retain control over them), and scalability.

The fault tolerance is also important in Grid. The fault tolerant solutions
for Grid Scheduling are based on error recovery and re-scheduling. Two of the
problems related to re-scheduling are the high cost and the lack of coping with
dependent tasks. For computational intensive tasks, re-scheduling the original
schedule can improve the performance. But, re-scheduling is usually costly,
especially in Directed Acyclic Graphs (DAGs) where there are extra data
dependencies among tasks. Current research on DAG rescheduling leaves a wide
open area on optimization for the scheduling algorithms.

Performance prediction is also used in optimizing the scheduling
algorithms. Existing scheduling algorithms only consider an instant value of the
performance at the scheduling time, and assume this value remains constant
during the task execution. A more accurate model should consider that
performance changes during the execution of the application.

In many cases, the data must be transported to the place where tasks will
be executed. Consequently, scheduling algorithms should consider not only the
task execution time, but also the data transfer time for finding a more realistic
mapping of tasks [6]. Only a handful of current research efforts consider the
simultaneous optimization of computation and data transfer scheduling.

According with all these presented aspects, many research activities are
being conducted to develop a good scheduling approach for distributed nodes. The
activities vary widely in a number of characteristics, e.g. support for
heterogeneous resources, objective function(s), scalability, co-scheduling
methods, and assumptions about system characteristics.

In compliance with the new techniques in application development, it is
more natural to consider schedulers closer to Grid applications. They are
responsible for the management of tasks, such as allocating resources, managing
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the tasks for parallel execution, managing of data transfers, and correlating the
events. To provide their functions, a scheduler needs information coming from
monitoring services available in the platform.

4. Multi-Criteria Optimization for Grid Scheduling

A hierarchical taxonomy for scheduling algorithms in parallel and
distributed systems was made for the first time by Casavant in [5] (see Fig. 1).
Scheduling algorithms in Grid fall into a sub-category of this taxonomy. This
general taxonomy described scheduling models. A part of these models was
described in the previous section.

Basically, we have local and global scheduling. A Local scheduler
considers a single CPU (a single machine). Global scheduling is dedicated to
multiple resources. Scheduling for distributed systems such as the Grid is part of
the global scheduling class.

( Scheduling Algorithms in Distributed Systems )
A \J
Global Local
Y
Y Y
Dynamic Static
Y Y A4 Y
Physically Physically Non- Optimal Sub-optimal
Distributed Distributed
Y Y
y Y Approximate Heuristic
A\ Y Y Y
Cooperative Non-Cooperative Optimal Sub-Optimal
Y Y Y Y
Y v Y v Approximative Heuristic
Optimal Sub-Optimal

Fig. 1. Taxonomy of scheduling algorithms (a hierarchical approach)

For global scheduling there are two way to allocate the resources for tasks:
static or dynamic. In the static scheduling model, every task is assigned only once
to a resource. A realistic prediction of the cost of the computation can be made
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before to the actual execution. The static model adopts a "global view" of tasks
and computational costs. One of the major benefits is the ease of implementation.
On the other hand, static strategies cannot be applied in a scenario where tasks
appear a-periodically, and the environment undergoes various state changes. Cost
estimate does not adapt to situations in which one of the nodes selected to perform
a computation fails, becomes isolated from the system due to network failures, is
so heavily loaded with tasks that its response time becomes longer than expected,
or a new computing node enters the system. These changes are possible in Grids
[3]. In dynamic scheduling techniques tasks are allocated dynamically at their
arrival. Dynamic scheduling is usually applied when it is difficult to estimate the
cost of applications, or tasks are coming online dynamically (in this case, it is also
called online scheduling). Dynamic task scheduling has two major components:
one for system state estimation (other than cost estimation in static scheduling)
and one for decision making. System state estimation involves collecting state
information through Grid monitoring and constructing an estimate. On this basis,
decisions are made to assign tasks to selected resources. Since the cost for an
assignment is not always available, a natural way to keep the whole system
healthy is by balancing the loads of all resources [7].

The dynamic scheduling could be done in a physically distributed
environment (grids) or in a physically non-distributed system (cluster). Sabin et al
[17] propose a centralized scheduler which uses backfill to schedule parallel tasks
in multiple heterogeneous sites. Arora et al [2] present a completely decentralized,
dynamic and sender-initiated scheduling and load balancing algorithm for the
Grid environment.

In distributed scheduling (global) the involved nodes could working
cooperatively or independently (non-cooperatively). In the non-cooperative
scheduling, individual schedulers act alone as autonomous entities and arrive at
decisions regarding their own optimum objects independent of the effects of the
decision on the rest of system. In cooperative scheduling each Grid scheduler has
the responsibility to carry out its own portion of the scheduling task [18]. If all
information about the state of resources and the tasks is known, an optimal
assignment could, considering an objective function. But due to the NP-Complete
nature of scheduling algorithms sub-optimal algorithms for scheduling represent
good solutions.

The sub-optimal algorithm can be further divided into the following two
general categories: approximate and heuristic. The approximate algorithms use
formal computational models and are satisfied when a solution that is sufficiently
"good" is found. If a metric is available for evaluating a solution, this technique
can be used to decrease the time taken to find an acceptable schedule. The
heuristic algorithms make the most realistic assumptions about a priori knowledge
concerning process and system loading characteristics. The heuristic algorithms
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are the solutions to the scheduling problem which cannot give optimal answers
but require amount of cost and other system resources to perform their function.

The scheduling process, in sub-optimal case, could be conducted by
objective functions. Objective functions can be classified into two categories:
application-centric and resource-centric.

Application-centric  function in scheduling tries to optimize the
performance of each individual application [19]. Most of current Grid
applications' concerns are about time, for example the makespan, which is the
time spent from the beginning of the first task in a task to the end of the last task
of the task. On the other hand, the economic cost that an application needs to pay
for resources utilization becomes a concern of some of Grid users [4].

Resource-centric function in scheduling tries to optimize the performance
of the resources. They are usually related to resource utilization, for example,
throughput (ability of a resource to process a certain number of tasks), utilization
(which the percentage of time a resource) [21]. As economic models are
introduced into Grid computing, economic profit (which is the economic benefits
resource providers can get by attracting Grid users to submit applications to their
resources) also comes under the purview of resource management policies.

Adaptive Scheduling is used to make scheduling decisions change
dynamically according to the previous, current and/or future resource status [5]. In
Grid, adaptive scheduling could be done considering tree criteria: the
heterogeneity of candidate resources, the dynamism of resource performance, and
the diversity of applications. Relations between tasks divide scheduling
algorithms in two classes: independent task scheduling and DAG scheduling
(workflow scheduling). Dependency means there are precedence orders existing
in tasks, that is, a task cannot start until all its parent are done.

Some applications involve parallel tasks that access and generate large
data sets. Data sets in this scale require specialized storage and management
systems and data Grid projects are carried out to harness geographically
distributed resources for such data-intensive problems by providing remote data
set storage, access management, replication services, and data transfer protocols
[1]. Data Scheduling could be done without replication or with replication,
ensuring in this case the fault tolerance. If replication is considered, there are
possible two cases: decoupled computation [15] and data scheduling or integrated
computation and data scheduling [16].

The Grid is a large number of autonomous resources, which could be used
concurrently, changing dynamically, interacting with different VOs (virtual
organizations). In human society and in nature there are systems having the
similar characteristics. The Grid Economy approaches and other heuristics
inspired by natural phenomena were studied in recent years to address the
challenges of Grid computing.



Optimization of scheduling process in Grid environments 43

Considering scheduling strategies treating performance dynamism, some
of the schedulers provide a rescheduling mechanism, which determines when the
current schedule is re-examined and the task executions reordered. The
rescheduling taxonomy divides this mechanism in two conceptual mechanisms:
periodic/batch and event-driven on line. Periodic or batch mechanism approaches
group resource request and system events which are then processed at intervals
that may me periodic triggered by certain system events. The other mechanism
performs the rescheduling as soon the system receives the resource request. The
scheduling policy can be fixed or extensible. The fixed policies are system
oriented or application oriented. The extensible policies are ad-hoc or structured.
In a fixed approach, the policy implemented by the resource manager is
predetermined. Extensible scheduling policy schemes allow external entities the
ability to change the scheduling policy [8].

5. Critical Analysis of Near-Optimal Scheduling Algorithms

Optimization methods for decentralized scheduling in Grid environment
use heuristic (multi-objective) approaches. We present in this section
opportunistic load balancing heuristics, methods that are based on minimum
execution time, minimum completion time, min-min, max-min, duplex, genetic
algorithms, simulating annealing, A*.

Opportunistic Load Balancing (OLB). The Opportunistic Load Balancing
heuristic picks one task arbitrarily from the group of tasks and assigns it to the
next machine that is expected to be available. It does not consider the task’s
expected execution time on that machine, which may lead to very poor maxspans.
The advantages of this heuristic are: its simplicity and the intention of keeping all
the machines as busy as possible, this meaning high processor utilization. In tasks
that come one at a time, rather than in groups of tasks, the Opportunistic Load
Balancing heuristic is also named First Come First Served.

Minimum Execution Time (MET). The Minimum Execution Time heuristic
assigns each task picked arbitrarily to the machine with the least expected
execution time for that task, and is not concerned with the time the machine
becomes available [15]. The result can be severe load imbalance across machines,
although MET gives each task to its best machine.

Minimum Completion Time (MCT). The Minimum Completion Time
heuristic assigns each task, in arbitrary order, to the machine with the minimum
expected completion time for that task [16]. The MCT combines the benefits of
OLB and MET, and tries to avoid the circumstances in which OLB and MET
perform poorly.

Min-Min heuristic begins with the set 7" of all unmapped tasks. The task
with the minimum possible execution time is then assigned on the respective
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processor, after which the process continues in the same way with the remaining
unmapped tasks. The major difference between Min-min and MCT is that Min-
min considers all unmapped tasks during each mapping decision and MCT only
considers one task at a time. The machine that finishes the earliest is also the
machine that executes the task the fastest. The percentage of tasks assigned to
their first choice (on the basis of execution time) is likely to be very high, and
therefore a smaller maxspan can be obtained.

Max-Min heuristic is very similar to Min-min. The Max-min heuristic also
begins with the set 7' of all unmapped tasks. Then, the set C of minimum
completion times is found. The difference from Min-min comes at the next step,
when the task with the overall maximum completion time from C is selected and
assigned to the corresponding machine. Last, the newly mapped task is removed
from C, and the process repeats until C is empty.

Max-min tries to perform tasks with longer execution times first, which
usually leads to a better balanced allocation of tasks, and prevents that some
processors stay idle for a long time, while others are overloaded.

Duplex heuristic is a combination of the Min-min and Max-min heuristics.
The Duplex heuristic performs both of the Min-min and Max-min heuristics and
then uses the better solution. Duplex exploits the conditions in which either Min-
min or Max-min performs better.

Genetic Algorithms (GA) is technique used for searching large solution
spaces. Multiple possible mappings of the meta-task are computed, which are
considered chromosomes in the population. Each chromosome has a fitness value,
which is the result of an objective function designed in accordance with the
performance criteria of the problem (for example makespan). At each iteration, all
of the chromosomes in the population are evaluated based on their fitness value,
and only the best of them survive in the next population, where new allocations
are generated based on crossover and mutation operators. The algorithm usually
stops when a predefined number of steps is performed, or all chromosomes
converge to the same mapping.

Simulated Annealing (SA) is an iterative technique that considers only one
possible solution (mapping) for each meta-task at a time. This solution uses the
same representation as the chromosome for the GA. SA uses a procedure that
probabilistically allows poorer solutions to be accepted to attempt to obtain a
better search of the solution space. This probability is based on a system
temperature that decreases for each iteration. As the system temperature
decreases, poorer solutions are less likely to be accepted. The initial temperature
of the system is the maxspan of the initial mapping, which is randomly
determined. At each iteration, the mapping is transformed in the same manner as
the GA, and the new maxspan is evaluated. If the new maxspan is better (lower),
the new mapping replaces the old one.
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A* heuristic is a search technique based on a tree, which has been applied
in various task allocation problems. The A* heuristic begins at a root node that is
a null solution. As the tree grows, nodes represent partial mappings (a subset of
tasks is assigned to machines). With each child added, a new task 7' is mapped.
This process continues until a complete mapping is reached.

6. Experimental Comparison of Presented Optimization Scheduling
Algorithms

In this section, a comparison between the performances of the scheduling
algorithms is presented. Below we present the graphics obtained from running 50
jobs on 6 CPUs.

As we are not interested in memory usage, the trends lines for this do not
appear in the graphics. Just by looking at the graphics, we can see that we obtain
the best results for both the throughput and the load-balancing when using the
genetic algorithm. Average load-balancing (cpu load) can be computed from these
graphics using the formula:

N N
Z(tk _tk—l) 'lk Z(tk _tk—l)'lk
AVG — k:lN — k=1
> —t,) fn ~ho
j=1

where [, is the the CPU load in the time interval [#, #+/].

Table 1
Schedulers comparison (50 jobs)

rformance parameter Throughput Load-
Scheduler [seconds] balancing [%0]
Simple scheduler 397.1052 70.58
Shortest job first scheduler (SJF) 443.8935 91.10
Earliest deadline first scheduler (EDF) 397.2369 70,55
Genetic scheduler 296.0156 94,68

We can clearly see now, that whether we choose throughput or load-
balancing as criterion for performance, the genetic algorithm is the winner:

e Throughput: genetic, simple & EDF (almost a tie), SIJF

e Load balancing: genetic, SJF, simple & EDF (again, almost equal).
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7. Conclusions

We present in this paper the process of optimization for decentralized
scheduling strategies in Grid environments. The objective was focused on the
determination of near-optimal strategies for application scheduling in
decentralized environments based on existing strategies.

We elaborated an evaluation model for scheduling algorithms using
simulation. The MONARC simulator was extended to support tasks with
dependencies and multiple scheduling algorithms. MONARC offers a realistic
simulation, so the evaluation model was used to compare different scheduling
algorithm for independent and dependent task and to select the best algorithm.

According with experimental results we propose a solution for
decentralized scheduling architecture.

Future investigation would involve the extension of the scheduling
algorithms towards classes of dependent tasks, as well as the incorporation of new
features into the existing frameworks with new optimization criteria. It is possible
to extend the scheduling algorithms for task with dependencies.
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