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BAYESIAN INFERENCE FOR COPULA MODELS 

Mariana CRAIU1, Radu V CRAIU2 

Prezentam o metoda generală de aplicare a inferenţei Bayesiene pentru  
repartiţii bidimensionale definite de copule. In această lucrare considerăm cazul în 
care ambele repartiţii marginale sunt Weibull sau exponenţiale dar metoda poate fi 
extinsă şi la alte repartiţii. Pentru determinarea repartiţiei posterioare se folosesc 
tehnici de simulare Markov chain Monte Carlo. 

 We present a general methodology for performing Bayesian inference on 
copula models. Here we discuss the case in which each marginal distribution is 
Weibull or Exponential but the approach can be generalized to other distributions.  
We solve the computational problem associated with sampling from the posterior 
distribution using Markov chain Monte Carlo. We illustrate the method with 
simulated data in order to assess its efficiency.  

Key words: Copula models, Posterior distribution, Gamma and Weibull  
                    distributions, Bayesian statistics. 

1. Introduction 

The term copula was first introduced by Sklar (1959) following some 
initial ideas by Hoffding (1940). Copulas can flexibly "couple" fixed marginal 
continuous distributions  into a multivariate distribution.  There exists a vast 
literature on connections between dependence concepts and various families of 
copulas but for reference we recommend Joe (1997) and  Nelsen  (2006). 

The multivariate function C : [0,1]p → [0,1] is called a copula if it is a 
continuous distribution function  and each marginal is a  uniform distribution 
function on [0,1] so that ),...,(),...,( 111 ppp uUuUPuuC ≤≤= . If p=2 and if X, Y 
are continuous random variables with distribution functions (df) F and G, 
respectively, we specify the joint df using the copula C:[0,1] x [0,1] → [0,1] such 
that  

H(F −1(u),G−1(v)) = P(X ≤ F −1(u),Y ≤ G−1(v)) = C(u,v) .  (1) 
Equation (1) illustrates the way in which the copula function "bridges" the 

marginal and the joint df's. The existence of such a map C is guaranteed by Sklar's 
Theorem (Sklar, 1959). The uniqueness of C once we fix, F, G and H is 
guaranteed as long as the random variables are continuous.  
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In this paper we consider the case in which F and G are Weibull with unknown 
parameters (α1,β1) , and (α2,β2)  respectively, or Exponential with parameters a λ1  
and λ2  The marginals are coupled using Clayton's copula (Clayton, 1978) with 
parameter θ  so that      

Cθ (u,v) = (u−θ + v−θ −1)
−

1

θ .        (2) 
The  copula density corresponding   to (2) is 

cθ (u,v) ∝ (1+ θ)u−θ −1v−θ −1(u−θ + v−θ −1)
−
1+2θ

θ .        (3) 
In the next section we discuss Bayesian inference methodology for estimating the 
parameters α1,β1,α2,β2  and θ . 

2. Prior and posterior distributions 

We start our discussion in the case of Weibull marginals. The two-
parameter Weibull density is 
 

 f (x |α,β) =1[0,∞)(x)αβ−α xα−1 exp[−(x /β)α ] ,         (4)  
for  α,β > 0  
 

 
Fig. 1: Density of the prior Gamma (1,0.1). 

 

We assume for each parameter of the Weibull distribution a diffuse 
Gamma distribution prior with parameters 1 and 0.1 as  shown in Figure 1. The 
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parameter of the Clayton family is restricted to the positive real axis so we 
consider for it the same  prior. 

Assuming we have available n pairs of observations from X and Y and if 
we denote ξ = (α1,β1,α2,β2,θ)    then the posterior distribution is  

π (ξ) ∝π (α1)π (β1)π (α2)π (β2)π (θ) ×

× f (xi |α1,β1) f (yi |α2,β2)
i=1

n

∏ cθ (F(xi |α1,β1),F(yi |α2,β2)
      (5) 

where c is the copula density (3),  f has the form given in (4), and F, G are the 
corresponding cumulative distribution functions (cdf). The cdf of the Weibull 
distribution is known as  

F(x |α,β) =1− exp(−(x /β)α )  
 

In the case of Exponential marginals we use, for λ1 and λ2, the same prior 
as the one described above.  
In both the Weibull and the exponential cases we encounter computational 
difficulties when we try to determine the normalizing constant for the posterior 
distribution. Therefore we have to compute the characteristics of the posterior  
using Markov chain Monte Carlo (MCMC) algorithms. 

3. Metropolis algorithms within MCMC   

 Many problems arising in Bayesian statistics involve calculation of   
integrals of the form  

∫= ,)()( dxxxfI π       (6) 
where  π  is a (posterior) density known up to the normalizing constant. The 
Monte Carlo method produces an approximation of I in  (5) using an i.i.d. sample 
X1,....,Xn  from  π   for the Monte Carlo estimator 

ϕ = h(xi) /n
i=1

n

∑  

Unfortunately, in most cases, sampling independently from π  is 
impossible. Markov chain Monte Carlo (MCMC) methods makes it possible to 
obtain numerical approximations of expectations such as (6) in cases when direct 
independent sampling from π   is not available. Note that once a sample from π  is 
available we can compute  (6) for any integrable function h. 

The underlying principle of an MCMC algorithm is the construction of an 
ergodic Markov chain whose stationary distribution has density π .  More 
precisely, suppose that we generate a sequence of random variables X0,X1,.... 
such that at each time t ≥ 0 Xt  is sampled from a distribution P( | Xt ) which 
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depends only on the current state of the chain, Xt . As t increases, the chain 
gradually ``forgets'' its initial state and the distribution of Xt  is closer and closer 
to the stationary distribution of the chain. With the samples obtained we can 
approximate I using the ergodic average 

           ϕ =
1
n

h(Xi)
i= m+1

m+n

∑                       (7) 

Note that we allow in (7) for first m samples to be simply discarded. The 
set of samples not used in the estimation is known as burn-in. The length of what 
constitutes an appropriate burn-in for a given problem remains an active area of 
research. 

The most widely used MCMC algorithm is the one proposed by Hastings 
(1970), as a generalization of the sampler designed by Metropolis et al. (1953). 
For the  Metropolis-Hastings algorithm, at each step t the next state Xt +1 is chosen 
by first sampling a candidate draw y from a proposal distribution q(  | xt ). Note 
that the proposal distribution is allowed to depend on the current state of the 
chain; if it does not, the algorithm is also known as independent Metropolis.  
Assuming that the target density is π , the candidate 
sample y is retained with probability r(xt ,y),  where 

r(xt ,y) = min 1,
π (y)q(y | xt )

π (xt )q(xt | y)

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ .                                       (8) 

If y is accepted then Xt +1=y, otherwise Xt +1= xt .  Note that the calculation 
of normalizing constant for π   is bypassed in (8) since it cancels out between the 
numerator and the denominator. 

For further theoretical and methodological developments related to 
MCMC sampling we refer to Robert and Casella (2004) and Liu (2001). 

4. Sampling from the posterior distribution 

We use an independent Metropolis algorithm to construct a five-
dimensional Markov chain that has the posterior density (5) as its stationary 
distribution (in an slight abuse of notation we use interchangeably π  to denote 
both the stationary density and distribution) . All the parameters are restricted to 
be positive so we use disperse gamma distributions for proposing new moves.  
Instead of updating all components of the parameter vector simultaneously, we 
perform a Metropolis algorithm for  one-at-a-time update of each coordinate.  
This implies that for each iteration we perform five Metropolis updates. The 
advantage is that we can get a better hold of the proposal's parameters which are 
crucial to obtaining reasonable acceptance rates. In particular, one could use the 
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adaptive method of Gasemyr (2003) to find appropriate values for the proposals' 
parameters.  In the simulations performed for this paper we used proposals 
generated from Gamma (2,0.75) distribution. 
We present in fig. 2, the scatter plot of the data consisting of 500 pairs.  The two 
marginals are Weibull (1,1), for X, and Weibull(2,2) for Y. The copula parameter 
has value 4. The Uniform (0,1) random variates corresponding to a Clayton 
copula are generated using the algorithm of Devroye (1986) and using the inverse 
cdf  are transformed into Weibull variates. 

 

Fig. 2: Scatter plot of 500 realizations from Weibull(1,1) and Weibull(2,2) correlated using a 

Clayton copula with parameter 4. 

In fig. 3 we show the traces of four out of five paths produced by the 
MCMC algorithm. One can see that after a while the path stabilizes around the 
true value marked with a horizontal solid line. 
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Fig. 3: Traces of the paths produced by the Metropolis algorithm for θ,α1,β1,α2 . True values of 
the parameters are shown with horizontal lines. 

Finally, in Table 1 we  summarize the samples obtained with MCMC. 
Since the data’s sample size is n = 500 one can fairly assume that the influence of 
the prior is minimal. 

Table 1 
Mean and SD (between brackets) for the MCMC estimates in the Weibull example 

α2 λ1 λ2 θ  θ  

-0.011 (0.031) 0.017 (0.052) 0.003 (0.053) 0.033 (0.091) -0.003 (0.056) 

 
Similar graphics are produced for the situation with Exponential 

marginals.  We consider a sample of 300 pairs where X is distributed Exp(2.5) 
and Y has distribution Exp(1.75). In fig. 5 we show the data scatterplot. Clayton's 
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copula parameter is 2.  The proposal distribution used in the independent 
Metropolis algorithm is Gamma(2,0.85).  

 

Fig. 4: Scatter plot of 300 realizations from Exp(2.5) and Exp(1.75) correlated using a Clayton 
copula with parameter 2. 

 

In Table 2 we summarize the samples obtained after 10,000 iterations. One can 
see that the the performance of the Monte Carlo estimator remains good. 

Table 2 

Means and SD for the MCMC estimates in the Exponential example 

λ1  λ2  θ  

-0.044 (0.101) 0.033 (0.105) 0.102 (0.097) 
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6. Conclusions 

We perform two Bayesian analyses of copula models. The distributions 
and class of copulas used in this paper  are commonly used  in reliability and 
medical studies.  We studied the  performance of the estimators with simulated 
data. However, advanced computational tools such as MCMC algorithms are 
needed in order to finalize the analysis. 
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