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IN SILICO MODELLING AND METABOLIC ENGINEERING 
OF ESCHERICHIA COLI TO SUCCINIC ACID PRODUCTION 

Zsolt BODOR1, Andrea (IUHASZ) FAZAKAS2, Szabolcs LÁNYI3, Beáta 
ÁBRAHÁM4 

Succinic acid is identified to have a great economical potential in a biobased 
economy. To improve the production in Escherichia coli metabolic engineering 
should be carried out. For new mutant strain design is important to in silico 
simulate and analyze the metabolic changes, network of a cell under different 
environmental and/or genetic perturbations. To investigate the genetic and 
environmental perturbations, the relationship between biomass and succinate yield, 
the NADH oxidation connection to growth rate and succinate production, in silico 
metabolic analysis was carried out using constraint-based metabolic flux 
simulations in minimal medium with glucose and glycerol as carbon sources. 
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Abbreviations 
 
COBRA: constraint-based reconstruction and analysis 
FBA: flux balance analysis 
NADH: nicotinamide adenine dinucleotide 
SBML: systems biology markup language 
mmol gDW-1h-1: millimoles per gram dry cell weight per hour 
PEP: phosphoenolpyruvate 
Acetyl-CoA: Acetyl coenzyme A 

1. Introduction 

A variety of useful metabolites can be produced by cell factories including 
pharmaceutical chemicals, fine and commodity chemicals [1]. 
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The succinic acid (butanedioic acid), has a high economical impact 
(expected to reach $496 million in 3 years) and it is used in a number of industries 
including: polymers, food, surfactants and detergents, is a supplement for 
pharmaceuticals [2-7], it can be converted to biodegradable plastics [8,9]. The 
U.S. Department of Energy announced succinic acid as one of the 12 top chemical 
building blocks produced by microorganisms [4,8,10]. 

There are many bacteria being capable to produce succinate: 
Anaerobiospirillum succiniciproducens [7], Mannheimia succiniciproducens [8], 
Actinobacillus succinogenes [11] or even metabolically engineered E. coli strains 
in complex medium [8,9], but the complexity of nutrients or the necessary 
environmental conditions make these methods very expensive [6]. 

The level of succinate produced by native strains of E. coli in minimal 
medium is very low. Many scientists have described genetic engineering 
approaches to improve succinate production in E. coli by different methods: 
overexpressing different genes [11,12], with combination of different gene 
deletions [6], or using complex medium [8,9]. 

One way to improve succinate production is to redirect the carbon flow 
towards succinate by blocking pathways of competing metabolic products such 
formate, lactate, ethanol and leaving only the succinate pathway to achieve redox 
balance during substrate utilization [5]. 

Systems biology can now play a role in the metabolic engineering process 
by guiding interventions to divert metabolite flux within a microbial cell. 

COBRA Toolbox [13,14] is an open-source and modular platform, 
incorporating strain optimization tasks, algorithms such as Flux Balance Analysis 
(FBA) [15,16]. Using FBA and a complex genome-scale metabolic model we can 
predict the production of a desired product and optimize the production rate under 
different environmental conditions. In addition, effects of environmental and 
genetic perturbations on the metabolic network can also be simulated, using 
complex calculation methods such as, robustness analysis, phase plane analysis, 
dynamic modelling, etc [13,14,17]. 

The main aim of the study is in silico screening of genes to be removed 
from E. coli for the overproduction of succinic acid from glucose and glycerol 
under anaerobic conditions using minimal medium, to test the relationship 
between growth and succinate production and finally to analyze the effect of 
NADH oxidizing pathways on cell viability and succinic acid production. 

We firstly predicted in silico the flux distributions inside and outside or the 
cell under specific conditions and substrates followed by the knock-out of genes 
to test the effect on cell metabolism. Robustness analysis, dynamic growth 
simulations (batch growth) and phenotypic phase plane analysis [13] of E. coli 
K12 MG1655 on glucose and glycerol minimal media under aerobic, 
microaerobic and anaerobic conditions were carried out. 
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With in silico studies of genetic engineering [18-20] we can reduce the 
time and cost of wet experiments and can design industrially important strains [1]. 

2. Experimental 

For simulations the latest version of the Escherichia coli metabolic 
network model formulated by Orth et al. [21] (2011) was downloaded from 
BioModels online database (http://www.ebi.ac.uk/biomodels-main/). Calculations 
were made in MATLAB R2012a (Mathworks Inc,; Natick, MA) utilizing the 
SBML Toolbox (version 4.1.0, http://sbml.org/software/sbmltoolbox/) and the 
COBRA Toolbox (version 2.0.5, 
http://opencobra.sourceforge.net/openCOBRA/Welcome.html) [13,14]. 
Optimization was undertaken using the Gurobi (version 5.1.0). 

 
2.1. Flux balance analysis (FBA) 
 
It is a constraint-based modelling to determine flux distribution in the 

model using linear optimization of an objective function- typically biomass 
production. 

Stoichiometric, steady-state balances on all metabolites are imposed as 
linear constraints on the basic equation: 

S*v=0 (1) 
- where, S is an m*n matrix and m is the number of metabolites and n is 

the number of reactions in the model. The linear optimization problem 
can be formulated as follow: 

Maximize: z=cTv  (2) 
- where c denotes the vector defining the weights for each of the fluxes 

in v. 
The lower and upper bounds: ai≤vi≤bi – representing the constraints for 

reaction irreversibility and substrate uptake from the environment. All flux units 
are in mmol gDW-1h-1, except the biomass flux, which has units of h-1. Reversible 
reactions have lower bounds of -1000 while irreversible reactions have a lower 
bound of 0, in both cases the upper bounds are 1000. Three different 
environmental conditions were tested, namely aerobic, microaerobic and 
anaerobic under minimal medium using glucose or glycerol as sole carbon sources 
including the wild-type and the genetically modified strains too. In each 
simulation the maximization of the biomass was set as the objective function. 

 
2.2. Minimal media determination and substrate utilization prediction 
 
Minimal media was used for our simulations and the carbon source was 

glucose or glycerol. Glycerol was chosen as an alternative carbon-source because 
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it is an abundant carbon feedstock resulted from biodiesel production. 
Consumption rate (substrate uptake rate) for the main carbon substrate was set to 
10 mmol gDW-1h-1. Under microaerobic conditions an oxygen uptake rate of 5 
mmol gDW-1h-1 was used while 0 mmol gDW-1h-1 for anaerobic conditions. 

Growth rates and substrate utilization rates were compared with those 
obtained experimentally elsewhere (strong correlation between results). 

 
2.3. Analysis of maximum biomass production rate and the secretion 

of succinic acid 
 
Cellular growth simulation, gene deletions were carried out with FBA 

using Cobra Toolbox. 
The production rate of succinic acid was determined in each simulation. 

To improve the succinate production our assumption was to eliminate the 
competing pathways. Three major pathways were spotted and eliminated step by 
step: the first one was the formate pathway- the pfl (pyruvate formate lyase) gene 
was knocked-out by setting the lower and upper bounds to 0. We decided to start 
with pfl because under anaerobic and microaerobic conditions the production rate 
of formate was the highest one followed by lactate and ethanol. After elimination 
of the lactate dehydrogenase-ldh and alcohol dehydrogenase-adh genes the 
phosphotransferase system was our next target pathway to increase the yield of 
succinate. The created mutant strain was analyzed, including FBA analysis, 
dynamic growth simulations (batch growth), phenotypic phase plane analysis 
(Phpp) and Flux Variability Analysis (FVA) (data not shown here), genes and 
reactions essentiality analysis (data not shown here) was carried out using 
different environmental and genetic conditions. 

 
Dynamic growth simulations 
 
FBA analyzes can be used to examine dynamic processes including the 

microbial growth in batch cultures by combining FBA with an iterative approach 
based on a quasi-steady-state assumption [14]. With this simulation the growth 
rate and the metabolites production and consumption can be estimated. The initial 
substrate concentration was set to 10 mmol L-1 while the initial biomass 
concentration to 0.035 g L-1. Time step is 25 min and the maximum number of 
steps is 150 in order to allow observing the full diauxic shift. 

 
Phenotypic phase plane analysis (Phpp) 
 
Phpp was used to vary to parameters simultaneously, to see the 

interactions between two reactions under different conditions (mentioned before) 
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and the same time to determine the impact on growth rate and plot the results as a 
phenotypic phase plane. Simulations were carried for wild-type and mutant strains 
while varying substrates and oxygen/carbon dioxide uptake rates. 

 
3. Results and discussion 
 
Succinate can be produced by E. coli under anaerobic and microaerobic 

conditions but the quantity of the excreted succinic acid is very low. Our 
simulation to increase production was performed with substrate flux consideration 
of 10 mmol gDW-1h-1. 

Relationship between growth rate and succinate production was computed 
followed by the effect of NADH oxidation to growth rate and succinic acid 
production. 
 

Flux Balance Analysis 
 
FBA was used to calculate the growth rate of E. coli and the flux 

distribution inside the cell for wild-type and the newly designed strains. In the 
Table 1 the specific maximum growth rates are presented under different 
substrate, environmental and genetic conditions. 

Table 1 
Maximum growth rates comparison of E. coli on different substrates using aerobic, 

microaerobic and anaerobic conditions 
Substrate Strain Growth rate (h-1) 

Aerobic Microaerobic Anaerobic 
Glucose Wild-type/ 

Mutant 
0.98/ 
0.97 

0.49/ 
0.38 

0.24/ 
0.09 

Glycerol Wild-type/ 
Mutant 

0.56/ 
0.56 

0.33/ 
0.29 

0.08/ 
0.001 

Succinate  
(mmol gDW-

1h-1) 

Glucose -/- -/6.69 0.08/12.5 

Glycerol -/- -/0.32 0.03/6.00 
Simulations were carried out in minimal medium with either glucose or glycerol (uptake rate 10 mmol gDW-1h-1) 

 
As we can observe the biomass production rate on glucose is higher than 

on glycerol in both case (wild-type and mutant). The reason is the difference 
between substrates molecular weights, but after calculations it was clear that mass 
yield of cell-mass on glucose was 0.43 gDW g glucose-1 while in case of glycerol 
0.53 under aerobic conditions. It is also apparent that under microaerobic 
conditions the cell-mass yield on glycerol is still higher; meanwhile under 
anaerobic conditions glucose gives a higher yield (0.13 instead of 0.11). A 
significant increase of succinate yield was obtained only with pfl, ldh, adh, 
GLCpts quadratic deletion, a molar yield of 1.25 mol mol glucose-1. The fourth 
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identified target pathway was the phosphoenolpyruvate-dependent 
phosphotransferase (GLCpts) system which phosphorylates uptaken sugars by 
producing pyruvate from phosphoenolpyruvate. 

Inactivation of the pts system results in an increase in the PEP pool, 
allowing the generation of more succinate. 

Engineering the redox metabolism was found to be effective to improve the 
succinate production from glucose as the sole carbon source. As we expected the 
carbon flux to formate was the dominant ~ was the sum of the fluxes to acetate 
and ethanol. 

The optimal succinate production of the mutant was 12.5 mmol gDW-1h-1 
with a growth rate of 0.09 under anaerobic conditions and 6.69 under 
microaerobic conditions, growth rate of 0.38. 

The NADH generated during glycolysis is reoxidized in the process when 
the organic intermediates are reduced, the reducing equivalents are fully 
consumed. The cell tries to redress the reducing equivalents and in every genetic 
mutation different metabolites are produced. To maintain the redox balance 
Acetyl-CoA is converted to lactate and ethanol and ATP is produced from the 
acetate pathway. The residual acetate produced in the ackr mutant is resulted from 
the pyruvate oxidase (poxB) activity. 

Glycerol is an abundant and inexpensive carbon source, generated by 
biodiesel technology. 

During anaerobic conditions the glycerol fermentation resulted formate, 
ethanol and acetate and a small amount of succinate (0.0026 mol mol glycerol-1), 
without lactate (Table 1). 

 
Effects of eliminating by-product pathways using glycerol as sole 
carbon source 

 
As we can observe in Table 1 almost in each simulation the mutant strain 

growth rate was slower. The deletion of the pfl reaction blocked the cell growth 
under anaerobic conditions. The explication could be that Acetyl-CoA is an 
essential metabolite for biosynthesis that is produced primarily by pfl during 
fermentative growth [3]. We decided to test different co-substrates (data not 
shown) to enhance the cell viability. Best solution was found in case of glucose as 
co-substrate. The production of different metabolites such as formate and ethanol 
was necessary for the biomass synthesis during the glycerol metabolism [5]. The 
ATP is consumed under biomass synthesis process and reducing equivalents 
(NADH) are produced. The regeneration of both is resolved by the cell producing 
other by-products. Conversion of glycerol to formate and ethanol fulfils energy 
requirements by generating ATP via substrate-level phosphorylation. 
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The role of glucose as co-substrate in glycerol metabolism was tested. The 
succinate yield was linearly dependent on glucose uptake rate, however we 
decided to use an uptake rate for glucose only 1 mmol gDW-1h-1 just to improve 
the cell viability. 

The triple mutant (pfl, ldh, adh) was able to produce succinate with a 
production rate of 6 mmol gDW-1h-1 under anaerobic conditions (growth rate 
0.001 h-1) and 0.32 using microaerobic conditions (growth rate 0.29 h-1). In each 
simulation the biomass production is negatively affected by the succinic acid 
production. 

With these genetic modifications the synthesis of succinate remained as 
the primary route of NAD+ regeneration [9]. Eliminating the pathways of the 
metabolites like formate, lactate and ethanol is considered as an ideal strategy to 
improve succinate yield from glucose and glycerol. The inactivation of pfl, ldh 
and adh increased the yield of succinic acid under anaerobic conditions on 
minimal medium, but cell growth was decreased (NADH regeneration inability). 
 

Dynamic growth simulations 
 

Using dynamic FBA we can examine the dynamics of growth rate and the 
production and consumption rate of different metabolites under different 
conditions. In this study the wild-type and mutant strains behavior was examined, 
in the Fig.1 are presented the results for mutant strains. 

 

 

I. 
a. b. 

c. 
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Fig.1. Dynamic FBA of mutant strains – the predicted biomass concentration, substrate and 

metabolite concentrations are shown as a function of time, I. Glucose substrate-a) aerobic, b) 
microaerobic, c) anaerobic conditions; II. Glycerol substrate 

 
Fig. 1 shows the dynamic flux balance batch culture predictions for the 

mutant E. coli strains (succinic acid producers) under aerobic, microaerobic and 
anaerobic conditions on glucose (I) and glycerol (II) with minimal media. As we 
can observe growth rate was higher under aerobic and microaerobic conditions 
(results are in concordance with experimentally obtained), but the production rate 
of succinic acid was the highest under anaerobic conditions. Diauxic growth was 

a. b. 

c. 

II. 
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observed in case b where the metabolites produced before were metabolized. The 
batch time at which the predicted glucose was completely exhausted was over 3 h 
in a, 6 h at b and 14 h at c. The resulting batch time was longer under anaerobic 
conditions, approximately 15 h. 

Using glycerol the model predicted similar diauxic growth pattern but a 
much longer batch time due to its slower growth on this substrate. 
 

Phenotypic phase plane analysis 
 

To analyze the relationship between genotype-phenotype phenotypic phase plane 
analyses was carried out for the wild-type and mutant strains and the resulting 
optimal metabolic states were studied. Results for mutant strains are presented in 
Fig.2. 
 

 

 

a. b. 

c. 

I. 

II. 
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Fig.2. Phenotypic phase planes for growth of mutant strains with varying glucose (I) and glycerol 

(II) uptake rates, including the oxygen and carbon dioxide too. Three different environmental 
conditions were analyzed: a)aerobic, b)microaerobic and c)anaerobic 

 
Phpp was performed to investigate the relationship between glucose/glycerol and 
oxygen uptake rate under aerobic and microaerobic conditions and on the other 
hand between glucose/glycerol and carbon dioxide. 

It is clear from these plots that each surface has distinct regions, meaning 
qualitatively distinct phenotypes. There is a strong correlation between oxygen 
glucose/glycerol uptake rates, because oxygen is necessary to fully oxidize the 
substrate. Under anaerobic conditions in both case the CO2 concentration 
negatively affected the mutant growth rate despite of the high glucose/glycerol 
uptake rate. 
 

4. Conclusions 
 

COBRA Toolbox was used to investigate the E. coli global metabolic 
capability to produce succinic acid from glucose and glycerol under anaerobic 
conditions, including the aerobic and microaerobic conditions. The flux 
distribution of the entire metabolism was estimated. 

Analyses of the model gave insights into the metabolic phenotypes and 
possibility to test the genetic engineering effect on cell behavior under different 

a. b. 

c. 
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environmental conditions. Phpp analysis was used to predict the cell’s metabolic 
states at various levels of glucose/glycerol, oxygen and carbon dioxide 
availability.  

Modifying the complex redox balancing system suggested us the 
importance of this system to increase the rate of succinate production. As it was 
observed, by modifying the pyruvate metabolism a significant increase in 
succinate production could be obtained in both case of carbon sources.  

It should be mentioned as well that eliminating the initial steps in glucose 
metabolism (PTS system) has a positive effect on succinate production. It is clear 
that complex modifications are needed to obtain a significant increased succinic 
acid yield. 
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