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DYNAMIC DISCRETE SIMULATION MODEL OF AN 
INVENTORY CONTROL WITH OR WITHOUT ALLOWED 

SHORTAGES 

Slobodan ANTIC1, Lena DJORDJEVIC2, Konstantin KOSTIC3, Andrej LISEC4 

 This paper shows how to develop a dynamic discrete spreadsheet model of an 
inventory control in the case of the fixed order quantity, for the finite time horizon, 
with or without allowed shortages. There is a clear distinction between a discrete 
controlled object (the law of behavior and control domain) ,a performance criterion  
and the method used to find an optimal solution. Further, it  shows how to derive a 
performance criterion, including all costs that are considered to be significant by 
the user. Several respectful papers pertaining inventory control with and without 
shortages are used to compare and prove accuracy, simplicity and practicality of 
our approach.      
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1. Introduction 
 
The infinite time horizon inventory control models assume that the rate of the 

annual demand is known and constant over several consecutive years. The finite 
time horizon inventory control models assume the demand  pertains only to the 
determined time horizon, often shorter than one year period. The number of 
replenishments obtained by the fixed time horizon inventory models is always an 
integer number; that is not the case with the infinite time horizon inventory 
models. This is why the results at the year’s level obtained by infinite time or by 
finite time horizon inventory control models may differ. They are the same only if 
both of them give an integer as the number of replenishments. 
 

 
Fig. 1.  Stock dynamics over the year: a) integer and b) non-integer number of replenishments 

 
  Axsäter [1], Barlow [2], Muller [3], Wild [4], Anderson, Sweeney and 
Williams [5], in their books and papers dealing with inventory control,  describe a 
classical economic order quantity model in the fixed-order quantity system at the 
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finite time horizon and its variants when a demand rate is constant and known, as 
a starting point for further understanding of inventory dynamics. The study of 
inventory problems dates back to 1915,  when Harris [6],  first selected the 
inventory problem for a mathematical analysis. As the result, the simple but 
famous EOQ (Economic Order Quantity) formula was established which was also 
derived, apparently independently, by Wilson [7]. Donaldson [8] came up with a 
full analytic solution of the inventory replenishment problem with a linear trend in 
demand over a finite-time horizon. The discrete version of this problem was 
discussed by Wagner and Whitin [9], Barbosa and Friedman [10]which was 
further generalized  for solutions for various, similar EOQ models. Furthermore, 
Goyal [11] was the first to develop the EOQ model under the conditions of 
permissible delay in payments. All these models were developed with the 
assumption that there are no shortages in inventory.  

Deb and Chaudhuri [12] were the first to extend Donaldson's model [8], in 
order to incorporate shortages in inventory. This extension was further studied by 
Goyal [13]. Following Donaldson's approach [8], Dave [14] developed an exact 
replenishment policy for an inventory model taking into account shortages. Sana 
and Chaudhuri [15] developed EOQ model over a finite-time horizon for 
perishable items, considering unequal cycle lengths. One method of dealing with 
EOQ models with time-varying demand and cost over a finite planning horizon is 
to use discrete Dynamic Programming [16], Wagner and Whitin [9]. Kostic in 
[17] showed how to model EOQ problem in order to find an optimal number of 
replenishments in the fixed-order quantity system, as a basic problem of optimal 
control of the discrete system. The decision environment is deterministic and the 
time horizon is finite. A discrete system consists of the law of dynamics, control 
domain, and a performance criterion. It is primarily a simulation model of the 
inventory dynamics, but the performance criterion enables various other strategies 
to be compared.  
 Smith in [18] stated that the spreadsheets are extremely effective in 
determining the optimum number of distribution facilities, the appropriate mix of 
transportation modes, production scheduling, inventory optimization, and strategic 
planning exercises. Vazsonyi [19] holds that the deterministic “what-if” 
simulation methodology is the most popular decision making tool. Przasnyski in 
[20] assumes that the spreadsheets have provided a platform for demonstrating the 
power of simulation in inventory management. 

Kostic [17] has shown that modelling inventory problems as a discrete object 
optimal control is more appropriate for the real-life. He has developed a general 
approach to inventory models and has shown that all variants of EOQ model 
applications can be considered  the scenarios of the inventory control model, as 
the model of optimal control of the discrete system.  
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The traditional EOQ model assumes an infinite time horizon and the number 
of obtained replenishments is often non-integer (Figure 1b). It is often necessary 
to make certain approximations in order to use a traditional EOQ model for the 
finite time inventory problems in practise. It is practically inconvenient to apply 
4.7 replenishments and that a replenishment cycle is 77.66 days long. 
Furthermore, the cost of ordering is linked to the replenishment occurrence, which 
can be merely integer, but EOQ model often multiplies the ordering costs with the 
fractional number of replenishments thus giving inaccurate total inventory cost.  

This paper is predicated by the paper [17]. As an extension to the paper we 
have derived a unique model of the inventory control, in the case of the fixed 
order quantity and finite time horizon with or without allowed shortages. A 
discrete time system is a more natural way to describe inventory dynamics. The 
model of discrete system control is both a simulation model of inventory 
dynamics and an optimization model, which gives an optimal control according to 
the defined performance criterion. 
 

2. Discrete controlled object:  Law of dynamics and Control domain  
 
Following notation will be used for the mathematical relations that describe 

the discrete object: 
Table 1 

Variable notations for mathematical relations 
   t  -    Discrete time, 
  T  -    Number of days of the time horizon,  
  D - Item demand for the observed time  

horizon 
1
tX   - Stock at time t, 
2
tX   - Shortage at time t, 

1u     - Number of replenishments 
 

1
tY    - Quantity item received at time t 
2

tY   - Unsatisfied demand at time t 
3

tY    - Demand at time t 
4

tY    - Satisfied shortage at time t 
2u    - Percentage of the replenishment quantity  

which determining allowed shortage 

 
 The main characteristic of the inventory control in the case of the fixed order 
quantity for the finite time horizon is that the replenishment quantity is constant 
and performed throughout several replenishments which occur at the beginning of 
the equal portions of the time horizon. The sum of replenishment quantities over 
the time horizon is equal to the demand in the time horizon (D). In accordance to  
Kostic [17] this type of the flow is called “Discrete input and continuous output”.  
Inventory flows may occur with and without allowed shortages. We will develop 
a model of a discrete controlled object that will encompass both  possibilities. 
Therefore we introduce two flows: one for the dynamics of inventory on hand and 
the other for the dynamics of shortages that will represent an unsatisfied demand. 
Both flows consist of the alternating subsequence “action – accumulation – 



166               Slobodan Antic, Lena Djordjevic, Konstantin Kostic, Andrej Lisec 

action”: an input action increases accumulation, and an output action decreases 
accumulation. Dynamics of accumulations can be expressed as follows: 
 

TtYYXX

iknownX
i

t
i

t
i
t

i
t

i

,...,2,1,

2,1,
2

1

0

=−+=

==
+

−

                                         (1) 

where X1 is a state variable pertaining to the flow of the inventory, and X2 is a 
state variable pertaining to the flow of shortages. The discrete time t can take only 
integer values t=0, 1, 2,..T, representing days. T is a number of days over the time 
horizon. When the replenishment occurs, the level of inventory 1

tX   increases 
instantaneously. The level 1

tX  decreases in accordance to a daily demand (D/T). 
There are two possible outcomes when the level 1

tX  meets  zero: the first is to get 
a new replenishment if shortages are not allowed,  and the second one is to stop 
decreasing the level of inventory 1

tX  and start increasing the level of shortages
2
tX  if shortages are allowed. Neither of the two levels could be negative. 1

tY
represents an input action that increases the inventory on hand. Its value over the 
time horizon equals zero, which is excepted in the moment when the 
replenishment  occurrs. Denote the number of replenishments as a control variable 
u1. The replenishment quantity is u1-th part of the whole demand for the 
encompassed time horizon, D/ u1. The whole time horizon is divided into T time 
buckets representing days, t=1,2,…,T. If we divide the number of time buckets T 
with the number of replenishments u1, the result could be non-integer number, 
inappropriate to determine the time bucket at which the replenishment will occur. 
Therefore, we introduce a rule that the replenishment will occur if the inventory 
on hand threatens to fall below zero if shortages are not allowed, or if shortages  
exceed allowed level provided they are allowed. In order to deal with the 
shortages, let us introduce the second control variable u2 ( 10 2 <≤ u ) that will 
represent a percentage of the replenishment quantity, as the highest allowed level 
of the shortage. If we deal with the inventory without shortages, then the value of 
the variable u2 will be zero. Assume that both the initial inventory and initial 
shortages are zero, 2,1,00 == iX i . The first replenishment occurs on the first day. 
If the shortages are allowed, then the first replenishment quantity should be 
diminished by the allowed shortage (given as a percentage u2 of the replenishment 
quantity D/u1). 

1 2 1
1 (1 ) /Y D u u= ⋅ −        (2) 

The ensuing u1-1 replenishments will occur according to the next 
mathematical relation:  
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 In this relation a mathematical expression u2>0 corresponds to the situation 
when the shortages are allowed, and u2=0 corresponds to situation when the 
shortages are not allowed. If the shortages are allowed then there will be a 
shortage at the end of the time horizon. Suppose that the shortage is eventually 
supplied. It will occur  the very next day after the end of the time horizon 
encompassed.    
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This relation holds also for the case when the shortages are not allowed or 
equals the value zero. The depletion of the inventory is consistent with the 
assumption that the demand over the time horizon is even and equals D/T. 
 

),/min( 11
1

3
ttt YXTDY += −                                                                                    )5(  

 
If the level of inventory on hand X1 reaches zero and the shortages are 

allowed, then the recording of the shortages Y2 occurs according to the next 
relation.  
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 The level of shortages X2 increases until the new replenishment. With the 
new replenishment the entire shortage is satisfied i.e. the value of state variable X2 
becomes zero. It means that the value of the flow regulator 4

tY  is greater than zero 
only if replenishment  occurs.  
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 The control domain is defined by ensuring non-negativity of the state 
variables for each t. 
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5. Performance criterion  ∑ == ),,ƒ( 1 upXJ tt  

 The aim of ensuring that the anticipated demand is met can be achieved by 
keeping stock nonnegative. However, the primary purpose of inventory control is 
to ensure that the right quantity of the right items is ordered at the right time, 
according to a known demand, existing constraints and with the objective to 
minimize the total cost, where the cost is expressed by the equation: Cost = 
ordering cost + holding cost + shortage cost + purchase cost. This function can be 
broaden by additional costs according to the real nature of the inventory problem. 

Ordering cost includes costs arising from the preparation and dispatch of the 
order, checking of the goods on delivery, and other clerical support activities. It 
can be constant (EOQ model) or variable throughout the time horizon, depending 
(Increasing Delivery Costs – a variation of the Discount model) or not on the 
ordered quantity. Ordering cost per order Cs is greater than zero only in time t 
when the order arrives in the stock or when the batch starts. 

The cost of holding one unit of an item in stock per day (for instance $20/T a 
unit per day or as a percentage of the unit cost of the item divided by T, where T 
is the number of days of the time horizon). It can be constant (EOQ model) or 
variable throughout the time horizon, independant of the quantity carried in 
inventory. Holding or carrying cost per one unit Ch per day multiplies a day 
average inventory. If we retain a classical inventory control model approach, a 
day average (dav) inventory can be calculated as: 
 

TtYYYXtdav tttt ,...,2,1,2/)()( 3411
1 =−−+= −                                                     )9(  

 
Shortage cost per one unit Csh per day multiplies a day average shortages. If 

we retain a classical inventory control model approach, a day average shortage 
(dash) can be calculated as: 
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Purchase (unit) cost is the price charged by suppliers for one unit of the item. 
It can be constant (EOQ model) or variable throughout the time horizon, 
independant (Quantity Discount model) of the ordered quantity. Purchase (unit) 
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cost Cu multiplies quantity purchased in time t. The general pattern of the 
performance criterion is 
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that should be minimized. It is obvious that the value of performance criterion 
depends on the inflow dynamics Y1. The function of the performance criterion can 
contain additional information according to the real decision environment. Values 
of each partial functions of the performance criterion J over the time horizon T 
can be presented in separate columns of the spreadsheet. The values of the 
performance criterion J should cumulate values of its partial functions over the 
time horizon. 
 

7. Discussion and comparison of the results 
 
 In this section we investigate the examples of spreadsheet model in the case 
of EOQ model without allowed shortages. Firstly, we present the dynamic 
spreadsheet models where the results of simulation are exactly the same as in the 
static models described in Hesse [21] and Barlow [2], see Table 2. 

Table 2 
Numerical example of EOQ model without shortages 

Problem 1 Traditional static EOQ model 
found (Hesse [21]) 

Dynamic discrete spreadsheet 
model found 

D=500 units per year EOQ =250 per order EOQ =250 per order 
Cs=$10 per order No =2 orders per year 1u  (No ) =2 orders (decision 

variable)
Ch=$0,0208 per unit per 
year 

Holding cost = $2,60 per year Holding cost = $2,60 per period 

Cu=$0 per unit Ordering cost = $20 per year Ordering cost = $20  per period 
T=360 days Total Cost = $22,60 per year (min) J = $22,60 per period 
 Cycle time = 0,5 year Cycle time = 180 days 

T (time horizon) = known 

Problem 2 Traditional static EOQ model 
found (Barlow [2]) 

Dynamic discrete spreadsheet 
model found 

D=12.000 units per year EOQ =400 per order EOQ =400 per order 
Cs=$50 per order No =30 orders per year 1u  (No ) =30 orders (decision 

variable) 
Ch=$7,5 per unit per 
year 

Holding cost = $1.500 per year Holding cost = $1.500 per period 

Cu=$25 per unit Ordering cost = $1.500  per year Ordering cost = $1.500  per 
period 

T=360 days Purchasing cost = 300.000 per 
year 

Purchasing cost = 300.000 per 
period 

 Total Cost = $303.000 per year 
 

(min) J = $303.000 per period 
T (time horizon) = known 
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 In previous examples (see Table 2), the deterministic discrete spreadsheet 
simulation model obtained the same results for ordering, holding, purchasing and 
total costs as a static model with EOQ formula. The next example of EOQ 
formula represents the model where the results of simulation are not exactly the 
same as in the static models described in Anderson et al. [5] - Table 3. In this 
section we will explain why the results of simulation are different compared 
against static EOQ formula. In the specific example for Problem 3 (see Table 3), 
of EOQ model without allowed shortages adjusted with a spreadsheet model, 
there is  only one decision variable - Number of replenishments. 

Table 3 
Numerical example of EOQ model without shortages 

Problem 3 Traditional static EOQ model 
found (Anderson et al. [5]) 

Dynamic discrete spreadsheet 
model found 

D=104.000 units per 
year 

EOQ =1.824,28 per order EOQ =1.824,56 per order 

Cs=$32 per order No =57,01 orders per year 1u  (No) =57 orders (decision 
variable) 

Ch=$2 per unit per year Holding cost = $1.824,28 per 
year 

Holding cost = $2012,31 per 
period 

Cu=$8 per unit Ordering cost = $1.824,28  per 
year 

Ordering cost = $1.824,00  per 
period 

T=250 days Total Cost = $3.648,56 per year J = $3836,59 per period 
 Cycle time = 4,39 days Cycle time = 4,39 days 

T (time horizon) = known 
 
 It is inconvenient to assign a decimal number to the number of orders as (etc. 
57,01). The number of orders has to be adopted as an integer number (etc. 57). In 
the case where the number of orders is a decimal number (see Table 3.), the part 
of the number after a decimal comma proportionally increases the values of 
Ordering and Holding costs. It should be noted that Ordering cost exists as a 
whole number if there is an order, regardless of whether we order the 10th or 100th 
parts of one order. This fact assumes that parts of Ordering cost in Total cost 
should not be calculated in the case of orders as decimal number. Ordering costs 
in a static model are higher than ordering costs in a spreadsheet model for 0,88%, 
precisely for $0,28  as the ordering cost is proportionally calculated per number of 
orders (as decimal number), which is impossible in a real situation. As it is shown 
in Table 3, the Holding cost in a spreadsheet model is different from the Holding 
cost in a static model (see Table 3.). The main reason for this difference is the way 
in which the cost is calculated. In the static EOQ model holding cost represents 
the product of daily average inventory and the cost of holding per unit per day. If 
inventory dynamics is shown by right-angled triangle (see Figure 1a.), it is clear 
that all replenishment cycles and appropriate triangles have to be equal in order to 
calculate total holding costs at the end of the period. However, the question is 
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what happens in the case when the heights of the triangles are not equal, in other 
words, when the replenishment cycles do not end with the inventory value of zero. 
In this case the average amount of inventory that is used to calculate the holding 
cost in a static model in [5] is not precisely defined (see Fig 2.). 

 

 
Fig. 2. Stock dynamics over the year in Problem 3 never reaches zero 

 
 Table 4. shows a situation when the replenishment cycles do not end with 
zero inventory value. At the end of the last period of each cycle (see column 4, 
Table 4.), inventory level never reaches zero. As a result, holding cost varies from 
cycle to cycle. In this example the total amount of holding cost is higher than the 
cost of a static model for $188. 

Table 4  
Comparison of numerical results for Problem 3. where inventory level never reaches zero 

1 2 3 4 5 

Number of 
replenishments 

EOQ 
quantity 

Demand per each 
single period in 

cycles 

Stock at the 
last single 

period in cycle 

Holding cost at the 
last single period in 

cycle 

1 1.824,56 416,00 160,56 2,95 
2 1.824,56 416,00 321,12 4,23 
. . . . . 

55 1.824,56 416,00 94,88 2,42 
56 1.824,56 416,00 255,44 3,71 
57 1.824,56 416,00 0,00 1,66 

Total: 104.000,00 188,03 
 

According to this assumption it is appropriate to conclude that the dynamic 
spreadsheet EOQ model is better for the presentation of holding costs, because the 
value of cost is taken into account  in every single period of time (t) of inventory 
replenishment cycle. Total Holding Cost value is represented as a sum of 
individual costs for every discrete time period of the time horizon. Table 5 
discusses the case of EOQ model with allowed shortages described in Anderson et 
al. [5]. 
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Table 5 
Numerical examples of EOQ model with shortages 

Problem 4 EOQ model found 
(Anderson et al.(2003)) Spreadsheet model found 

D = 2000 units per year EOQ = 115,47 per order EOQ = 117,65 per order 
Cs = $25 per order No = 17,32 orders per year 1u = 17 orders per period - 

decision variable
Ch = $10 per unit per 
year 

Cycle time = 14,43 days 2u =25%(Backorder.quan.=28,823) 
- decision variable 

Cu = $50 per unit Backorder quantity = 28,87 Cycle time = 14 days 
Csh = $30 per unit per 
year 

Holding cost = $325 per year Backorder quantity = 28,82 

T = 250 days Ordering cost = $433 per year Holding cost = $307,83 per period 
 Backord. cost = $108 per year Ordering cost = $450 per period 
 Total Cost = $866 per year Backord. cost = $137,83 per period 
  Total Cost = $895,66 per period 
  T (time horizon) = known 
 

In the specified example for Problem 4 of the EOQ model (see Table 5.), 
with allowed shortages, adjusted with spreadsheet model, there exist two decision 
variables: the Number of replenishments and the Percentage of the replenishment 
quantity which determines the  value of allowed shortage. The total cost in the 
static model is lower than the total cost in the spreadsheet model, and the 
difference is $30. In the numerical experiments of the EOQ model with shortages 
(see Table 5.) we can adopt the same assumptions in regard to Ordering and 
Holding costs as in the case of the EOQ model without shortages (see Table 3 and 
Table 4.). The basic assumption of the EOQ model with shortages is that each 
backorder quantity in every cycle must be satisfied at the beginning of the next 
replenishment cycle. At the end of the time horizon, when there are no any more 
orders for delivering, the last shortage quantity must be satisfied just in the  
amount of the height of shortage (see Fig 6.). This fact leads to the occurrence of  
the 18th order cycle in the time horizon, and also, to an additional ordering cost. 

The ordering cost in a static model is lower than the ordering cost in a 
spreadsheet model for $17, because of the existing ordering cost for the last 18th 
order in the spreadsheet simulation model (see Fig 6.). However, the amount of 
the ordering cost for 17 replenishment cycles should be $425 (17 orders x $17), 
but in the static model EOQ the model ordering cost is $433, due to the decimal 
number of orders - 17,32 orders. Decimal number 0,32 is proportionally 
calculated in Ordering cost, which is impossible in the real-life situation, because 
the number of orders must be only integer numbers. As  shown in Table 5, 
holding cost in the spreadsheet model is lower than the holding cost in the static 
model. The main reason for this difference is the way of cost calculation. In the 
static EOQ model the holding cost represents the product of daily average 
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inventory and the cost of holding per unit per day, and the inventory dynamics is 
shown by the right-angled triangle (see Figure 1a.), where the heights of the right-
angle triangles are equal. 

 

 
Fig 3. Amount of order quantity for fulfillment of shortage at the end of time horizon 

 
 The holding cost may differ from cycle to cycle. The holding cost per cycle is 
different because the EOQ quantity is not divisible by daily demand (see Column 
3, Table 6.). The total holding cost per each cycle varies from one replenishment 
cycle to another replenishment cycle. It is very important to notice that the 
replenishment cycles end with inventory value of zero. At the end of the last 
period of each cycle (see column 4, Table 6.), inventory level reaches zero. This 
fact  results in the lower holding cost because inventory quantity at the end of 
each cycle does not move into the next cycle, when the stocks start increases. The 
shortage quantity starts increasing when the inventory quantity reaches zero (e.g. 
in cycle 1, stock quantity is 0,78 and shortage quantity is 7,22  (i.e.the summary is 
8,00 - demand quantity per each single period). 

In the case of the EOQ model with shortages it is necessary to pay attention 
to the  Backordering cost. Inventory dynamics of backordering quantities is shown 
as an inverted right-angled triangle (see Fig 8.). At the start of shortage quantities 
occurence, after the inventory reaches zero, the first shortage quantity presents the 
remains of partially satisfied demand (see column 4 and 5, Table 6). This shortage 
quantity varies from cycle to cycle.  
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Table 6 
Numerical results of spreadsheet model for EOQ model with shortages 

1 2 3 4 5 6 7 

Number of 
replenishmen

ts 

EOQ 
quantity 

Daily 
demand per 
each period 

in cycles 

Stock quantity 
in the last 

period in cycle 

Shortage 
quantity in the 
last period in 

cycle 

Holding cost 
in the last 
period in 

cycle 

Shortage 
cost in 
the last 

period in 
cycle 

1 117,65 8,00 0,78 7,22 0,02 0,43 
2 117,65 8,00 6,42 1,58 0,13 0,09 
. . . . . . 

15 117,65 8,00 7,84 0,16 0,16 0,01 
16 117,65 8,00 5,48 2,52 0,11 0,15 

17 117,65 8,00 3,13 4,87 0,06 0,29 

Total: 2.000,00 1,38 4,01 

 
The Backordering cost in one replenishment cycle is presented as a value of 

surface of the inverted right-angle triangle, precisely, as the product of daily 
average backlog-inventory and the cost of backorders per unit per day. It can be 
seen that all replenishment cycles and appropriate inverted triangles have to be 
equal in order to calculate the total holding costs at the end of the period.  
 

 
 

Fig 4. Stock dynamics in the case of backordering in finite time period 
 
 Thus, it is clear that this fact may also result with a deviation of Backordering 
cost when comparing a static model and a dynamic spreadsheet model. A 
deviation occurs due to a different maximum backlog value in each cycle period. 
For the same reason triangle areas of backlog are not the same in replenishment 
cycles of the static and dynamic simulation model (see Fig. 4), also the total cost 
will be different in a static and dynamic simulation model. 
 

8. Conclusion 
 

The model of inventory control as a discrete system control can be 
successfully used as a general dynamic model for analyzing inventory dynamics 
over a finite time horizon in the case of the fixed-order quantity system with or 
without shortages. The model of inventory control as a discrete system control, 
developed in a spreadsheet (tables and charts), represents a great tool, both for 
academics and professionals, for better understanding of dynamics of  inventory 
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on the day-to-day basis. This model clearly distinguishes the discrete controlled 
object, performance criterion, and a method for problem solving. Firstly, this 
paper gives the mathematical rationale of the discrete object (Law of dynamics 
and Control domain) representing the dynamics of the inventory stock over the 
time horizon. Secondly, a user does not have to make cumbersome spreadsheet 
formulas by s/himself. As it is proved, it is very useful to add a spreadsheet chart 
depicting stock and shortage dynamics over the time horizon.  Thirdly, this paper 
shows how to define an objective function which will be incorporated into the 
performance criterion. Subsequently, one can perform ‘‘what if” analyzes or  
metaheuristics search in order to find the optimal solution which can be simulated 
and analyzed. 

In order to prove superiority over the classical EOQ model, several 
prominent papers dealing with inventory problems where compared against our 
approach. We came to the conclusion that our approach might be more convenient 
for education and training of students and practitioners.  
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