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DYNAMIC DISCRETE SIMULATION MODEL OF AN
INVENTORY CONTROL WITH OR WITHOUT ALLOWED
SHORTAGES

Slobodan ANTIC?, Lena DJORDJEVIC?, Konstantin KOSTIC?, Andrej LISEC*

This paper shows how to develop a dynamic discrete spreadsheet model of an
inventory control in the case of the fixed order quantity, for the finite time horizon,
with or without allowed shortages. There is a clear distinction between a discrete
controlled object (the law of behavior and control domain) ,a performance criterion
and the method used to find an optimal solution. Further, it shows how to derive a
performance criterion, including all costs that are considered to be significant by
the user. Several respectful papers pertaining inventory control with and without
shortages are used to compare and prove accuracy, simplicity and practicality of
our approach.
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1. Introduction

The infinite time horizon inventory control models assume that the rate of the
annual demand is known and constant over several consecutive years. The finite
time horizon inventory control models assume the demand pertains only to the
determined time horizon, often shorter than one year period. The number of
replenishments obtained by the fixed time horizon inventory models is always an
integer number; that is not the case with the infinite time horizon inventory
models. This is why the results at the year’s level obtained by infinite time or by
finite time horizon inventory control models may differ. They are the same only if
both of them give an integer as the number of replenishments.

I e N

Fig. 1. Stock dynamics over the year: a) integer and b) non-integer number of replenishments

Axséter [1], Barlow [2], Muller [3], Wild [4], Anderson, Sweeney and
Williams [5], in their books and papers dealing with inventory control, describe a
classical economic order quantity model in the fixed-order quantity system at the
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finite time horizon and its variants when a demand rate is constant and known, as
a starting point for further understanding of inventory dynamics. The study of
inventory problems dates back to 1915, when Harris [6], first selected the
inventory problem for a mathematical analysis. As the result, the simple but
famous EOQ (Economic Order Quantity) formula was established which was also
derived, apparently independently, by Wilson [7]. Donaldson [8] came up with a
full analytic solution of the inventory replenishment problem with a linear trend in
demand over a finite-time horizon. The discrete version of this problem was
discussed by Wagner and Whitin [9], Barbosa and Friedman [10]which was
further generalized for solutions for various, similar EOQ models. Furthermore,
Goyal [11] was the first to develop the EOQ model under the conditions of
permissible delay in payments. All these models were developed with the
assumption that there are no shortages in inventory.

Deb and Chaudhuri [12] were the first to extend Donaldson's model [8], in
order to incorporate shortages in inventory. This extension was further studied by
Goyal [13]. Following Donaldson's approach [8], Dave [14] developed an exact
replenishment policy for an inventory model taking into account shortages. Sana
and Chaudhuri [15] developed EOQ model over a finite-time horizon for
perishable items, considering unequal cycle lengths. One method of dealing with
EOQ models with time-varying demand and cost over a finite planning horizon is
to use discrete Dynamic Programming [16], Wagner and Whitin [9]. Kostic in
[17] showed how to model EOQ problem in order to find an optimal number of
replenishments in the fixed-order quantity system, as a basic problem of optimal
control of the discrete system. The decision environment is deterministic and the
time horizon is finite. A discrete system consists of the law of dynamics, control
domain, and a performance criterion. It is primarily a simulation model of the
inventory dynamics, but the performance criterion enables various other strategies
to be compared.

Smith in [18] stated that the spreadsheets are extremely effective in
determining the optimum number of distribution facilities, the appropriate mix of
transportation modes, production scheduling, inventory optimization, and strategic
planning exercises. Vazsonyi [19] holds that the deterministic “what-if”
simulation methodology is the most popular decision making tool. Przasnyski in
[20] assumes that the spreadsheets have provided a platform for demonstrating the
power of simulation in inventory management.

Kostic [17] has shown that modelling inventory problems as a discrete object
optimal control is more appropriate for the real-life. He has developed a general
approach to inventory models and has shown that all variants of EOQ model
applications can be considered the scenarios of the inventory control model, as
the model of optimal control of the discrete system.
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The traditional EOQ model assumes an infinite time horizon and the number
of obtained replenishments is often non-integer (Figure 1b). It is often necessary
to make certain approximations in order to use a traditional EOQ model for the
finite time inventory problems in practise. It is practically inconvenient to apply
4.7 replenishments and that a replenishment cycle is 77.66 days long.
Furthermore, the cost of ordering is linked to the replenishment occurrence, which
can be merely integer, but EOQ model often multiplies the ordering costs with the
fractional number of replenishments thus giving inaccurate total inventory cost.

This paper is predicated by the paper [17]. As an extension to the paper we
have derived a unique model of the inventory control, in the case of the fixed
order quantity and finite time horizon with or without allowed shortages. A
discrete time system is a more natural way to describe inventory dynamics. The
model of discrete system control is both a simulation model of inventory
dynamics and an optimization model, which gives an optimal control according to
the defined performance criterion.

2. Discrete controlled object: Law of dynamics and Control domain

Following notation will be used for the mathematical relations that describe

the discrete object:
Table 1
Variable notations for mathematical relations

t - Discrete time vl L . .
' . . - Quantity item received at time t
T - Number of days of the time horizon, ¢ @ y
D - Item demand for the observed time Yt2 - Unsatisfied demand at time t
horizon

) Y3 - Demand at time t
X! -stock attimet, !

_ Y,* - satisfied shortage at time t
th - Shortage at time t, ‘2 g

1 . U - Percentage of the replenishment quantity
U™ - Number of replenishments which determining allowed shortage

The main characteristic of the inventory control in the case of the fixed order
quantity for the finite time horizon is that the replenishment quantity is constant
and performed throughout several replenishments which occur at the beginning of
the equal portions of the time horizon. The sum of replenishment quantities over
the time horizon is equal to the demand in the time horizon (D). In accordance to
Kaostic [17] this type of the flow is called “Discrete input and continuous output”.
Inventory flows may occur with and without allowed shortages. We will develop
a model of a discrete controlled object that will encompass both possibilities.
Therefore we introduce two flows: one for the dynamics of inventory on hand and
the other for the dynamics of shortages that will represent an unsatisfied demand.
Both flows consist of the alternating subsequence *“action — accumulation —
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action”: an input action increases accumulation, and an output action decreases
accumulation. Dynamics of accumulations can be expressed as follows:

X} = known i=12 O
X! =X+ =Y t=12,.T
where X is a state variable pertaining to the flow of the inventory, and X is a

state variable pertaining to the flow of shortages. The discrete time t can take only
integer values t=0, 1, 2,..T, representing days. T is a number of days over the time

horizon. When the replenishment occurs, the level of inventory X increases
instantaneously. The level X decreases in accordance to a daily demand (D/T).

There are two possible outcomes when the level X! meets zero: the first is to get
a new replenishment if shortages are not allowed, and the second one is to stop
decreasing the level of inventory X and start increasing the level of shortages

XZ if shortages are allowed. Neither of the two levels could be negative. Y;'

represents an input action that increases the inventory on hand. Its value over the
time horizon equals zero, which is excepted in the moment when the
replenishment occurrs. Denote the number of replenishments as a control variable
u’. The replenishment quantity is u'-th part of the whole demand for the
encompassed time horizon, D/ u'. The whole time horizon is divided into T time
buckets representing days, t=1,2,...,T. If we divide the number of time buckets T
with the number of replenishments u’, the result could be non-integer number,
inappropriate to determine the time bucket at which the replenishment will occur.
Therefore, we introduce a rule that the replenishment will occur if the inventory
on hand threatens to fall below zero if shortages are not allowed, or if shortages
exceed allowed level provided they are allowed. In order to deal with the
shortages, let us introduce the second control variable u? (0<u? <1) that will
represent a percentage of the replenishment quantity, as the highest allowed level
of the shortage. If we deal with the inventory without shortages, then the value of
the variable u® will be zero. Assume that both the initial inventory and initial

shortages are zero, X, =0, i=212. The first replenishment occurs on the first day.
If the shortages are allowed, then the first replenishment quantity should be
diminished by the allowed shortage (given as a percentage u’ of the replenishment
quantity D/u).
Y11=D'(:|.—U2)/U1 (2)
The ensuing u'-1 replenishments will occur according to the next
mathematical relation:
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{min(D/ul,D—D-uzlul—gYnl), if X2, > D-uZ/ull U0
Ot_l X <Dout i D—D-u2/u1>§Yn1
Y! = {min(D/ul,D—nZ_;Yj), if X;,<DIT w0 =0
0 Jif XL, >DIT
0  if D—D-uzluléiYnl
)
t=2,3,...,T ©)

In this relation a mathematical expression u?>0 corresponds to the situation
when the shortages are allowed, and u?=0 corresponds to situation when the
shortages are not allowed. If the shortages are allowed then there will be a
shortage at the end of the time horizon. Suppose that the shortage is eventually
supplied. It will occur the very next day after the end of the time horizon
encompassed.

.
Vi, =D-YV! 4
tt=1
This relation holds also for the case when the shortages are not allowed or
equals the value zero. The depletion of the inventory is consistent with the
assumption that the demand over the time horizon is even and equals D/T.

Y2 =min(D/T, X;, +Y) (5)

If the level of inventory on hand X' reaches zero and the shortages are
allowed, then the recording of the shortages Y? occurs according to the next
relation.

D/T —(X{, +Y}) ,if DIT>(X!,+YY) . S
(Xia t)_ ( tll tl),lf D>Z(Yn2+Ytt3)
2 0 if DIT <(XE +YY) =0 if u?>0
v t-1 '
t 0 JfE DY (Y +YY)
tt=0
0 ,if u?=0
(6)

The level of shortages X? increases until the new replenishment. With the
new replenishment the entire shortage is satisfied i.e. the value of state variable X

becomes zero. It means that the value of the flow regulator Y,* is greater than zero
only if replenishment occurs.
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t=12,....T 7

0 if Yt1 =0 )

The control domain is defined by ensuring non-negativity of the state
variables for each t.

0< X!, +Y! =Y/ |i=12,t=12..T,T+1 (8)

v _{min(vﬁ—vf,xfl) Jif YIS0
4=

5. Performance criterion J =) f(X,,, p,,u)

The aim of ensuring that the anticipated demand is met can be achieved by
keeping stock nonnegative. However, the primary purpose of inventory control is
to ensure that the right quantity of the right items is ordered at the right time,
according to a known demand, existing constraints and with the objective to
minimize the total cost, where the cost is expressed by the equation: Cost =
ordering cost + holding cost + shortage cost + purchase cost. This function can be
broaden by additional costs according to the real nature of the inventory problem.

Ordering cost includes costs arising from the preparation and dispatch of the
order, checking of the goods on delivery, and other clerical support activities. It
can be constant (EOQ model) or variable throughout the time horizon, depending
(Increasing Delivery Costs — a variation of the Discount model) or not on the
ordered quantity. Ordering cost per order Cs is greater than zero only in time t
when the order arrives in the stock or when the batch starts.

The cost of holding one unit of an item in stock per day (for instance $20/T a
unit per day or as a percentage of the unit cost of the item divided by T, where T
is the number of days of the time horizon). It can be constant (EOQ model) or
variable throughout the time horizon, independant of the quantity carried in
inventory. Holding or carrying cost per one unit Ch per day multiplies a day
average inventory. If we retain a classical inventory control model approach, a
day average (dav) inventory can be calculated as:

dav(t) = X1, + (Y -Y*)-Y2/2 t=12..T 9)

Shortage cost per one unit Csh per day multiplies a day average shortages. If
we retain a classical inventory control model approach, a day average shortage
(dash) can be calculated as:

X2 +Y212if Y2
daSh(t):{ o :) ’ilf Ytzi(()J
1 t =

Purchase (unit) cost is the price charged by suppliers for one unit of the item.
It can be constant (EOQ model) or variable throughout the time horizon,
independant (Quantity Discount model) of the ordered quantity. Purchase (unit)

t=12,..T (10)
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}+Ch -dav(t) +Csh-dash(t) + Cu-Y'] (11

cost Cu multiplies quantity purchased in time t. The general pattern of the
performance criterion is

T i 1
J =Z[Cs-{1’ !f Ytl 79

t=1 O, if Yt =0
that should be minimized. It is obvious that the value of performance criterion
depends on the inflow dynamics Y*. The function of the performance criterion can
contain additional information according to the real decision environment. Values
of each partial functions of the performance criterion J over the time horizon T
can be presented in separate columns of the spreadsheet. The values of the
performance criterion J should cumulate values of its partial functions over the
time horizon.

7. Discussion and comparison of the results

In this section we investigate the examples of spreadsheet model in the case
of EOQ model without allowed shortages. Firstly, we present the dynamic
spreadsheet models where the results of simulation are exactly the same as in the

static models described in Hesse [21] and Barlow [2], see Table 2.
Table 2
Numerical example of EOQ model without shortages

Traditional static EOQ model Dynamic discrete spreadsheet

FresEm 4 found (Hesse [21]) model found

D=500 units per year
Cs=$10 per order

Ch=%0,0208 per unit per
year

Cu=$0 per unit

T=360 days

EOQ =250 per order
N° =2 orders per year

Holding cost = $2,60 per year

Ordering cost = $20 per year
Total Cost = $22,60 per year
Cycle time = 0,5 year

EOQ =250 per order

u' (N° ) =2 orders (decision
variable)

Holding cost = $2,60 per period

Ordering cost = $20 per period
(min) J = $22,60 per period
Cycle time = 180 days

T (time horizon) = known

Problem 2

Traditional static EOQ model
found (Barlow [2])

Dynamic discrete spreadsheet
model found

D=12.000 units per year
Cs=$50 per order

Ch=$7,5 per unit per
year
Cu=%25 per unit

T=360 days

EOQ =400 per order
N° =30 orders per year

Holding cost = $1.500 per year
Ordering cost = $1.500 per year
Purchasing cost = 300.000 per

year
Total Cost = $303.000 per year

EOQ =400 per order

u' (N° ) =30 orders (decision
variable)

Holding cost = $1.500 per period

Ordering cost = $1.500  per
period
Purchasing cost = 300.000 per
period

(min) J = $303.000 per period
T (time horizon) = known
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In previous examples (see Table 2), the deterministic discrete spreadsheet
simulation model obtained the same results for ordering, holding, purchasing and
total costs as a static model with EOQ formula. The next example of EOQ
formula represents the model where the results of simulation are not exactly the
same as in the static models described in Anderson et al. [5] - Table 3. In this
section we will explain why the results of simulation are different compared
against static EOQ formula. In the specific example for Problem 3 (see Table 3),
of EOQ model without allowed shortages adjusted with a spreadsheet model,

there is only one decision variable - Number of replenishments.
Table 3
Numerical example of EOQ model without shortages

Problem 3

Traditional static EOQ model
found (Anderson et al. [5])

Dynamic discrete spreadsheet
model found

D=104.000
year
Cs=$32 per order

units  per

Ch=$2 per unit per year
Cu=$8 per unit

T=250 days

EOQ =1.824,28 per order

N° =57,01 orders per year

Holding cost = $1.824,28 per
year

Ordering cost = $1.824,28 per
year

Total Cost = $3.648,56 per year
Cycle time = 4,39 days

EOQ =1.824,56 per order

u' (N° =57 orders (decision

variable)

Holding cost = $2012,31 per
period

Ordering cost = $1.824,00 per
period

J = $3836,59 per period
Cycle time = 4,39 days

T (time horizon) = known

It is inconvenient to assign a decimal number to the number of orders as (etc.
57,01). The number of orders has to be adopted as an integer number (etc. 57). In
the case where the number of orders is a decimal number (see Table 3.), the part
of the number after a decimal comma proportionally increases the values of
Ordering and Holding costs. It should be noted that Ordering cost exists as a
whole number if there is an order, regardless of whether we order the 10" or 100"
parts of one order. This fact assumes that parts of Ordering cost in Total cost
should not be calculated in the case of orders as decimal number. Ordering costs
in a static model are higher than ordering costs in a spreadsheet model for 0,88%,
precisely for $0,28 as the ordering cost is proportionally calculated per number of
orders (as decimal number), which is impossible in a real situation. As it is shown
in Table 3, the Holding cost in a spreadsheet model is different from the Holding
cost in a static model (see Table 3.). The main reason for this difference is the way
in which the cost is calculated. In the static EOQ model holding cost represents
the product of daily average inventory and the cost of holding per unit per day. If
inventory dynamics is shown by right-angled triangle (see Figure 1a.), it is clear
that all replenishment cycles and appropriate triangles have to be equal in order to
calculate total holding costs at the end of the period. However, the question is
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what happens in the case when the heights of the triangles are not equal, in other
words, when the replenishment cycles do not end with the inventory value of zero.
In this case the average amount of inventory that is used to calculate the holding
cost in a static model in [5] is not precisely defined (see Fig 2.).
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Fig. 2. Stock dynamics over the year in Problem 3 never reaches zero

Table 4. shows a situation when the replenishment cycles do not end with
zero inventory value. At the end of the last period of each cycle (see column 4,
Table 4.), inventory level never reaches zero. As a result, holding cost varies from
cycle to cycle. In this example the total amount of holding cost is higher than the
cost of a static model for $188.

Table 4
Comparison of numerical results for Problem 3. where inventory level never reaches zero
1 2 3 4 5
Number of EOQ ngand per ee_lch Stock at the Hold_lng cost at th_e
. . single period in last single last single period in
replenishments quantity A
cycles period in cycle cycle
1 1.824,56 416,00 160,56 2,95
2 1.824,56 416,00 321,12 4,23
55 1.824,56 416,00 94,88 2,42
56 1.824,56 416,00 255,44 3,71
57 1.824,56 416,00 0,00 1,66
Total: 104.000,00 188,03

According to this assumption it is appropriate to conclude that the dynamic
spreadsheet EOQ model is better for the presentation of holding costs, because the
value of cost is taken into account in every single period of time (t) of inventory
replenishment cycle. Total Holding Cost value is represented as a sum of
individual costs for every discrete time period of the time horizon. Table 5
discusses the case of EOQ model with allowed shortages described in Anderson et
al. [5].
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Table 5
Numerical examples of EOQ model with shortages

EOQ model found

Problem 4 (Anderson et al.(2003)) Spreadsheet model found
D = 2000 units per year EOQ = 115,47 per order EOQ = 117,65 per order
Cs = $25 per order N° = 17,32 orders per year ul=17 orders per period -

decision variable

u? =25% (Backorder.quan.=28,823)
- decision variable

Cu = $50 per unit Backorder quantity = 28,87 Cycle time = 14 days

Csh = $30 per unit per | Holding cost = $325 per year Backorder quantity = 28,82

year

Ch = $10 per unit per | Cycle time = 14,43 days
year

T =250 days Ordering cost = $433 per year | Holding cost = $307,83 per period
Backord. cost = $108 per year | Ordering cost = $450 per period
Total Cost = $866 per year Backord. cost = $137,83 per period

Total Cost = $895,66 per period
T (time horizon) = known

In the specified example for Problem 4 of the EOQ model (see Table 5.),
with allowed shortages, adjusted with spreadsheet model, there exist two decision
variables: the Number of replenishments and the Percentage of the replenishment
quantity which determines the value of allowed shortage. The total cost in the
static model is lower than the total cost in the spreadsheet model, and the
difference is $30. In the numerical experiments of the EOQ model with shortages
(see Table 5.) we can adopt the same assumptions in regard to Ordering and
Holding costs as in the case of the EOQ model without shortages (see Table 3 and
Table 4.). The basic assumption of the EOQ model with shortages is that each
backorder quantity in every cycle must be satisfied at the beginning of the next
replenishment cycle. At the end of the time horizon, when there are no any more
orders for delivering, the last shortage quantity must be satisfied just in the
amount of the height of shortage (see Fig 6.). This fact leads to the occurrence of
the 18" order cycle in the time horizon, and also, to an additional ordering cost.

The ordering cost in a static model is lower than the ordering cost in a
spreadsheet model for $17, because of the existing ordering cost for the last 18™
order in the spreadsheet simulation model (see Fig 6.). However, the amount of
the ordering cost for 17 replenishment cycles should be $425 (17 orders x $17),
but in the static model EOQ the model ordering cost is $433, due to the decimal
number of orders - 17,32 orders. Decimal number 0,32 is proportionally
calculated in Ordering cost, which is impossible in the real-life situation, because
the number of orders must be only integer numbers. As shown in Table 5,
holding cost in the spreadsheet model is lower than the holding cost in the static
model. The main reason for this difference is the way of cost calculation. In the
static EOQ model the holding cost represents the product of daily average




Dynamic discrete simulation model of an inventory control with or without allowed shortages 173

inventory and the cost of holding per unit per day, and the inventory dynamics is
shown by the right-angled triangle (see Figure 1a.), where the heights of the right-
angle triangles are equal.

10 Flow regulators State variables 450,00 307,83
Ordering Holding
11 t ¥1 Y2 Y3 Y4 X1 X2 cost cost

245 733 0.00 800 0.00 0.00 10,52 0.00 0.00
246) EOQ 234 0,00 8,00 0,00 0,00 18,52 0,00 0,00
247 | auantity 0,00 800 0,00 0,00 26,520 5 der 0,00 0,00
24g) (1-17) 0,00 0,00 34,52 0,00 0,00

X X J + f X
249 34,52 75,13 ooof 225" (2500 ) 317
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252 Gocie 0,00 51,13 0,00 auantity 0,00 2,21
253 . 0,00 43,13 0,00 0,00 1,29

d X \ X X J
254 LB 2 0,00 35,13 0,00 0,00 1,57
255 — 0,00 2713 0,00 0,00 1,25
256 Bac 0,00 19,13 0,00 0,00 0,93
257 | order 0,00 11,13 0,0 0,00 0,61
258 | quantity 0,00 3,13 0,00 order 0,00 0,29
259 0,00 0,00 4,87) cost for 0,00 0,06
S560| Last (18) 0,00 0,00 12,87 18th 0,00 0,00
261 | order 0,00 0,00 2087 o der 0,00 0,00
262| quantity 0,00 0,00 28,87 ) a-a0 0,00
263 atthe end 28,87 0,00 o0 AUentEY R
264| oftime 0,00 0,00 0,0 ooy 0,00
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266 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

o X X X
Fig 3. Amount of order quantity for fulfillment of shortage at the end of time horizon

The holding cost may differ from cycle to cycle. The holding cost per cycle is
different because the EOQ quantity is not divisible by daily demand (see Column
3, Table 6.). The total holding cost per each cycle varies from one replenishment
cycle to another replenishment cycle. It is very important to notice that the
replenishment cycles end with inventory value of zero. At the end of the last
period of each cycle (see column 4, Table 6.), inventory level reaches zero. This
fact results in the lower holding cost because inventory quantity at the end of
each cycle does not move into the next cycle, when the stocks start increases. The
shortage quantity starts increasing when the inventory quantity reaches zero (e.g.
in cycle 1, stock quantity is 0,78 and shortage quantity is 7,22 (i.e.the summary is
8,00 - demand quantity per each single period).

In the case of the EOQ model with shortages it is necessary to pay attention
to the Backordering cost. Inventory dynamics of backordering quantities is shown
as an inverted right-angled triangle (see Fig 8.). At the start of shortage quantities
occurence, after the inventory reaches zero, the first shortage quantity presents the
remains of partially satisfied demand (see column 4 and 5, Table 6). This shortage
quantity varies from cycle to cycle.
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Table 6
Numerical results of spreadsheet model for EOQ model with shortages
1 2 3 4 5 6 7
. . Shortage
Number of Daily Stock quantity Shc')rte}ge H_oldlng cost cost in
: EOQ demand per - quantity in the in the last
replenishmen < : in the last L e the last
guantity each period S last period in period in e
ts . period in cycle period in
in cycles cycle cycle
cycle
1 117,65 8,00 0,78 7,22 0,02 0,43
2 117,65 8,00 6,42 1,58 0,13 0,09
15 117,65 8,00 7,84 0,16 0,16 0,01
16 117,65 8,00 5,48 2,52 0,11 0,15
17 117,65 8,00 3,13 4,87 0,06 0,29
Total: 2.000,00 1,38 4,01

The Backordering cost in one replenishment cycle is presented as a value of
surface of the inverted right-angle triangle, precisely, as the product of daily
average backlog-inventory and the cost of backorders per unit per day. It can be
seen that all replenishment cycles and appropriate inverted triangles have to be
equal in order to calculate the total holding costs at the end of the period.

[

Fig 4. Stock dynamics in the case of backordering in finite time period

Thus, it is clear that this fact may also result with a deviation of Backordering
cost when comparing a static model and a dynamic spreadsheet model. A
deviation occurs due to a different maximum backlog value in each cycle period.
For the same reason triangle areas of backlog are not the same in replenishment
cycles of the static and dynamic simulation model (see Fig. 4), also the total cost
will be different in a static and dynamic simulation model.

8. Conclusion

The model of inventory control as a discrete system control can be
successfully used as a general dynamic model for analyzing inventory dynamics
over a finite time horizon in the case of the fixed-order quantity system with or
without shortages. The model of inventory control as a discrete system control,
developed in a spreadsheet (tables and charts), represents a great tool, both for
academics and professionals, for better understanding of dynamics of inventory
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on the day-to-day basis. This model clearly distinguishes the discrete controlled
object, performance criterion, and a method for problem solving. Firstly, this
paper gives the mathematical rationale of the discrete object (Law of dynamics
and Control domain) representing the dynamics of the inventory stock over the
time horizon. Secondly, a user does not have to make cumbersome spreadsheet
formulas by s/himself. As it is proved, it is very useful to add a spreadsheet chart
depicting stock and shortage dynamics over the time horizon. Thirdly, this paper
shows how to define an objective function which will be incorporated into the
performance criterion. Subsequently, one can perform ‘‘what if” analyzes or
metaheuristics search in order to find the optimal solution which can be simulated
and analyzed.

In order to prove superiority over the classical EOQ model, several
prominent papers dealing with inventory problems where compared against our
approach. We came to the conclusion that our approach might be more convenient
for education and training of students and practitioners.
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