

MAJORIZATION RESULTS FOR A GENERAL SUBCLASS OF MEROMORPHIC MULTIVALENT FUNCTIONS

Serap Bulut¹, Ebrahim Analouei Adegani², Teodor Bulboacă³

In the present paper we investigate a majorization problem for the new class $\mathcal{H}_{\lambda,p,\mu}^{n,l}(\alpha, \delta, \gamma, j; A, B)$ of meromorphic functions defined by using the multiplier transform $\mathcal{J}_{\lambda,p,\mu}^{n,l}$. Also, we point out some useful consequences of our main results.

Keywords: Meromorphic functions, multivalent functions, majorization property, multiplier transform, differential subordination

MSC2020: 30C45; 30C80.

1. Introduction

Let the functions f and g be analytic in an open subset G of the unit disk $\mathbb{U} := \{z \in \mathbb{C} : |z| < 1\}$. We say that f is majorized by g in G (see [7]) and write

$$f(z) \ll g(z), \quad z \in G,$$

if there exists a function φ analytic in \mathbb{U} , such that $|\varphi(z)| \leq 1$ for all $z \in \mathbb{U}$ and

$$f(z) = \varphi(z)g(z), \quad z \in G. \quad (1)$$

If the functions f and g are analytic in \mathbb{U} , the function f is called to be *subordinate* to the function g , written $f(z) \prec g(z)$, if there exists a function w analytic in \mathbb{U} with $|w(z)| < 1$, $z \in \mathbb{U}$, and $w(0) = 0$, such that $f = g \circ w$. In particular, if g is univalent in \mathbb{U} then the following equivalence relationship holds true:

$$f(z) \prec g(z) \Leftrightarrow f(0) = g(0) \text{ and } f(\mathbb{U}) \subset g(\mathbb{U}).$$

Let Σ_p denote the class of all functions of the form

$$f(z) = z^{-p} + \sum_{k=0}^{\infty} a_k z^{k+1-p}, \quad (p \in \mathbb{N} := \{1, 2, \dots\}),$$

that are analytic in the punctured open unit disk $\mathbb{U}^* := \{z \in \mathbb{C} : 0 < |z| < 1\} = \mathbb{U} \setminus \{0\}$. In particular, we set $\Sigma_1 =: \Sigma$.

In a recent paper, Wang and Li [12] defined a new multiplier transform $\mathcal{J}_{\lambda,p,\mu}^{n,l}$ for the functions $f \in \Sigma_p$ by

$$\mathcal{J}_{\lambda,p,\mu}^{n,l} f(z) := z^{-p} + \sum_{k=0}^{\infty} \frac{(\mu)_{k+1}}{(k+1)!} \left(\frac{\lambda}{\lambda + l(k+1)} \right)^n a_k z^{k+1-p}, \quad z \in \mathbb{U}^*, \quad (2)$$

¹Faculty of Aviation and Space Sciences, Kocaeli University, Arslanbey Campus, 41285 Kartepe-Kocaeli, Turkey, e-mail: serap.bulut@kocaeli.edu.tr

²Faculty of Mathematical Sciences, Shahrood University of Technology, P.O.Box 316-36155, Shahrood, Iran, e-mail: analoey.ebrahim@gmail.com

³Faculty of Mathematics and Computer Science, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania, e-mail: bulboaca@math.ubbcluj.ro

where (and throughout this paper unless otherwise mentioned) the parameters n, l, p, λ and μ are constrained as follows:

$$n \geq 0, l \geq 0, p \in \mathbb{N}, \lambda > 0, \text{ and } \mu > 0,$$

and $(\mu)_k$ is the *Pochhammer symbol* defined by

$$(\mu)_k := \begin{cases} 1, & \text{if } k = 0, \\ \mu(\mu + 1) \cdots (\mu + k - 1), & \text{if } k \in \mathbb{N}. \end{cases}$$

It should be remembered that the operator $\mathcal{J}_{\lambda, p, \mu}^{n, l}$ generalize many other familiar operators considered by earlier authors (for details, see [12]).

It is readily verified from (2) (see [12]) that for all $f \in \Sigma_p$ we have

$$z \left(\mathcal{J}_{\lambda, p, \mu}^{n, l} f(z) \right)' = \mu \mathcal{J}_{\lambda, p, \mu+1}^{n, l} f(z) - (\mu + p) \mathcal{J}_{\lambda, p, \mu}^{n, l} f(z), \quad z \in \mathbb{U}^*. \quad (3)$$

By making use of the operator $\mathcal{J}_{\lambda, p, \mu}^{n, l}$, we define a new subclass of meromorphic functions $f \in \Sigma_p$ as follows:

Definition 1.1. Let $-1 \leq B < A \leq 1$, $p \in \mathbb{N}$, $0 \leq \alpha < p$, $j \in \mathbb{N}_0 := \mathbb{N} \cup \{0\}$, $\gamma \in \mathbb{C}^* := \mathbb{C} \setminus \{0\}$ and $\delta \geq 0$. A function $f \in \Sigma_p$ is said to be in the class $\mathcal{H}_{\lambda, p, \mu}^{n, l}(\alpha, \delta, \gamma, j; A, B)$ of meromorphic multivalent functions of complex order γ in \mathbb{U}^* if and only if

$$p - \frac{1}{\gamma} \left(\frac{z \left(\mathcal{J}_{\lambda, p, \mu}^{n, l} f(z) \right)^{(j+1)}}{\left(\mathcal{J}_{\lambda, p, \mu}^{n, l} f(z) \right)^{(j)}} + p + j \right) - \delta \left| \frac{1}{\gamma} \left(\frac{z \left(\mathcal{J}_{\lambda, p, \mu}^{n, l} f(z) \right)^{(j+1)}}{\left(\mathcal{J}_{\lambda, p, \mu}^{n, l} f(z) \right)^{(j)}} + p + j \right) \right| \prec \frac{p + [pB + (p - \alpha)(A - B)]z}{1 + Bz}, \quad (4)$$

where $\left(\mathcal{J}_{\lambda, p, \mu}^{n, l} f(z) \right)^{(j)}$ represents the “ j ” times derivative of $\mathcal{J}_{\lambda, p, \mu}^{n, l} f(z)$.

Remark 1.1. In the following some special cases of Definition 1.1 we show how the class of meromorphic multivalent functions $\mathcal{H}_{\lambda, p, \mu}^{n, l}(\alpha, \delta, \gamma, j; A, B)$, for suitable choices of the parameters, lead to certain new as well as known classes of meromorphic functions studied earlier in the literature.

(i) For $A = 1$ and $B = -1$, we get the class $\mathcal{H}_{\lambda, p, \mu}^{n, l}(\alpha, \delta, \gamma, j; 1, -1) =: \mathcal{H}_{\lambda, p, \mu}^{n, l}(\alpha, \delta, \gamma, j)$ which consists of functions $f \in \Sigma_p$ satisfying the condition

$$\operatorname{Re} \left\{ p - \frac{1}{\gamma} \left(\frac{z \left(\mathcal{J}_{\lambda, p, \mu}^{n, l} f(z) \right)^{(j+1)}}{\left(\mathcal{J}_{\lambda, p, \mu}^{n, l} f(z) \right)^{(j)}} + p + j \right) \right\} - \delta \left| \frac{1}{\gamma} \left(\frac{z \left(\mathcal{J}_{\lambda, p, \mu}^{n, l} f(z) \right)^{(j+1)}}{\left(\mathcal{J}_{\lambda, p, \mu}^{n, l} f(z) \right)^{(j)}} + p + j \right) \right| > \alpha,$$

with $0 \leq \alpha < p$.

(ii) If we set $\delta = 0$ in (i), then we get the class $\mathcal{H}_{\lambda, p, \mu}^{n, l}(\alpha, 0, \gamma, j; 1, -1) =: \mathcal{H}_{\lambda, p, \mu}^{n, l}(\alpha, \gamma, j)$ which consists of functions $f \in \Sigma_p$ satisfying the inequality

$$\operatorname{Re} \left\{ p - \frac{1}{\gamma} \left(\frac{z \left(\mathcal{J}_{\lambda, p, \mu}^{n, l} f(z) \right)^{(j+1)}}{\left(\mathcal{J}_{\lambda, p, \mu}^{n, l} f(z) \right)^{(j)}} + p + j \right) \right\} > \alpha, \quad z \in \mathbb{U}, \quad 0 \leq \alpha < p.$$

(iii) Setting $n = 0$ and $\mu = 1$ in (ii), then we get $\mathcal{H}_{\lambda,p,1}^{0,l}(\alpha, 0, \gamma, j; 1, -1) =: \mathcal{H}_p(\alpha, \gamma, j)$ which represent the functions $f \in \Sigma_p$ such that

$$\operatorname{Re} \left\{ p - \frac{1}{\gamma} \left(\frac{zf^{(j+1)}(z)}{f^{(j)}(z)} + p + j \right) \right\} > \alpha, \quad z \in \mathbb{U}, \quad 0 \leq \alpha < p.$$

(iv) For $p = 1$ and $j = 0$, the above classe mentioned at (iii) reduces to the class $\mathcal{H}_{\lambda,1,1}^{0,l}(\alpha, 0, \gamma, 0; 1, -1) =: \mathcal{S}_\gamma(\alpha)$ consisting of functions $f \in \Sigma$ satisfying

$$\operatorname{Re} \left\{ 1 - \frac{1}{\gamma} \left(\frac{zf'(z)}{f(z)} + 1 \right) \right\} > \alpha, \quad z \in \mathbb{U}, \quad 0 \leq \alpha < 1.$$

The class $\mathcal{S}_\gamma(\alpha)$ is said to be the class of *meromorphic starlike functions of complex order* $\gamma \in \mathbb{C}^*$ and type α ($0 \leq \alpha < 1$) in \mathbb{U}^* .

(v) Taking $\gamma = 1$ in (iv) we get the class $\mathcal{H}_{\lambda,1,1}^{0,l}(\alpha, 0, 1, 0; 1, -1) =: \mathcal{S}^*(\alpha)$ which consists of functions $f \in \Sigma$ with

$$\operatorname{Re} \left(-\frac{zf'(z)}{f(z)} \right) > \alpha, \quad z \in \mathbb{U}, \quad 0 \leq \alpha < 1.$$

The class $\mathcal{S}^*(\alpha)$ is said to be the class *meromorphic starlike functions of order* α ($0 \leq \alpha < 1$) in \mathbb{U}^* .

(vi) Considering $\alpha = 0$ in (v) we get the class $\mathcal{H}_{\lambda,1,1}^{0,l}(0, 1, 0; 1, -1) =: \mathcal{S}$ which consists of functions $f \in \Sigma$ such that

$$\operatorname{Re} \left(-\frac{zf'(z)}{f(z)} \right) > 0, \quad z \in \mathbb{U}.$$

(vii) Setting $p = 1, j = 1$ and $\gamma = 1$ in (iii) we obtain the class $\mathcal{H}_{\lambda,1,1}^{0,l}(\alpha, 0, 1, 1; 1, -1) =: \mathcal{K}(\alpha)$ which are the functions $f \in \Sigma$ satisfying the inequality

$$\operatorname{Re} \left\{ - \left(1 + \frac{zf''(z)}{f'(z)} \right) \right\} > \alpha, \quad z \in \mathbb{U}, \quad 0 \leq \alpha < 1.$$

The class $\mathcal{K}(\alpha)$ is said to be the class of *meromorphic convex functions of order* α ($0 \leq \alpha < 1$) in \mathbb{U}^* .

(viii) For $\alpha = 0$, the class of (vii) reduces to $\mathcal{H}_{\lambda,1,1}^{0,l}(0, 0, 1, 1; 1, -1) =: \mathcal{K}$ of functions $f \in \Sigma$ satisfying

$$\operatorname{Re} \left\{ - \left(1 + \frac{zf''(z)}{f'(z)} \right) \right\} > 0, \quad z \in \mathbb{U}.$$

The majorization problem for the normalized classes of starlike functions has recently been investigated by Altintas et al. [1] and MacGregor [7]. However, only a few articles deal with the majorization problem for the class of meromorphic functions (see [2, 3, 4, 5, 6, 9, 10, 11]). Motivated by these works, in the present paper we investigate a majorization problem for the new class $\mathcal{H}_{\lambda,p,\mu}^{n,l}(\alpha, \delta, \gamma, j; A, B)$ of meromorphic functions defined by using the multiplier transform $\mathcal{J}_{\lambda,p,\mu}^{n,l}$.

2. Majorization problem for the class $\mathcal{H}_{\lambda,p,\mu}^{n,l}(\alpha, \delta, \gamma, j; A, B)$

Unless otherwise mentioned we shall assume throughout the sequel that

$$-1 \leq B < A \leq 1, \quad p \in \mathbb{N}, \quad 0 \leq \alpha < p, \quad j \in \mathbb{N}_0, \quad \gamma \in \mathbb{C}^*, \quad \text{and } 0 \leq \delta \neq 1.$$

Our main majorization result is given by the next theorem:

Theorem 2.1. Let $f \in \Sigma_p$ and suppose that $g \in \mathcal{H}_{\lambda,p,\mu}^{n,l}(\alpha, \delta, \gamma, j; A, B)$. If

$$\left(\mathcal{J}_{\lambda,p,\mu}^{n,l} f(z) \right)^{(j)} \ll \left(\mathcal{J}_{\lambda,p,\mu+1}^{n,l} g(z) \right)^{(j)}, \quad z \in \mathbb{U}^*,$$

then

$$\left| \left(\mathcal{J}_{\lambda,p,\mu+1}^{n,l} f(z) \right)^{(j)} \right| \leq \left| \left(\mathcal{J}_{\lambda,p,\mu+1}^{n,l} g(z) \right)^{(j)} \right|,$$

for $0 < |z| \leq r_0$, where $r_0 := r_0(\mu, \alpha, \delta, \gamma, p; A, B)$ is the smallest positive root of the equation

$$\kappa r^3 - (\mu + 2|B|)r^2 - (\kappa + 2)r + \mu = 0, \quad (5)$$

with

$$\kappa = \frac{(p - \alpha)(A - B)}{|1 - \delta|} |\gamma| + \mu |B|.$$

Proof. Since $g \in \mathcal{H}_{\lambda,p,\mu}^{n,l}(\alpha, \delta, \gamma, j; A, B)$, from (4) and the definition of the subordination, there exists a function w that is analytic in \mathbb{U} and satisfies the conditions $w(0) = 0$ and $|w(z)| < 1$, $z \in \mathbb{U}$, such that

$$\begin{aligned} p - \frac{1}{\gamma} \left(\frac{z \left(\mathcal{J}_{\lambda,p,\mu}^{n,l} g(z) \right)^{(j+1)}}{\left(\mathcal{J}_{\lambda,p,\mu}^{n,l} g(z) \right)^{(j)}} + p + j \right) - \delta \left| \frac{1}{\gamma} \left(\frac{z \left(\mathcal{J}_{\lambda,p,\mu}^{n,l} g(z) \right)^{(j+1)}}{\left(\mathcal{J}_{\lambda,p,\mu}^{n,l} g(z) \right)^{(j)}} + p + j \right) \right| \\ = \frac{p + [pB + (p - \alpha)(A - B)]w(z)}{1 + Bw(z)}, \quad z \in \mathbb{U}. \end{aligned} \quad (6)$$

Setting

$$\varkappa := \varkappa(z) = p - \frac{1}{\gamma} \left(\frac{z \left(\mathcal{J}_{\lambda,p,\mu}^{n,l} g(z) \right)^{(j+1)}}{\left(\mathcal{J}_{\lambda,p,\mu}^{n,l} g(z) \right)^{(j)}} + p + j \right) \quad (7)$$

in (6) we get

$$\varkappa - \delta |\varkappa - p| = \frac{p + [pB + (p - \alpha)(A - B)]w(z)}{1 + Bw(z)},$$

which implies

$$\varkappa = \frac{p + \left(\frac{p(A - B \delta e^{-i\theta}) - \alpha(A - B)}{1 - \delta e^{-i\theta}} \right) w(z)}{1 + Bw(z)} \quad (8)$$

for some $\theta \in \mathbb{R}$.

Replacing the value of \varkappa from (8) in (7), we obtain

$$\frac{z \left(\mathcal{J}_{\lambda,p,\mu}^{n,l} g(z) \right)^{(j+1)}}{\left(\mathcal{J}_{\lambda,p,\mu}^{n,l} g(z) \right)^{(j)}} = - \frac{p + j + \left(\frac{(p - \alpha)(A - B)\gamma}{1 - \delta e^{-i\theta}} + (p + j)B \right) w(z)}{1 + Bw(z)}. \quad (9)$$

From (3), from mathematical induction it follows that

$$z \left(\mathcal{J}_{\lambda,p,\mu}^{n,l} g(z) \right)^{(j+1)} = \mu \left(\mathcal{J}_{\lambda,p,\mu+1}^{n,l} g(z) \right)^{(j)} - (\mu + p + j) \left(\mathcal{J}_{\lambda,p,\mu}^{n,l} g(z) \right)^{(j)}, \quad j \in \mathbb{N}. \quad (10)$$

Now, using the relation (10) and (9), and the fact that $|w(z)| \leq |z|$ for all $z \in \mathbb{U}$ (see [8]), we easily get for $z \in \mathbb{U}^*$

$$\begin{aligned} \left| \left(\mathcal{J}_{\lambda,p,\mu}^{n,l} g(z) \right)^{(j)} \right| &\leq \frac{\mu (1 + |B| |z|)}{\mu - \left| \frac{(p-\alpha)(A-B)\gamma}{1-\delta e^{-i\theta}} - \mu B \right| |z|} \left| \left(\mathcal{J}_{\lambda,p,\mu+1}^{n,l} g(z) \right)^{(j)} \right| \\ &\leq \frac{\mu (1 + |B| |z|)}{\mu - \left[\frac{(p-\alpha)(A-B)}{|1-\delta|} |\gamma| + \mu |B| \right] |z|} \left| \left(\mathcal{J}_{\lambda,p,\mu+1}^{n,l} g(z) \right)^{(j)} \right|. \end{aligned} \quad (11)$$

Next, since $\left(\mathcal{J}_{\lambda,p,\mu}^{n,l} f(z) \right)^{(j)}$ is majorized by $\left(\mathcal{J}_{\lambda,p,\mu}^{n,l} g(z) \right)^{(j)}$ in \mathbb{U}^* , from (1) there exists a function φ analytic in \mathbb{U} , with $|\varphi(z)| \leq 1$ for all $z \in \mathbb{U}$, such that

$$\left(\mathcal{J}_{\lambda,p,\mu}^{n,l} f(z) \right)^{(j)} = \varphi(z) \left(\mathcal{J}_{\lambda,p,\mu}^{n,l} g(z) \right)^{(j)}, \quad z \in \mathbb{U}^*.$$

Differentiating the last equality with respect to z and multiplying by z , we get

$$z \left(\mathcal{J}_{\lambda,p,\mu}^{n,l} f(z) \right)^{(j+1)} = z\varphi'(z) \left(\mathcal{J}_{\lambda,p,\mu}^{n,l} g(z) \right)^{(j)} + z\varphi(z) \left(\mathcal{J}_{\lambda,p,\mu}^{n,l} g(z) \right)^{(j+1)}, \quad z \in \mathbb{U}^*,$$

and using (10) in the above relation it follows that

$$\left(\mathcal{J}_{\lambda,p,\mu+1}^{n,l} f(z) \right)^{(j)} = \frac{z\varphi'(z)}{\mu} \left(\mathcal{J}_{\lambda,p,\mu}^{n,l} g(z) \right)^{(j)} + \varphi(z) \left(\mathcal{J}_{\lambda,p,\mu+1}^{n,l} g(z) \right)^{(j)}, \quad z \in \mathbb{U}^*. \quad (12)$$

Thus, noting that φ is an analytic function in \mathbb{U} with $|\varphi(z)| \leq 1$ for $z \in \mathbb{U}$, satisfies the inequality (see, e.g. Nehari [8, page 168, relation (28)])

$$|\varphi'(z)| \leq \frac{1 - |\varphi(z)|^2}{1 - |z|^2}, \quad z \in \mathbb{U}, \quad (13)$$

and making use of (11) and (13) in (12), we get

$$\begin{aligned} \left| \left(\mathcal{J}_{\lambda,p,\mu+1}^{n,l} f(z) \right)^{(j)} \right| &\leq \left(|\varphi(z)| + \frac{|z| (1 - |\varphi(z)|^2)}{1 - |z|^2} \frac{1 + |B| |z|}{\mu - \left[\frac{(p-\alpha)(A-B)}{|1-\delta|} |\gamma| + \mu |B| \right] |z|} \right) \\ &\quad \times \left| \left(\mathcal{J}_{\lambda,p,\mu+1}^{n,l} g(z) \right)^{(j)} \right|, \quad z \in \mathbb{U}^*. \end{aligned} \quad (14)$$

Upon setting

$$|z| = r, \text{ and } |\varphi(z)| = \rho, \quad 0 \leq \rho \leq 1,$$

the inequality (14) leads to

$$\left| \left(\mathcal{J}_{\lambda,p,\mu+1}^{n,l} f(z) \right)^{(j)} \right| \leq \frac{\Theta(r, \rho)}{(1 - r^2)(\mu - \kappa r)} \left| \left(\mathcal{J}_{\lambda,p,\mu+1}^{n,l} g(z) \right)^{(j)} \right|, \quad z \in \mathbb{U}^*, \quad (15)$$

where

$$\Theta(r, \rho) = r (1 + |B| r) (1 - \rho^2) + (1 - r^2) (\mu - \kappa r) \rho,$$

with

$$\kappa = \frac{(p - \alpha)(A - B)}{|1 - \delta|} |\gamma| + \mu |B|.$$

If we denote

$$\Psi(r, \rho) := \frac{\Theta(r, \rho)}{(1 - r^2)(\mu - \kappa r)},$$

then (15) becomes

$$\left| \left(\mathcal{J}_{\lambda,p,\mu+1}^{n,l} f(z) \right)^{(j)} \right| \leq \Psi(r, \rho) \left| \left(\mathcal{J}_{\lambda,p,\mu+1}^{n,l} g(z) \right)^{(j)} \right|, \quad z \in \mathbb{U}^*.$$

From the above relation, in order to prove our result, we need to determine

$$\begin{aligned} r_0 &= \max \{r \in [0, 1] : \Psi(r, \rho) \leq 1, 0 \leq \rho \leq 1\} \\ &= \max \{r \in [0, 1] : \Lambda(r, \rho) \geq 0, 0 \leq \rho \leq 1\}, \end{aligned}$$

assuming that $\mu - \kappa r > 0$. Since $\kappa > 0$, this last inequality is equivalent to

$$r < \frac{\mu}{\kappa} =: r_*,$$

where

$$\Lambda(r, \rho) := -r(1 + |B|r)(1 - \rho^2) + (1 - r^2)(\mu - \kappa r)(1 - \rho) = (1 - \rho)h(r, \rho),$$

with

$$h(r, \rho) = -r(1 + |B|r)(1 + \rho) + (1 - r^2)(\mu - \kappa r).$$

It follows that the inequality $\Lambda(r, \rho) \geq 0$ is equivalent to $h(r, \rho) \geq 0$, while the function $h(r, \rho)$ takes its minimum value at $\rho = 1$, i.e.

$$\min \{h(r, \rho) : \rho \in [0, 1]\} = h(r, 1) = g(r),$$

where

$$g(r) := \kappa r^3 - (\mu + 2|B|r)r^2 - (\kappa + 2)r + \mu = 0.$$

Since $g(0) = \mu > 0$ and $g(1) = -2|B| \leq 0$, it follows that $g(r) \geq 0$ for all $r \in [0, r_0]$, where r_0 is the smallest positive root of the equation (5). It is easy to check that

$$g(r_*) = g\left(\frac{\mu}{\kappa}\right) = -\frac{2\mu}{\kappa}\left(|B|\frac{\mu}{\kappa} + 1\right) < 0,$$

and using the fact that r_0 is the smallest positive root of (5), it follows that $r_* > r_0$, and the proof of the theorem is complete. \square

Setting $A = 1$ and $B = -1$ in Theorem 2.1 we get the following corollary:

Corollary 2.1. *Let the function $f \in \Sigma_p$ and suppose that $g \in \mathcal{H}_{\lambda, p, \mu}^{n, l}(\alpha, \delta, \gamma, j)$ with $0 \leq \delta \neq 1$. If*

$$\left(\mathcal{J}_{\lambda, p, \mu}^{n, l} f(z)\right)^{(j)} \ll \left(\mathcal{J}_{\lambda, p, \mu}^{n, l} g(z)\right)^{(j)}, \quad z \in \mathbb{U}^*,$$

then

$$\left|\left(\mathcal{J}_{\lambda, p, \mu+1}^{n, l} f(z)\right)^{(j)}\right| \leq \left|\left(\mathcal{J}_{\lambda, p, \mu+1}^{n, l} g(z)\right)^{(j)}\right|$$

for $0 < |z| \leq r_1$, where $r_1 := r_1(\mu, \alpha, \delta, \gamma, p)$ is the smallest positive root of the equation

$$\kappa r^3 - (\mu + 2)r^2 - (\kappa + 2)r + \mu = 0,$$

with

$$\kappa = \frac{2(p - \alpha)}{|1 - \delta|} |\gamma| + \mu.$$

For $\delta = 0$, Corollary 2.1 reduces to the next result:

Corollary 2.2. *Let the function $f \in \Sigma_p$ and suppose that $g \in \mathcal{H}_{\lambda, p, \mu}^{n, l}(\alpha, \gamma, j)$ with $0 \leq \delta \neq 1$. If*

$$\left(\mathcal{J}_{\lambda, p, \mu}^{n, l} f(z)\right)^{(j)} \ll \left(\mathcal{J}_{\lambda, p, \mu}^{n, l} g(z)\right)^{(j)}, \quad z \in \mathbb{U}^*,$$

then

$$\left|\left(\mathcal{J}_{\lambda, p, \mu+1}^{n, l} f(z)\right)^{(j)}\right| \leq \left|\left(\mathcal{J}_{\lambda, p, \mu+1}^{n, l} g(z)\right)^{(j)}\right|$$

for $0 < |z| \leq r_2$, where $r_2 := r_2(\mu, \alpha, \gamma, p)$ is the smallest positive root of the equation

$$(2(p - \alpha)|\gamma| + \mu)r^3 - (\mu + 2)r^2 - (2(p - \alpha)|\gamma| + \mu + 2)r + \mu = 0.$$

Further, putting $n = 0$ and $\mu = 1$ in Corollary 2.2 we get the following special case:

Example 2.1. Let the function $f \in \Sigma_p$ and suppose that $g \in \mathcal{H}_p(\alpha, \gamma, j)$. If

$$f^{(j)}(z) \ll g^{(j)}(z), \quad z \in \mathbb{U}^*,$$

then

$$|zf^{(j+1)}(z) + (1+p+j)f^{(j)}(z)| \leq |zg^{(j+1)}(z) + (1+p+j)g^{(j)}(z)|$$

for $0 < |z| \leq r_3$, where $r_3 := r_3(\alpha, \gamma, p)$ is the smallest positive root of the equation

$$(2(p-\alpha)|\gamma|+1)r^3 - 3r^2 - (2(p-\alpha)|\gamma|+3)r + 1 = 0.$$

Also, putting $p = 1$ and $j = 0$ in Example 2.1 we obtain:

Example 2.2. Let the function $f \in \Sigma$ and suppose that $g \in \mathcal{S}_\gamma(\alpha)$. If

$$f(z) \ll g(z), \quad z \in \mathbb{U}^*,$$

then

$$|zf'(z) + 2f(z)| \leq |zg'(z) + 2g(z)|$$

for $0 < |z| \leq r_4$, where $r_4 := r_4(\alpha, \gamma)$ is the smallest positive root of the equation

$$(2(1-\alpha)|\gamma|+1)r^3 - 3r^2 - (2(1-\alpha)|\gamma|+3)r + 1 = 0.$$

For $\gamma = 1$, Example 2.2 reduces to the next result:

Example 2.3. Let the function $f \in \Sigma$ and suppose that $g \in \mathcal{S}^*(\alpha)$. If

$$f(z) \ll g(z), \quad z \in \mathbb{U}^*,$$

then

$$|zf'(z) + 2f(z)| \leq |zg'(z) + 2g(z)|$$

for

$$0 < |z| \leq \frac{3 - \alpha - \sqrt{\alpha^2 - 4\alpha + 6}}{3 - 2\alpha}.$$

Setting $\alpha = 0$ in Example 2.3 we have the following consequence:

Example 2.4. Let the function $f \in \Sigma$ and suppose that $g \in \mathcal{S}^*$. If

$$f(z) \ll g(z), \quad z \in \mathbb{U}^*,$$

then

$$|zf'(z) + 2f(z)| \leq |zg'(z) + 2g(z)|$$

for

$$0 < |z| \leq \frac{3 - \sqrt{6}}{3}.$$

Setting $p = 1$, $j = 1$ and $\gamma = 1$ in Example 2.1 we get:

Example 2.5. Let the function $f \in \Sigma$ and suppose that $g \in \mathcal{K}(\alpha)$. If

$$f'(z) \ll g'(z), \quad z \in \mathbb{U}^*,$$

then

$$|zf''(z) + 3f'(z)| \leq |zg''(z) + 3g'(z)|$$

for

$$0 < |z| \leq \frac{3 - \alpha - \sqrt{\alpha^2 - 4\alpha + 6}}{3 - 2\alpha}.$$

Putting $\alpha = 0$ in Example 2.5 we obtain the following special case:

Example 2.6. Let the function $f \in \Sigma$ and suppose that $g \in \mathcal{K}$. If

$$f'(z) \ll g'(z), \quad z \in \mathbb{U}^*,$$

then

$$|zf''(z) + 3f'(z)| \leq |zg''(z) + 3g'(z)|$$

for

$$0 < |z| \leq \frac{3 - \sqrt{6}}{3}.$$

REFERENCES

- [1] *O. Altintas, Ö. Özkan and H.M. Srivastava*, Majorization by starlike functions of complex order, Complex Variables Theory Appl., **46**(2001), No 3, 207-218.
- [2] *K. Dhuria and R. Mathur*, Majorization for certain classes of meromorphic functions defined by integral operator, Int. J. Open Probl. Complex Anal., **5**(2013), No 3, 50-56.
- [3] *S. P. Goyal and P. Goswami*, Majorization for certain classes of meromorphic functions defined by integral operator, Ann. Univ. Mariae Curie-Skłodowska Sect. A, **66**(2012), No 2, 57-62.
- [4] *T. Janani and G. Murugusundaramoorthy*, Majorization problems for p -valently meromorphic functions of complex order involving certain integral operator, Global J. Math. Anal., **2**(2014), No 3, 146-151.
- [5] *T. Janani and G. Murugusundaramoorthy*, Application of a family of integral operators in the majorization of a class of p -valently meromorphic functions of complex order, J. Fract. Calc. Appl., **6**(2015), No 2, 101-107.
- [6] *S. Li and L. Ma*, Majorization properties for certain new classes of multivalent meromorphic functions defined by Sălăgean operator, J. Math. Res. Appl., **34**(2014), No 3, 316-322.
- [7] *T. H. MacGregor*, Majorization by univalent functions, Duke Math. J., **34**(1967), 95-102.
- [8] *Z. Nehari*, Conformal Mapping, Macgraw-Hill Book Company, New York, Toronto, London, 1955.
- [9] *T. Panigrahi*, Majorization for certain subclasses of meromorphic functions defined by linear operator, Math. Sci. Lett., **4**(2015), No. 3, 277-281.
- [10] *A. E. Shammaky*, Majorization problem for certain classes of meromorphic multivalent functions defined by differential operator, Amer. J. Math. Stat., **6**(2016), No. 2, 86-88.
- [11] *H. Tang, M. K. Aouf and G. Deng*, Majorization problems for certain subclasses of meromorphic multivalent functions associated with the Liu-Srivastava Operator, Filomat, **29**(2015), No. 4, 763-772.
- [12] *Z.-G. Wang and M.-L. Li*, Some properties of certain family of multiplier transforms, Filomat, **31**(2017), No. 1, 159-173.