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RAKOTCH TYPE EXTENSION OF DARBO’S FIXED POINT
THEOREM AND AN APPLICATION

Ilker Gengtiirk!, Ali Erduran?, Ishak Altun®

In this paper, we present a new extension of Darbo’s fized point theorem inspired
by Rakotch’s contraction. We also provide the alternative version of Leray-Schauder type
of our new result. In order to demonstrate the applicability of our theoretical result, we
present an existence theorem based on a functional equation. Finally, we provide an
illustration of our existence theorem.
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1. Introduction

The theory of integral equations has recently improved significantly as a result of
various tools from both nonlinear functional analysis and topological fixed point theory. One
of the most important of these tools is the measure of noncompactness (in short MNC), which
was first defined by Kuratowski [10] and later used frequently by various authors. In this
context, on the basis of MNC, Darbo [6] introduced the class of k-set contractive operators,
which includes compact operators, and presented a fixed point theorem that generalized
both the famous Schauder fixed point theorem and a version of Banach contraction theorem.
Darbo’s fixed point theorem was later generalized as theoretical in various ways and used
to obtained existence theorems for many functional equations. For details, we refer to
[1,2,3,4,7,8,9, 12] and the references therein.

In this paper, inspired by Rakotch type contraction stated in the following theorem,
we present a new extension of Darbo’s fixed point theorem. The alternative version of Leray-
Schauder type of our new result is also provided. Finally, to indicate the applicability of our
theoretical result, we present an existence theorem based on a functional equation.

Theorem 1.1. [11] Let (M, p) be a complete metric space and I' : M — M be a Rakotch
type contraction, that is, there exists a function L : (0,00) — [0,1) with

sup{L(t): 0<a<t<b} <1

such that
p(E, I'¢) < L(p(¢;€))p(&, C)
for each £, € M. Then T’ has a unique fixed point.
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2. Preliminaries

In this section, first we recall the basic notions and main characteristics of the MNC.
For more informations about the MNC we refer to [4].

Definition 2.1. Let (M, p) be a complete metric space and B(M) be the family of all bounded
subsets of M. A nonnegative real valued mapping p defined on B(M) is called MNC on M
if it satisfied the following azioms: for all ,1,Q9 € B(M)

(ta) p(S2) = 0 if and only if Q is precompact set,

(o) p(2) = (%),

(pe) (€ U Q) = max {p(1), u(2)}

Remark 2.1. Let yu be a MNC of a complete metric space M, then the following properties
hold: for all Q,Q1,Qs € B(M)

(1) If Q1 C Qa, then p(Sh) < pu(Sd2),

)
(p2) (1 N Q) < min {u(Q1), u(Q2)},
E,LL3§ If Q is a finite set, then u(Q) =0,

wa) Let {Q,} is a decreasing sequence in B(M) which all terms are nonempty and closed.

o0
If 1(Q) = 0 as n — oo, then [ Q, is nonempty and compact.

n=1
Besides, if M is a Banach space, then the function p has additional properties, some
of which are given below: for all 2,Q1,09 € B(M)
(s5) p(A2) = [A| u(K2), for any number A,
(16) p(€h + Q) < max {p(21), u(22)},
(7) 1(€o +82) = p() for any & € M,
(1) p(cof) = u(Q), where cof) is the convex hull of Q.

The famous Schauder fixed point theorem is as follows: For brevity, in the rest of this
paper BC(M) stands for the class of all nonempty, closed, convex and bounded subsets of
Banach space M.

Theorem 2.1. Let M be a Banach space and Q € BC(M). IfT': Q — Q is continuous and
compact mapping, then I' has at least a fixed point in 2.

Darbo [6] presented the following definition and theorem:

Definition 2.2. Let Q # 0 be a subset of a Banach space M and T : Q — Q be a mapping.
Then, T' is called a k-set contraction if, for each A C Q with bounded, T'A is bounded and
there exists k € [0,1) such that

1(TA) < kp(A). (1)
Theorem 2.2. Let M be a Banach space and Q € BC(M). Then each continuous k-set
contraction I' : Q@ — € has at least one fized point in €.

3. Main Results
In this section, we first give the definition of the Rakotch type p-set contraction.

Definition 3.1. Let 2 be nonempty subset of a Banach space M, y be a MNC in M, and
let T': Q — Q be a mapping. If there exists a function L : [0,00) — [0,1) satisfying
sup{L(r):0<p<r<gqi<l1
such that
u(TA) < L(u(A))u(A) (2)
for any nonempty and bounded subset A of Q. Then, T' is said to be Rakotch type p-set
contraction with respect to L.
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It is obvious that every k-set contraction is also Rakotch type u-set contraction.
Hence, the below theorem is a generalization of both Theorem 2.1 and Theorem 2.2.

Theorem 3.1. Let M be a Banach space and Q € BC(M) and let T : Q — Q be a continuous
and Rakotch type p-set contraction mapping with respect to L. Then, ' has a fized point in
Q.

Proof. Define a sequence {A,} such that

Ag=Qand A, =col'A,_1 (3)
for all n € N. First prove that

Apy1 €Ay and TA, CA, (4)

for all n € N.
If n =1, then from (3) we get

Ay =col'Ag =7col'2 C Q= Ay,

Next, for n > 1, we assume that

An g An71~
Then, T'A,, CTA,_; and so by (3) we get
Apy1 =col'A, Ceol'Ay_1 = A, (5)

hence the first part of (4) hold. By (5) we have

hence the second part of (4) also hold.
If there exists ng € N such that p(A,,) =0, then A, is a compact subset of M. Also
since I'A,,, C A, and I' is continuous, then by Theorem 2.1, I" has a fixed point in A,,.
Now assume p(A,) > 0 for all n € N. Then from (4), we have

M(AnJrl) < M(An)7

that is, {¢(Ay,)} is a nonincreasing sequence and bounded below. Hence there exist § > 0
such that

lim pu(A,) =67.

n— oo

Assume that § > 0 and set
A=sup{L(r): 0 < <r < u(Ao)}

Then, observing that
0 <8 < p(An) < p(Ao)
for all n € N, we have

for all n € N. Hence we have
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Taking as n — oo, we get lim p(A,) = 0, which contradict to 6 > 0. Hence § = 0 and so
n—oo

(oo}
w(Ap) — 0 as n — oco. Thus, Ao, = () A, is nonempty and compact subset of Q. Also,
n=1
since Ao, C A, for all n € N, then we have I'A,, C Ay, and so by Theorem 2.1, I' has a
fixed point in A. O

Now, we are in position to establish an alternative version of Leray-Schauder type of
our main theorem.

Theorem 3.2. Let M be a Banach space and €} € BC(M), U an open subset of Q and
& € U. SupposeI' : U — Q be a continuous and Rakotch type p-set contraction mapping
with a nondecreasing function L. Then, either

(i) T has a fived point in U, or
(7i) there exists £ € OU and X € (0,1) such that £ = AT'¢ + (1 — X)&o.

Proof. Assume that (i7) does not hold and I' has no fixed point in QU. Then
§# AT+ (1= )&
for £ € OU and X € [0, 1]. Consider the set
K={¢cU:£=XMT¢+ (1 — )& for some X € [0,1]}.

Since §p € K, then K is nonempty. Also K is closed because of the continuity of I'. Further
we have K N QU = (. Thus there exists a continuous function A : U — [0,1] such that
AMK) =1 and A(OU) = 0. Now define a map ¥ : Q — Q as

AOTE+ (A= AE)o ., €T

o , fEQ\U-

Then W is continuous. In addition V¥ is a Rakotch type p-set contraction. Indeed, let A C )
be any set. Then we have

ve =

and hence
H(W(A)) < p(@(T(ANT) U {g})
— u(D(ANT))
< L(p(ANT))u(ANT)
< L(p(A)p(A)

Consequently W : 2 — (2 is continuous and Rakotch type u-set contraction mapping. There-
fore by Theorem 3.1, there exists n € {2 such that n = 7. Notice that n € U since £ € U.
Hence

1n =AM+ (1= An)é
and so n € K. Consequently A(n) = 1 which implies n = I'n. O

4. Application to a Functional Equation

Here and subsequently, we will study in the space C[0, 1] containing of all continuous
real valued functions defined on the interval [0, 1]. For the sake of simplicity, we set I = [0, 1]
and C(I) = C[0,1]. It is well-known that the space C(I) equipped with the standard norm

1€]] = max{|£(8)] - ¢ € I}
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is a Banach space. Now, we remember the definition of a MNC in C(I), presented and
investigated in [5], that will be applied in the following. Let Y # @ be a bounded subset of
C(I). Fore >0 and £ € T, let w(&, ) be the modulus of continuity of £ which is defined by

w(§,e) ==sup{|€(t) —&(s)] &, s €T, [t —s| <e}.
Further, let us put

w(T,e) =sup{w(&,e): £ € T},
wo(T) = gig(l)w('r,s). (6)

Tt is known that the function wg is a MNC in the space C(I) (cf. [?]). Now, we are interested
with the following functional equation

£(t) =F(a(t)7£(t)al\€(t)/0 v(t,T,ﬁ(T))dT>a tel (7)

The function £ is an unknown while a, v functions and the operator A appearing in this
equation are known. Here we will examine this equation under the following assumptions:
(1) a: I - Tandv:IxIxR— R are continuous.
(i) There exists an increasing function g : Ry — R4 such that, the inequality

o(t, 78] < g([€]),

holds for all ¢,7 € I and £ € R.

(791) The operator A maps continuously the space C(I) into itself. Also there exists a
nondecreasing function ¢ : Ry — Ry such that ||AS]| < ¢(||¢]|) for any € € C(I).

(iv) The function F : T x R x R — R, is continuous and there exist positive constants
k1, ko and k3 with ko < 1 such that

|[F(an, g, a3) — F(B1, B2, B3)| < ki lan — Bl + k2 [ag — B2| + ks oz — B3], (8)
and Fx = sup{|F(a(¢),0,0)| : t € I'}.
(v) The inequalitiy
Far + ksd(r)g(r) + Fic < (9)
has a positive solution r.
(vi) For any T € C(I), we have wo(AY) < Li(wo(Y))wo(Y), where the function L; :

[0,00) — [0, k:;;i(lx))) satisfies that

1— ko
k3g(ro)
Now, we are ready to present the following theorem:

sup{L1(r) : 0 <p <r<gq} <

Theorem 4.1. The equation (7) has at least one positive solution in C(I) under the as-
sumptions (i)-(vi).

Proof. Define a mapping I" on the space C'(I) having the form

reit) = F (a(0). €. A60) [ ott.ré(r)ir)

Based on the assumptions (¢), (i74) and (iv) we infer that the function I'¢ is continuous.
Furthermore, keeping the assumptions (i%), (éi7) and (iv) in mind we get, for all t € T

and & € C(I),
TE(r)| < \F (a<t>,s<t>,A5<t> / v(t,T,ﬁ(T))dT) - F<a<t>,o,o>j + |F(a(t).0,0)|

<k 6(8)] + ks [AE(1) / oft, T, €(r))dr| + Fic
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< ky [6(8)] + k3 |AE(H) / [o(t, 7, €(r))|dr + Fic
< ko [l + Eso(l€Dg €] + Fr.

Then, we have

ITEIN < ko [[€]] + Eso([1€1Dg (1€ + Frc- (10)

By virtue of the assumption (v), we know that there exists ro > 0 such that
karo + k3d(ro)g(ro) + Fie < ro.
Hence for £ € B,, ={§ € C(I) : ||&]| < 1o}, we have
[189| k2 [I€l1+ kse(lI€1Ng(lIEN) + Fie
koro + ksd(ro)g(ro) + Fi
To-

ININCIA

Therefore the operator I' maps B, into itself. Put
Bl ={¢€ B, :&(t) >0for t € I}.

Obviously, the set B;; is nonempty, closed, bounded, and convex. By assumption (iv), we
conclude that I' transforms the set B;E into itself.

Now we show that I' is continuous on B;f. Let ¢ > 0, £,¢ € B} with || — (]| < e.
Then, for a fixed ¢t € I, we have

IPE(t) - ()] = \F (a(t>,s<t>,As<t> | e r,sm)df)
F (a<t>,<<t>,Ac<t> / v(th(T))dT)‘
< kalé(t) — (1)
+ k3 A{(t)/o v(t,r,f(T))dT—AC(t)/O o(t, 7, ¢(T))dT

< kalé(t) — C(1)] + ks |AE(H) / o(t, 7, €(r))dr — AC(1) / olt, T, €(r))dr

t

ks |AC(H) /0 ot 7, £(r))dr — AC(E) /0 ot 7, C(7))dr

< kalé() — (1)) + ks IAE(H) — AC(H) / fo(t, 7, £())| dr
NI / (ot 7.£()) — v(t, 7, C())] dr

< kal€(t) — C(1)] + ks [AL(t) — AC()] g(ro) + k3¢(7“0)/0 Be,ro)dr,

where 3(g,79) is defined as fS(e,r9) = sup{|v(t, 7,&(7)) —v(t,7,{(7))| : t,7 € I, ,C €
B, [l€— ¢ <e}.

Next, we get [T€ — TC|| < kz [l€ — €|l + ks A€ — AC]| g(ro) + ksb(r0)B(e, o).

By the continuity of the function v on the set I x I x [0,7¢] and the continuity of A,
we deduce that T' is continuous on the space B,‘J;.

Next, take a nonempty subset T of B;E and a number ¢ > 0. Then, in view of our
assumptions, for £ € T and ¢,s € I with 0 <t — s < e, we obtain

ITE(t) — Te(s)| = |F (st 02600 | t v(tmﬁ(r))dr)



Rakotch type extension of Darbo’s fixed point theorem and an application 45

F (a<s>,5<s>7A5<s> / S v(sm&(r))m)
< krlalt) — a(s)] + ka |E(t) — £(5)|

AE(H) /0 o(t, 7, €(7))dr — AE(s) /O o(s, 7, £(F))dr

+ ks

t

AE(H) /O o(t, 7, £(r))dr — AE(s) / o(t, 7, £(7))dr

0

< kw(a, ) + kaw(€,€) + k3

S

T ks |AE(s) / o(t, T, £())dr — AE(s) / o(s, 7, E(r))dr

< kiw(a, ) + kaw(§, €) + ks [AL(E) — AL(s)] /0 [o(t, 7, (7)) dr

/Ov(t,T,f(T))dT—/o v(s, 7, &(T))dr
< kiw(a,€) + kaw (&, €) + ks [AL() — AE(s)] /0 lo(t, 7,&(7)) dr

+ ks |AL(s)]

+halag) | Jo(t, 7 £()) — v(s, 7, ()| dr

+k3|A§5)|/\ (t, 7, &(7))| dr

< kww(a,e) + kaw(§, ) + ksw(Ag, £)g([I<])
+ k3o (1€l vro () + ks (lI€INg(NIE]e,
< kw(a, €) + kaw(§, €) + ksw (A&, €)g(ro) + k3d(r0)vre (€) + ksd(ro)g(ro)e,
where 7, (€) = sup{|v(t, 7,&) —v(s,7,&)| : t,s € I, |t — s| < e, £ € [0,70]}.
Hence, we have the estimate
w(l'€,e) < kiw(a,e) + kaw (&, €) + kag(ro)w (AL, €) + k39(ro),, (€) + ksd(ro)g(ro)e.

Notice, taking into account the uniform continuity of v on the set I x I x [0,79] we have
that 7., (¢) — 0 as € — 0. Finally, by assumptions (vi) we have

wo(I‘T) < kQUJO(T) + kgg(To)wO(AT) < kQUJo(T) + kgg(?"())Ll(oJo(T))u)o(T)
= [k + k3g(ro) L1 (wo(T1))]wo(T) = Llwo(T))wo(T),

where L(t) = kg + k3g(ro)L1(t). Note that, from (vi), the function L maps [0, o0) to [0,1)
and also have the following property sup {L(r):0 < p <r < g} < 1. Hence, we conclude
that by Theorem 3.1, (7) has at least one positive solution in C(I). O

Finally, we present an illustrative example for Theorem 4.1.
Example 4.1. Consider the following functional equation for t € [0,1],

) =5 + 3 I / e Dar (1)

It is easily seen that (11) is a special case of (7) with

2
o) = 3. 0.9 = LEE Ae(0) = L], Fluwow) = utun

Then, all assumptions of Theorem 4.1 are satisfied. Indeed,

(1) It is obvious that the functions a and v are continuous.
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(it) Taking into account the function g : Ry — Ry defined by g(t) =

2 2

—— which is
141¢2
increasing, we have g(|€]) > |v(t,7,&)|, for all € € R and t,7 € [0,1].

(#i1) It is clear that A transforms continuously the space C[0,1]. Also for the function ¢ :

Ry =Ry, o(t) = % we have ¢([[¢]]) = |[AL]], for any & € C[0,1].

(iv) The continuity of F is obvious. Also, we have the inequality (8) for ki = 1,ky =

(v) The inequality 5
(vi) The condition (vi) is satisfied with the constant function L1 (t) =

1 1
g,k’g, =1 and Fx = sup{|F(a(t),0,0)|,t € [0,1]} = 5

T 2r2
31412

+ % < r has a positive solution rqg = 1.

Wl =

As a consequence, these above facts lead to a positive solution for the functional inte-

gral equation (11) in C[0,1].

5. Conclusions

In this article, we introduced and studied a new version of Darbo’s fixed point theorem

with the help of Rakotch type contraction. Also the alternative of Leray-Schauder type of
our result is also given. We have established an existence theorem based on a functional
equation to demonstrate the application of our theoretical finding. Finally, we show how
our existence theorem works by an example.
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