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BEHAVIOR OF TOWER CRANES UNDER SEISMIC 
ACTIONS 

Mircea ALĂMOREANU1, Andrei VASILESCU2 

 Comportarea macaralelor turn ancorate de clădiri supuse acţiunilor 
seismice a fost prezentată în două comunicări, considerându-se cazul simplu al 
orientării braţului macaralei pe direcţia de propagare a undei seismice. Au rezultat 
două modele dinamice: cu un grad de libertate - pentru macaralele aflate în afara 
serviciului (fără sarcină) şi respectiv, cu două grade de libertate pentru cele aflate 
în serviciu (cu sarcină). Cu toate acestea, braţul macaralei poate fi orientat arbitrar 
faţă de direcţia undei seismice; de aceea lucrarea de faţă consideră acest caz şi 
analizează modelul dinamic general având trei grade de libertate. 
   
  The behavior of tower cranes fixed on the buildings was studied in two 
previous papers considering the simplified hypothesis that the saddle jib has the 
direction of seismic wave propagation. Two dynamical models were considered with 
one degree of freedom for the “out of service” cranes (without load) and 
respectively, with two degrees of freedom for the case of “in service” cranes (with 
load). However, the jib may be arbitrary oriented in front of the seismic wave 
direction. This paper takes into account this hypothesis and a dynamic model with 
three degrees of freedom was developed and analyzed.  
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1. Introduction  

The European norms do not provide specific regulations for control of lifting 
cranes to seismic actions. Although dynamics of in service lifting machines as 
well as cranes under the wind loading are considered usually [3] [4], their 
behavior under the seismic actions and the dynamics of tower cranes anchored to 
buildings, it seems to not appear in the available databases.  
However, two dynamic models of tower cranes fixed on the buildings and 
submitted to seismic actions along the crane jib, were studied in two recent papers 
[1] and [2], taking into account the tower crane with load, and the tower crane 
without load. The present paper is concerned with analytical equations of the 
dynamic model with three degrees of freedom, considering the jib arbitrary 
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oriented in front of the seismic wave direction. The canonic form of the system of 
differential equations of motion is obtained and practical conclusions are 
presented. 

2. Hypothesis and the dynamic model 

We will consider the following hypotheses in the present approach: 
1) The tower crane has the behavior of an elastic beam with fixed end; 
2) The tower crane is connected to the building with n rigid anchors that are 
considered simple supports for torsion loading;  
3) The total mass of the crane tower is concentrated by equivalence to the jib 
hinge; 
4) The rotational inertia of the rotating part of the crane is considered the moment 
of inertia of masses calculated with respect to the rotation axes (the same with the 
tower axes), and the rotating substructure (jib and counter jib) is considered stiff 
in the plane of rotation; 
5) The seismic action is applied directly on the base of the crane, and is applied 
indirectly by the building and anchors; 

 
 

Fig. 1. Dynamic model of the crane 
 
6) Under the seismic motion, the crane has small elastic bending and torsion non-
damped oscillations, and the load has a pendulum motion; 
7)  The effect of the crane over the building is neglected. 
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The last hypothesis is one of practical use to have a simplified theoretical 
approach, because the mass and the stiffness of the building are greater than the 
ones of the cranes. Figure 1 presents the dynamic model considering the above 
hypotheses. The generalized displacements for the three degrees of freedom are:  

mx  - absolute displacement of the equivalent crane mass, M, 
ϕ   - torsion rotation of the tower crane, 

qx - absolute displacement of the loading.  

3. Differential equations of motions 

According to the representation from Fig. 2, the relations between the absolute 
displacements jx , qx , the seismic displacement u, and the relative displacements 

jv , qv  are:  
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The subscript j denotes a current point of the rotating part of the crane, where the 
mass jm  is considered; mv  is the elastic bending displacement of the tower to the 
level of the jib. 

 
Fig. 2. Absolute and relative displacements 

 
The inertia forces and their corresponding moments calculated with 

respect to the tower crane axes are:  
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We consider as unknowns the relative displacements (elongations) mv  and 

qv , as also the rotation ϕ . Considering the specific methods of Statics, their 
expressions are established by means of the influence coefficients δ  and θ : 
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    (3)  

where iR  are the forces transmitted by the building through the anchors of the 
tower. The meaning of the influence coefficients can be viewed in Fig. 3. 
Evidently  

mj mq mmδ δ δ= =  
We can underline that equation 3 implies that the torsion moment is totally 

taken by the first anchorage (the upper one).  
 

 

 
Fig. 3. Influence coefficients 

 

By substituting equation (1) of displacement jx  into equations (2), along 
with the use of equations (3), we obtain the following form of the differential 
equations of motion: 
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We consider the following notations:  

( )22 2 2 2cos cos

j
j

j j q G
j

j j q y
j

m Q M

m y Qy My

m y Qy J M i Miα α

⎧
+ =⎪

⎪⎪ + =⎨
⎪
⎪ + = = =
⎪⎩

∑
∑

∑

    (4) 

where: M is the total mass of the rotating part of the crane, including the load and 
partially the tower mass, cosG Gy r α= , Gr  - radius of the mass center, 

2 2
j j q

j
J m r Qr= +∑  - total moment of inertia of masses, and i - radius of inertia. 

We introduce the following notations:  
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Since qω , mω  and ϕω  have the meaning of circular eigenfrequencies, the 
equations system becomes  
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4. Contribution of anchors 

The second term from the right side of the second equation (6) has the 
explicit contribution of the anchors by the unknown forces iR . The tower receives 
indirect excitations through anchors, i.e. the building displacements induced by 
the seismic motion. The relations between these displacements ( iv ), and anchors, 
forces ( iR ) are: 
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where ikδ  are the influence coefficients of the tower. 
Assuming that the displacement iv  are known, the forces of the anchors 

are obtained from the system of equations (7), solved by Krammer method  
Ri

iR Δ
=

Δ
        (8) 

where Δ  is the determinant of the influence coefficients, and RiΔ  is the 
determinant obtained substituting the i column from Δ  with the column of 
displacement iv . Returning to the second equation from (6), we get:  
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The displacements iv  can be estabilshed studying the building behavior 
under the seismic motion. 

5. Simplified approach; canonic form of differential equations of 
motion 

Major simplifications can be obtained if we observe that the stiffness of 
the building is grater then the stiffness of the crane (see the hypothesis 7, second 
part). Consequently, only the elastic oscillations of the building are considered, 
according to the fundamental frequency. In this way, this approach considers the 
dynamic model of the building with a single concentrated mass cM , and one 
degree of freedom. The relative displacement cv  of the building to the level of the 
mass cM  can be easy established. We have the relative displacements iv  to the 
level of each anchor: 
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The influence coefficients involved are specific to the building (see figure 4). 
Considering iv  from equation (10), the determinant RiΔ  from (8) and (9) will be 

11 12 1 1

1 2

                                          
                                         col 

h n

c c
Ri i

hh hh

n n nh nn

v v

i

δ δ δ δ

δ δ
δ δ δ δ

⋅ ⋅ ⋅ ⋅
⋅

Δ = ⋅ = ⋅Δ
⋅

⋅ ⋅ ⋅ ⋅
↑

  (11) 



Behavior of tower cranes under seismic actions                                            61 

 
Fig.4. Simplified model of the building  

 
At this point we should consider (11) to obtain the second term from right side of 
equation (9) 
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to obtain the canonic form of the system of the differential equations of motion: 
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where we take: u  the linear acceleration of direct action (acceleration of 
horizontal seismic motion); 2( )m ck vω⋅ ⋅  the acceleration of indirect action 
transmitted from the building by anchors; 2( )G yy i u⋅  the angular acceleration 
induced by the seismic motion, as a result of the particular distribution of mass of 
the rotating part of the crane ( 0)Gr ≠ , producing torsion oscillations of the tower.  
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6. Initial conditions 

Assuming that the seismic wave finds the crane not moving, all 
displacements and absolute speeds are zero in the initial moment. Thus 

(0) 0,   (0) 0,   (0) 0m qx x ϕ= = =  (0) 0,   (0) 0,   (0) 0m qx x ϕ= = =  (14) 
 
According to (1), the initial conditions expressed in relative displacements are:  

(0) (0),   (0) 0,   (0) 0m qv u v ϕ= = =  (0) (0),   (0) 0,    (0) 0m qv u v ϕ= = =   (15) 

7. Particular cases 

 7.1. Harmonic seismic action 
 If the seismic action has the expression: 

 ( ) sinu t U t= Ω ,       (16) 
then, the elongation of the equivalent mass of the building cv  is obtained 
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where cω  is the fundamental circular frequency of the building. 
 

 7.2. The crane is anchored 
In this case, for the right hand side of the second differential equation (13), 

the second term is zero. 
 
 7.3. The case 0Gr =  

 If the center of mass of the rotating part of the crane is in the axes of the 
tower, then 0Gy = , and the system of differential equations of motion becomes:  
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The last equations can be separated, and if (0) 0ϕ = , then ( ) 0tϕ =  
showing the fact that the seismic action does not produce torsion oscillations. This 
observation leads to a practical conclusion for the tower cranes with saddle jib and 
trolley. These types of cranes have the rotating part with important mass and 
elevated moment of inertia of mass, therefore at the end of working program, it is 
safety to fix the trolley in the position for a minimum value of Gr ; that means the 
position of maximum crane radius. 
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 7.4. The jib is oriented along the propagation direction  
  of seismic wave ( 2α π= ± ) 

 In this case, the resulting moments of forces is zero, then the third 
equation (3) gives ( ) 0tϕ =  and no torsion oscillations are produced. We  have 

only the first two equations from (18). 
 

 7.5. The jib is normal to the propagation direction  
  of seismic wave ( 0α = ) 
In the system of differential equations (13) we have to consider: 
 G Gy r→ ,   q qy r→ ,    yi i→  
 
 7.6. The crane without load 

In (13) we consider 0Q = , and thus two equations remain: 

 

2 2

2
2 2

( )m m m G m c

G G
m

y y

v v y u k v
y yv u
i iϕ

ω ϕ ω

ϕ ω ϕ

⎧ + ⋅ + ⋅ = + ⋅
⎪
⎨ ⋅ + + ⋅ = ⋅⎪
⎩

    (19) 

with the initial conditions for mv  and ϕ . 

8. Equivalent loads of the seismic actions 

The equivalent loads of the seismic actions are generalized forces. Their 
actions on the dynamic model have the result of elastic displacements equal with 
maximum calculate elongations. Thus:  
 a) the horizontal force acting in the reduction point of the crane mass has 

the expression 
max

ech m
m

mm

vF
δ

=  

 b) the torsion moment is given by 
max

1

ech
t

m

M ϕ
δ

=  

9. Coments and conclusions 

The tower cranes with saddle jib without load could be in one of the two 
following situations: 

a) in service, between two cycles of  working, when the slewing 
mechanism of the crane is braked; 
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b) out of service when usually, the slewing part of the crane is 
weathervaning (the slewing part of the crane is free to be oriented by the wind). 

In the first case the torsion moment transmitted to the fixed tower is 
limited to the value 

F t
t w

t

M iM M
η
⋅

= +  

where: FM  is the braking torque, produced by the brake of the slewing 
mechanism, ti  and tη  are the transmitting ratio, respectively the total efficiency 
value of slewing mechanism, and wM  is the resisting rotation moment. 

In the case of the above point b), the torsion moment transmitted to the 
fixed tower, cannot be greater than wM , because 0FM = . 

Note, for example, the most disadvantageous case concerning the seismic 
actions, is the one shown at point a).  

As a postscript, we would like to draw attention to the remark made at 
SIMEC 2008, 28 March 2008, by Professor Panaite Mazilu, Honorary member of 
the Romanian Academy, when the communication [1] was presented. He 
observed that, in his view it’s great importance to introduce the tasks of dynamic 
modelling and subsequent mathematical approach in the European as well as in 
national norms, because the safety problem of cranes to seismic actions is not at 
all present in the actually regulations frame. For these reasons, the analytical 
approach and an experimental study is necessary before a synthesis to a 
methodology and prescriptions of regulations types.  
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