

A CHARACTERIZATION OF (σ, τ) – DERIVATIONS ON VON NEUMANN ALGEBRAS

Madjid Eshaghi Gordji¹

Let A be a von Neumann algebra and M be a Banach A –module. It is shown that for every homomorphisms σ, τ on A , every bounded linear map $f : A \rightarrow M$ with property that $f(p^2) = \sigma(p)f(p) + f(p)\tau(p)$ for every projection p in A is a (σ, τ) –derivation. Also, it is shown that a bounded linear map $f : A \rightarrow M$ which satisfies $f(ab) = \sigma(a)f(b) + f(a)\tau(b)$ for all $a, b \in A$ with $ab = S$, is a (σ, τ) –derivation if $\tau(S)$ is left invertible for fixed S .

Keywords: (σ, τ) –Jordan derivation; (σ, τ) –derivation

MSC2000: Primary 46L10; Secondary 46L05, 46H25, 46L57

1. Introduction

Let A be a Banach algebra. An A –module M is a Banach A –module if M is a Banach space and the A –module maps $(a; x) \rightarrow ax; A \times M \rightarrow M$; and $(x; a) \rightarrow xa; M \times A \rightarrow M$; satisfy $\max\{\|ax\|, \|xa\|\} \leq \|a\|\|x\|$ for all $a \in A$ and $x \in M$. Suppose that A is unital. We denote the identity of A by 1. A Banach A –module M is called unital provided that $1x = x = x1$ for each $x \in M$.

Recently, a number of authors [3, 9, 10] have studied various generalized notions of derivations in the context of Banach algebras. There are some applications in the other fields of research [6]. Such mappings have been extensively studied in pure algebra; cf. [1, 2, 5]. A generalized concept of derivation is as follows.

Let A be a Banach algebra and M be a Banach A –module. Let $\sigma, \tau \in BL(A)$ be bounded linear maps on A . A linear mapping $d : A \rightarrow M$ is called a

- (σ, τ) –derivation if

$$d(ab) = \sigma(a)d(b) + d(a)\tau(b) \quad (a, b \in A). \quad (1)$$

- (σ, τ) –Jordan derivation if

$$d(a^2) = \sigma(a)d(a) + d(a)\tau(a) \quad (a \in A). \quad (2)$$

For instance every ordinary derivation (Jordan derivation) of an algebra A into an A –module M is an (id_A, id_A) –derivation ((id_A, id_A) –Jordan derivation), where id_A is the identity mapping on the algebra A . As another example, every homomorphism (Jordan homomorphism) $h : A \rightarrow A$ is a $(\frac{h}{2}, \frac{h}{2})$ –derivation ($(\frac{h}{2}, \frac{h}{2})$ –Jordan derivation).

¹Associate Professor, Department of Mathematics, Semnan University, P. O. Box 35195-363, Semnan, Iran;
Center of Excellence in Nonlinear Analysis and Applications (CENAA), Semnan University, Iran,
E-mail: madjid.eshaghi@gmail.com

Clearly, every (σ, τ) -derivation is a (σ, τ) -Jordan derivation. Using the fact that $ab + ba = (a + b)^2 - a^2 - b^2$, it is easy to prove that the (σ, τ) -Jordan derivation identity is equivalent to

$$d(ab + ba) = \sigma(a)d(b) + d(a)\tau(b) + \sigma(b)d(a) + d(b)\tau(a) \quad (a, b \in A). \quad (3)$$

We refer to [11] for the general theory of these notions.

2. Main result

In 1996, Johnson [7] proved the following theorem (see also Theorem 2.4 of [4]).

Theorem 2.1. *Suppose A is a C^* -algebra and M is a Banach A -module. Then each Jordan derivation $d : A \rightarrow M$ is a derivation.*

As an application of this theorem, we give the following result for characterization of (σ, τ) -derivations on von Neumann algebras.

Theorem 2.2. *Let A be a von Neumann algebra and let σ, τ be bounded homomorphisms on A . Let M be a Banach A -module and $d : A \rightarrow M$ be a bounded linear map with property that $d(p^2) = \sigma(p)d(p) + d(p)\tau(p)$ for every projection p in A . Then d is a (σ, τ) -derivation.*

Proof. We prove the theorem in two steps as follows.

STEP I. Recall that σ, τ are bounded homomorphisms on A and $d : A \rightarrow M$ is a bounded linear map with property that $d(p^2) = \sigma(p)d(p) + d(p)\tau(p)$ for every projection p in A . We show that d is a (σ, τ) -Jordan derivation. Let $p, q \in A$ be orthogonal projections in A . Then $p + q$ is a projection wherefore by assumption,

$$\begin{aligned} \sigma(p)d(p) + d(p)\tau(p) + \sigma(q)d(q) + d(q)\tau(q) &= d(p) + d(q) = d(p + q) \\ &= \sigma(p + q)d(p + q) + d(p + q)\tau(p + q) = \sigma(p)d(p) + d(p)\tau(p) \\ &\quad + \sigma(q)d(q) + d(q)\tau(q) + \sigma(p)d(q) + d(p)\tau(q) + \sigma(q)d(p) + d(q)\tau(p). \end{aligned}$$

This means that

$$\sigma(p)d(q) + d(p)\tau(q) + \sigma(q)d(p) + d(q)\tau(p) = 0. \quad (4)$$

Let $a = \sum_{j=1}^n \lambda_j p_j$ be a combination of mutually orthogonal projections $p_1, p_2, \dots, p_n \in A$. Then we have

$$\sigma(p_i)d(p_j) + d(p_i)\tau(p_j) + \sigma(p_j)d(p_i) + d(p_j)\tau(p_i) = 0 \quad (5)$$

for all $i, j \in \{1, 2, \dots, n\}$ with $i \neq j$. So

$$d(a^2) = d\left(\sum_{j=1}^n \lambda_j^2 p_j\right) = \sum_{j=1}^n \lambda_j^2 d(p_j). \quad (6)$$

On the other hand by (5), we obtain that

$$\begin{aligned} \sigma(a)d(a) + d(a)\tau(a) &= \sigma\left(\sum_{j=1}^n \lambda_j p_j\right) \sum_{j=1}^n \lambda_j d(p_j) + \sum_{j=1}^n \lambda_j d(p_j) \tau\left(\sum_{j=1}^n \lambda_j p_j\right) \\ &= \sum_{j=1}^n \lambda_j^2 d(p_j). \end{aligned} \quad (7)$$

Combining (6) by (7) to get $d(a^2) = \sigma(a)d(a) + d(a)\tau(a)$. By the spectral theorem (see Theorem 5.2.2 of [8]), every self adjoint element $a \in A_{sa}$ is the norm-limit of finite combinations of mutually orthogonal projections. Since d, σ, τ are bounded, then

$$d(a^2) = \sigma(a)d(a) + d(a)\tau(a) \quad (8)$$

for all $a \in A_{sa}$. Replacing a by $a + b$ in (8), we obtain

$$d(ab + ba) = \sigma(a)d(b) + d(a)\tau(b) + \sigma(b)d(a) + d(b)\tau(a) \quad (9)$$

for all $a, b \in A_{sa}$. Let $a \in A$. Then there are $a_1, a_2 \in A_{sa}$ such that $a = a_1 + ia_2$. Hence,

$$\begin{aligned} d(a^2) &= d(a_1^2 - a_2^2 + i(a_1a_2 + a_2a_1)) = d(a_1^2) - d(a_2^2) + id(a_1a_2 + a_2a_1) \\ &= \sigma(a_1)d(a_1) + d(a_1)\tau(a_1) - \sigma(a_2)d(a_2) - d(a_2)\tau(a_2) \\ &\quad + i(\sigma(a_1)d(a_2) + d(a_1)\tau(a_2) + \sigma(a_2)d(a_1) + d(a_2)\tau(a_1)) \\ &= \sigma(a)d(a) + d(a)\tau(a). \end{aligned}$$

STEP II. We show that every (σ, τ) -Jordan derivation from A into M is a (σ, τ) -derivation. Let $d : A \rightarrow M$ be a (σ, τ) -Jordan derivation. It is easy to see that M is a Banach A -module by the following module actions:

$$a \cdot m = \sigma(a)m, \quad m \cdot a = m\tau(a) \quad (a \in A, m \in M)$$

we denote $M_{(\sigma, \tau)}$ the above A -module. By definition of (σ, τ) -derivation, we have

$$d(a^2) = \sigma(a)d(a) + d(a)\tau(a)$$

for all $a \in A$. This means that d is a Jordan derivation from A into $M_{(\sigma, \tau)}$. Form Theorem 2.1, d is a derivation from A into $M_{(\sigma, \tau)}$. Hence, d is a (σ, τ) -derivation from A into M . \square

Suppose that A is a Banach algebra and M is an A -module. Let S be in A . We say that S is right separating point of M if the condition $mS = 0$ for $m \in M$ implies $m = 0$.

Theorem 2.3. *Let A be a unital Banach algebra and M be a Banach A -module. Let S be in A and $\sigma, \tau \in \text{Hom}(A)$ be bounded homomorphisms with the properties that $\tau(S)$ is a right separating point of M and $\sigma(1) = \tau(1) = 1$. Let $f : A \rightarrow M$ be a bounded linear map. Then the following assertions are equivalent*

- a) $f(ab) = \sigma(a)f(b) + f(a)\tau(b)$ for all $a, b \in A$ with $ab = S$.
- b) f is a (σ, τ) -Jordan derivation which satisfies $f(Sa) = \sigma(S)f(a) + f(S)\tau(a)$ and $f(aS) = \sigma(a)f(S) + f(a)\tau(S)$ for all $a \in A$.

Proof. First suppose that (a) holds. Then we have

$$f(S) = f(1S) = \sigma(1)f(S) + f(1)\tau(S) = f(S) + f(1)\tau(S)$$

hence, by hypothesis, we get that $f(1) = 0$. Let $a \in A$. For scalars λ with $|\lambda| < \frac{1}{\|a\|}$, $1 - \lambda a$ is invertible in A . Indeed, $(1 - \lambda a)^{-1} = \sum_{n=0}^{\infty} \lambda^n a^n$. Then

$$\begin{aligned} f(S) &= f[(1 - \lambda a)(1 - \lambda a)^{-1} S] = \sigma((1 - \lambda a))f((1 - \lambda a)^{-1} S) \\ &+ f((1 - \lambda a))\tau((1 - \lambda a)^{-1} S) = \sigma((1 - \lambda a))f\left(\sum_{n=0}^{\infty} \lambda^n a^n S\right) \\ &- \lambda f(a)\tau\left(\sum_{n=0}^{\infty} \lambda^n a^n S\right) = f(S) + \sum_{n=1}^{\infty} \lambda^n [f(a^n S) \\ &- f(a)\tau(a^{n-1} S) - \sigma(a)f(a^{n-1} S)]. \end{aligned}$$

So

$$\sum_{n=1}^{\infty} \lambda^n [f(a^n S) - f(a)\tau(a^{n-1} S) - \sigma(a)f(a^{n-1} S)] = 0$$

for all λ with $|\lambda| < \frac{1}{\|a\|}$. Consequently

$$f(a^n S) - f(a)\tau(a^{n-1} S) - \sigma(a)f(a^{n-1} S) = 0 \quad (10)$$

for all $n \in \mathbb{N}$. Put $n = 1$ in (10) to get

$$f(aS) = \sigma(a)f(S) + f(a)\tau(S). \quad (11)$$

Similarly, using equation $f(S) = f[S(1 - \lambda a)^{-1}(1 - \lambda a)]$ we get

$$f(Sa) = \sigma(S)f(a) + f(S)\tau(a)$$

for all $a \in A$.

Now, put $n = 2$ in (10) to get

$$f(a^2 S) = \sigma(a)f(aS) + f(a)\tau(aS). \quad (12)$$

Combining (11), (12) to obtain

$$f(a^2 S) = \sigma(a)(\sigma(a)f(S) + f(a)\tau(S)) + f(a)\tau(aS). \quad (13)$$

Replacing a by a^2 in (11), we get

$$f(a^2 S) = \sigma(a^2)f(S) + f(a^2)\tau(S). \quad (14)$$

It follows from (13), (14) that

$$(f(a^2) - \sigma(a)f(a) - f(a)\tau(a))\tau(S) = 0. \quad (15)$$

On the other hand $\tau(S)$ is right separating point of M . Then by (15) f is a (σ, τ) -Jordan derivation.

Now suppose that the condition (b) holds. Let $a, b \in A$ which satisfy $ab = S$. The next relation follows from a straightforward computation using the (σ, τ) -Jordan

derivation identities (2) and (3).

$$\begin{aligned}
f(Sa) &= f(aba) = \frac{1}{2}[f(a(ab+ba)+(ab+ba)a)-f(a^2b+ba^2)] \\
&= \frac{1}{2}[f(a)\tau(ab+ba)+\sigma(a)f(ab+ba)+f(ab+ba)\tau(a)+\sigma(ab+ba)f(a) \\
&\quad -f(a^2)\tau(b)-\sigma(a^2)f(b)-f(b)\tau(a^2)-\sigma(b)f(a^2)] \\
&= f(a)\tau(ba)+\sigma(a)f(b)\tau(a)+\sigma(ab)f(a) \\
&= f(a)\tau(ba)+\sigma(a)f(b)\tau(a)+f(Sa)-f(S)\tau(a).
\end{aligned}$$

So

$$[f(S)-f(a)\tau(b)-\sigma(a)f(b)]\tau(a)=0.$$

Hence,

$$[f(S)-f(a)\tau(b)-\sigma(a)f(b)]\tau(a)\tau(b)=[f(S)-f(a)\tau(b)-\sigma(a)f(b)]\tau(S)=0.$$

Since $\tau(S)$ is a right separating point of M , then

$$f(S)=f(a)\tau(b)+\sigma(a)f(b).$$

□

By Theorems 2.2 and 2.3, we have the following corollaries.

Corollary 2.1. *Let A be a von Neumann algebra and let σ, τ be bounded homomorphisms on A satisfying $\sigma(1) = \tau(1) = 1$. Let M be a Banach A -module and $d : A \rightarrow M$ be a bounded linear map. Then the following assertions are equivalent*

- a) $d(p^2) = \sigma(p)d(p) + d(p)\tau(p)$ for every projection p in A .
- b) $\sigma(a)d(a^{-1}) + d(a)\tau(a^{-1}) = 0$ for all invertible $a \in A$.
- c) d is a (σ, τ) -derivation.

Corollary 2.2. *Let A be a von Neumann algebra and let M be a Banach A -module and $d : A \rightarrow M$ be a bounded linear map. Then the following assertions are equivalent*

- a) $d(p^2) = pd(p) + d(p)p$ for every projection p in A .
- b) $ad(a^{-1}) + d(a)a^{-1} = 0$ for all invertible $a \in A$.
- c) d is a derivation.

REFERENCES

- [1] M. Ashraf and N. Rehman, On $(\sigma - \tau)$ -derivations in prime rings, Arch. Math. (BRNO) **38** (2002), 259-264.
- [2] M. Brešar, On the distance of the compositions of two derivations to the generalized derivations, Glasgow Math. J. **33** (1991), 89-93.
- [3] M. Brešar and A. R. Villena, The noncommutative Singer-Wermer conjecture and ϕ -derivations, J. London Math. Soc. **66**(2) (2002), no. 3, 710-720.
- [4] U. Haagerup and N. Laustsen, Weak amenability of C^* -algebras and a theorem of Goldstein, Banach algebras **97** (Blaubeuren), 223-243, de Gruyter, Berlin, 1998.
- [5] B. Hvala, Generalized derivations in rings, Comm. Algebra **26**(4) (1988), 1147-1166.
- [6] J. Hartwig, D. Larson and S. D. Silvestrov, Deformations of Lie algebras using σ -derivations, J. Algebra **295**(2006), 314-361.

- [7] *B. E. Johnson*, Symmetric amenability and the nonexistence of Lie and Jordan derivations, *Math. Proc. Camb. Phil. Soc.* **120** (1996), 455-473.
- [8] *R. V. Kadison and J. R. Ringrose*, Fundamentals of the theory of operator algebras, Vol. I-II, Academic Press, 1983-1986.
- [9] *M. Mirzavaziri and M. S. Moslehian*, Automatic continuity of σ -derivations in C^* -algebras, *Proc. Amer. Math. Soc.* **134** (2006), no. 11, 3319-3327.
- [10] *M. Mirzavaziri and M. S. Moslehian*, σ -derivations in Banach algebras, *Bull. Iranian Math. Soc.* **32** (2006), no. 1, 65-78.
- [11] *T. Palmer*, Banach algebras and the general theory * -algebras, Vol I. Cambridge: Univ Press (1994).